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Abstract

Social influence in social networks has been extensively researched. Most studies have focused
on direct influence, while another interesting question can be raised as whether indirect influence
exists between two users who’re not directly connected in the network and what affects such influ-
ence. In addition, the theory of complex contagion tells us that more spreaders will enhance the in-
direct influence between two users. Our observation of intensity of indirect influence, propagated
by n parallel spreaders and quantified by retweeting probability in two Twitter social networks,
shows that complex contagion is validated globally but is violated locally. In other words, the
retweeting probability increases non-monotonically with some local drops. A quantum cognition
based probabilistic model is proposed to account for these local drops.

Keywords: Twitter, Complex Contagion, Quantum Cognition, Social Computing, Cognitive
Informatics, Social Influence, Information Diffusion

1. Introduction

Thanks to the fast development of Web2.0, many online social networks have emerged, where
the observation of information diffusion, or social influence, in large-scale data becomes possi-
ble. Social influence has been studied by many researchers, including the validation of influ-
ence (Anagnostopoulos et al., 2008; Crandall et al., 2008), the propagation of influence among
multiple types of social media (Gruhl et al., 2004; Cha et al., 2009; Hong et al., 2011), the max-
imization of influence spread in the whole network (Kempe et al., 2003), and the probabilistic
modeling of direct influence (Tang et al., 2009; De Choudhury et al., 2007). However, most rele-
vant studies focused on direct influence, while another relevant question regarding social influence
may be raised as to whether a user can exert indirect influence on his/her friends’ friends and what
affects such influence. Normally, multiple intermediate persons called spreaders are involved in
the indirect communication between two persons, i.e., the sender and the receiver. Those spread-
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ers may have a combinational effect on the indirect influence propagated from the sender to the
receiver.

A concept closely related to indirect influence is complex contagion. Unlike simple contagion,
which can spread in social networks after just one contact with a single infected neighbor like a
disease, complex contagion is a phenomenon where multiple sources of exposure to a new idea
are required before an individual adopts the idea (Centola & Macy, 2005). That is to say, repeated
exposures of an individual to an idea recommended by his/her multiple neighbors positively affect
the probability he/she will eventually follow that idea. Romero et al. (2011) studied the spread of
hashtags in Twitter and quantified the probability of a user adopting a new hashtag as the function
of the number of his/her neighbors who have already adopted it. They found that the spread
of political hashtags validates the complex contagion, where the adoption probability increases
monotonically as the number of neighbors who had already adopted the same hashtags increases,
until a plateau is finally reached. By contrast, for idiom hashtags, complex contagion does not take
effect, and the adoption probability decays rapidly when more neighbors have adopted the same
hashtags.

The problem we are studying is similar to Romero et al. (2011), but we focus on message
spread behavior and indirect influence on Twitter. A concrete example of this is shown in Figure 1,
where Alice sends out original messages, Charlie and Carol further spread Alice’s messages (i.e.,

Figure 1: Typical information spread in a social network

by retweeting) and Bob finally receives them. After that, Bob may choose to further spread Alice’s
messages to others, just like his two neighbors Charlie and Carol have done, or not. Here, the intent
of Bob to further spread Alice’s messages would reflect the intensity of the indirect influence of
Alice on Bob, which can be measured as the probability that Bob will further spread Alice’s
messages, given that Charlie and Carol have already spread these messages. If complex contagion
takes effect, the influence intensity will be higher when both Charlie and Carol spread Alice’s
messages than when either or none of the two spread them.

In this paper, we examine the intensity of indirect influence as the function of the number of
parallel spreaders between two users on Twitter who don’t have direct following relations. We
found that complex contagion is observed globally but is violated locally. Especially, when the
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number of spreaders increases from one to two, there’s an obvious drop in the intensity. The newly
emerging field of quantum cognition is applied to interpret the local drops in terms of interference
effect on the process of decision-making. Recently, an article from NewScientist indicated how
humans may actually think in a “quantum” manner (Buchanan, 2011). Research from cognitive
science has also provided some initial evidence of quantum-like cognitive interference in human
decision-making (Khennikov, 2010; Busemeyer et al., 2009). These cognitive experiments showed
that the classical law of total probability was violated. Instead, quantum probability (Gudder,
1988) was applied to explain the experimental results. In addition, quantum cognition has been
employed to further advance the theory of information retrieval (IR) (Piwowarski et al., 2010;
Zuccon et al., 2009; Zhang et al., 2010).

Our main contributions are:

• Examine the change of parallel indirect influence between the sender and the receiver, quan-
tified by retweeting probability, with the number of spreaders and found that such probability
increases non-monotonically with some local drops;

• Verify the existence of complex contagion in the indirect influence on the global scale;

• Propose a probabilistic model based on quantum cognition to explain local drops in retweet-
ing probability.

This paper is organized as follows: Section 2 defines the problem. Section 3 shows the experimen-
tal results. Section 4 proposes quantum cognition model and Section 5 discusses its mathematical
validity. Section 6 lists related literature and finally Section 6 concludes the study.

2. Problem Definition

Twitter users send and read messages called tweets, which contain no more than 140 characters.
One user can read another user’s messages by following them. In addition, one user’s message can
be re-sent by his followers via retweeting. A retweeting message starts with the identifier “RT
@username”. Such following/follower relationships connect Twitter users and form the social
network where information flows through retweeting. Given a collection of tweets C = {t}, V
represens all Twitter users while E = {(u, v) |u, v ∈ V} represents all following relations where u
follows v. We provide several formal definitions as follows:

• DEFINITION 1. [Following Triple] ∀t starting with “RT @y: RT @x” posted by z, we build
a following triple Txyz = (x, y, z), x, y, z ∈ V and claim that (z, y) ∈ E and (y, x) ∈ E. We also
define C(Txyz) as the total count of tweets that belongs to Txyz and C(v), v ∈ V as the total
count of tweets v posted.

• DEFINITION 2. [Spreaders] ∀a, b ∈ V , we define spreaders between a and b as S ab =

{y|Tayb , NULL, y ∈ V}.

• DEFINITION 3. [N-spreader Retweeting Pattern] ∀a, b ∈ V we define a retweeting pattern
Pab = {Tayb|y ∈ S ab} and |S ab| = n. Consequently, we define a n-spreader retweeting pattern
as Pn = {Pab||S ab| = n}, and Pab is an instance of Pn.
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• DEFINITION 4. [Retweeting Probability] ∀Pab , ∅, we define the probability of b retweet-
ing from a as Pr(b|a; S ab) =

∑
y∈S ab

C(Tayb)/C(a). Consequently, we define the retweeting
probability of n-spreader retweeting pattern as Pr(n) =

∑
Pab∈Pn

Pr{b|a; S ab}/|Pn|.

• DEFINITION 5. [Indirect Influence] ∀x, z ∈ V∩Pxz , ∅, we think x exerts indirect influence
on z. Pr(n) indicates the average intensity of indirect influence in n-spreader retweeting
pattern.

Starting from 1-spreader retweeting pattern to illustrate how information spreads in Twitter
(Figure 2(a)), where B follows C and C follows A. We assume that B does not directly follow
A so it can only read A′s messages through C. A posts a tweet T and C reads and retweets it by
adding the sign RT @A. Such information flow is represented by solid arrays because it is actually
observed. Then B reads T and decides whether to further retweet it by adding a sign RT @C. The
information flow from B is represented by a dashed array because it is not an actual but a potential
flow. We can measure the intent of B to further propagate A′s messages transferred by C using the
retweeting probability Pr(B|A; C). For instance, A posts a total of 100 tweets and 20 of them are
retweeted by C. Then B further retweets 5 of the 20 tweets, which makes Pr(B|A; C)= 5/100 =

0.05.

A C B
T RT @A: T RT @C: RT @A: T

(a)
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RT @C1: RT @A: Ti
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Figure 2: Retweeting patterns with (a) one (b) two and (c) n different number of spreaders

In Figure 2(b), two spreaders C1 and C2 are involved in transferring messages from A to B.
Assume that A posts 100 tweets, C1 retweets 15 of them and C2 retweets 30 of them. Then B
retweets 5 of C′1s 15 tweets and 10 of C′2s 30 tweets. As a result, Pr(B|A; C1,C2)= (5 + 10) /100 =

0.15. The general n-spreader retweeting pattern is shown in Figure 2(c), and our research question
can be formulated as: Given n spreaders, how does the curve Pr(n) change with n?
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According to complex contagion, Pr(n), which represents the intensity of indirect influence,
increases monotonically with n, since more spreaders involved in transferring the sender’s mes-
sages leads to higher probability of the receiver to further propagate the sender’s messages. We
examined the probability in the real Twitter data to see whether this is true.

3. Results

In this section, we show the results of retweeting probability in two different Twitter datasets
and testify the existence of complex contagion. One dataset consists of tweets from the public
timeline that can be seen as a whole social network, while the other consists of tweets from a
certain user’s ego network.

3.1. Dataset1
The first dataset1 contains 467 million tweets from 20 million Twitter users from June to De-

cember 2009 , which covers 20%-30% of total public tweets during this period. Figure 3(a) shows
the distribution of n-spreader retweeting pattern. As the number of spreaders increases, the cor-
responding number of instances drops, indicating that the situation where too many spreaders are
involved is infrequent. The maximum number of spreaders we found is 29.
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Figure 3: (a) The distribution of retweeting patterns and (b) the curve of Pr(n) in dataset1

We plot the curve Pr(n) for n = 1 to 10 in Figure 3(b). The reason that we don’t show the
part of the curve for n > 10 is that the relatively rare occurrence of patterns with a large number
of spreaders makes the result subject to random disturbance and yields unreliable observations.
From Figure 3(a) we can see that the global trend of Pr(n) is increasing as n increases. That is to
say, overall, the intensity of indirect influence tends to become higher, or at least persists, as more
spreaders are included, which validates the phenomenon of complex contagion in the global level.

1http://snap.stanford.edu/data/twitter7.html
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Figure 4: (a) The distribution of retweeting patterns and (b) the curve of Pr(n) in dataset2

However, there are two drops spotted in Pr(n), i.e. from n =1 to 2 and 8 to 9. To testify the statisti-
cal significance of the two decreased probability values we observed, we used t-test (Gosset, 1970)
of difference between two means2 since retweeting probability is a type of mean value according
to DEFINITION 4. Specifically, we tested two hypothesis: Pr(1) > Pr(2) and Pr(8) > Pr(9). Two
indices, t-score and p-value were calculated, with higher t-score and lower p-value indicating more
statistically significant difference. Generally, we consider the difference (decrease) as statistically
significant if p-value is less than 0.05; otherwise, the difference (decrease) is very likely to be
caused by random noise. The results are shown in Table 1: We can see both p-values and t-scores

dataset1 dataset2
decrease from 1 to 2 from 8 to 9 from 1 to 2 from 4 to 5 from 7 to 8

t-score 88.44 8.38 5.15 1.51 5.11
p-value 0.00 0.00 0.00 0.06 0.00

Table 1: T-test results of decrease of retweeting probability

show that the two drops of retweeting probability are statistically significant, especially when one
spreader becomes two spreaders. This implies that the decrease is indeed caused by some other
reason rather than random noise. In other words, the indirect influence decays occasionally as the
number of spreaders increases, wherein the complex contagion is violated locally.

3.2. Dataset2
The second dataset comes from Knowledge Engineering Lab at Tsinghua University and cov-

ers the time span from August to December in 2009. The process of tweets crawling started
from @yanglicai, a popular Twitter user in the Chinese community, then extended to all contacts
of @yanglicai identified from his replying and retweeting messages. Subsequently, tweets from

2http://www.rossmanchance.com/applets/TOSCalculations/TOSCalculations.html
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the contacts of his contacts are crawled as well. Finally, 192,999 tweets from 8254 users were
obtained, and 25.5% of all crawled tweets were retweeting messages. If dataset1 represents the
whole network, we view dataset2 as an ego network with @yanglicai located at the center with all
other users having direct/indirect interactions with @yanglicai.

We do the same investigation for the second dataset as the first dataset. Figure 4(a) shows the
distribution of n-spreader retweeting patterns in this ego-network. Again, the number of instances
decreases as n increases. We plotted the curve of Pr(n) in Figure 4(b). Similar to dataset1, several
drops are spotted, i.e. from n =1 to 2, 4 to 5 and 8 to 9. We also did the same t-test with
results shown in Table 1. The p-value of the test for the decreased probability occurring when
n changes from 4 to 5 is a little larger than 0.05, implying that such decrease is only marginally
trustable and is possibly caused by random noise. However, the other two drops still show high
statistical significance because both p-values are close to 0. In summary, the phenomenon that
retweeting probability increases non-monotonically with some local drops is observed in both the
whole network (dataset1) and certain ego-network (dataset2), verifying that complex contagion is
globally validated but locally violated.

4. Quantum Cognition

Although the effect of complex contagion on the indirect influence is observed on a global
scale, the local scale decreasing in influence needs further interpretation. Actually, a reason for this
may be related to human psychology and cognition, a topic too complex to explain. The emerging
field of quantum cognition, however, might be able to provide a potential interpretation for the
decreased influence phenomenon. This field applies the formalism of quantum theory to model
cognitive phenomena such as memory, judgment and decision making. Notably, in the process of
decision making where a decision depends on multiple factors, quantum cognition assumes that
these factors are not independent but have quantum-like interference effects on the final decision
in a manner similar to the explanation for results from double-slit experiments (Khennikov, 2010;
Pothos & Busemeyer, 2009; Yukalov & Sornette, 2011).

4.1. A Physical Metaphor
From the perspective of quantum cognition, the information spread is compared here to the

physical wave quantum phenomenon. In the wave theory, the phase and magnitude of a wave
at a certain point is the linear superposition of all waves from all sources. This superposition
can result in constructive (when the wave phases align) or destructive (when the waves are out of
phase) interference. Such quantum interference was first observed in the well-known double-slit
experiment Young (1804), where quantum waves that pass through two slits interfered with each
other and generated a pattern of bright and dark bands on the screen. (Figure 5(a))

We use our example in Figure 1 to illustrate the physical metaphor for information spread in
Figure 5(b). Alice’s sending out an initial message to Charlie and Carol creates an information
‘wave’ in the form of a primary wavefront. Then Charlie and Carol forward Alice’s messages
by creating two secondary wavefronts. Finally, the two waves arriving at Bob may have con-
structive/destructive interference effects on his intent to further propagate the information flow.
If constructive interference occurs, the intensity of Bob’s intent to propagate Alice’s messages
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Figure 5: Double-slit phenomenon in (a) quantum physics and (b) information flow

will increase, which is very similar to the effect of complex contagion. If destructive interference
occurs, the intensity of Bob’s intent will decrease, which goes against complex contagion.

We give an intuitive illustration to show how Bob’s intent decreases due to a destructive in-
terference effect. Assume that initially only Charlie spreads Alice’s messages while Carol does
not. Bob receives Alice’s messages through Charlie and becomes interested in these messages
and further spreads them, because Bob has obtained relevant and fresh information. Later on,
Carol also begins to spread Alice’s messages but they largely overlap with those already spread
by Charlie. Bob therefore becomes less interested in Alice’s messages because he’s overwhelmed
with redundant information. Thus Bob’s intent to further spread Alice’s messages decreases, and
so does the indirect influence of Alice on Bob. Here, the interference between two spreaders leads
to destructive effects on the indirect influence from the sender to the receiver, which may explain
the local decrease spotted in Figure 3(a). If a third spreader joins in and provides the receiver with
new and relevant information about the sender, the indirect influence may rise again.

4.2. Cognition Model
Although an intuitive interpretation of locally decreased influence is given in terms of quan-

tum cognition, formal mathematical modeling is needed. We propose a cognitive model called a
q-attention model. This model originates from Batchelder & Riefer (1990), whose work presents
a family of processing models for the source-monitoring paradigm in human cognition but is es-
pecially tailored to our social influence research in Twitter. Note that most concepts and notations
used in our quantum modeling come from the theory of quantum probability (Gudder, 1988).

The q-attention model is designed for the situation where a group of Twitter users S n ={
C j

}
, j = 1, 2, ..., n, follow user A and are also followed by user B. S n receive tweets from A

and also retweet them to B. In addition, we assume that there exists an upper limit on the total
number of users B can pay attention to among all B′s followees, due to human’s cognitive process-
ing capacity. We set the number as N ≤ n . In order to formulate the probability Pr(B|A; S n) as a
function of n, we propose two versions of q-attention model: one is based on classical probability
theory, and the other is based on quantum probability theory.
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Figure 6: (a) Classical and (b) Quantum version of q-attention model

4.2.1. Classical q-attention model
We model the cognitive process of B retweeting from A′s messages through C j ∈ S n by divid-

ing it into two phases: First, B pays attention to C′js messages; Second, B reads those messages
retweeted by C j from A and decides whether to further retweet them (Figure 6(a)). In the first
phase, we define q j as the probability that B pays attention to C j and require

∑N
q=1 q j = 1 . In the

second phase, we have already defined Pr(B|A; C j) to measure B′s retweeting intent through C j.
Finally, the probability that B retweets from A through C j can be computed by the classical law of
total probability:

Pr(B|A; S n) =
∑

C j∈S n

q j · Pr(B|A; C j) (1)

We replace Pr(B|A; S n) with Pr(n) to represent the general case and two implications can be
drawn:

• The total effect of all spreaders on the receiver is just the linear superposition of an indi-
vidual effect of each spreader, which is represented by an independent single term without
interfering with other spreaders’ effects;

• Pr(n) increases monotonically as n increases, indicating that adding spreaders only increases
the final intent of B to further retweet A′s messages.

Actually, the classical q-attention model matches the sense of complex contagion. Inspired by
the description of influence curve of political hashtag in Romero et al. (2011), we can represent
Pr(n) as a monotone increasing function. In the simplest case, we can assume that Pr(n) is just
a linear increasing function of n from 1 until N . When n ≥ N, Pr(n) ≡ Pr(N), because the
upper limit of human’s information processing probability is reached and the intensity of influence
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persists at a relatively stable level. To summarize, Pr(n) can be approximately represented by the
following piecewise defined function:{

Pr(n) = Pr(1) +
Pr(N)−Pr(1)

N−1 (n − 1), n = 2, ...,N − 1
Pr(N + k) = P(N), k ∈ N+ (2)

4.2.2. Quantum q-attention model
To take into account the cognitive interference effect that is ignored in the classical q-attention

model, we now formulate a quantum version of the q-attention model. According to quantum
probability theory Gudder (1988), a probability p of an event is not primitive but derived from
something more primitive called a probability amplitude ϕ (a complex number) — the probability
is the square of magnitude of the amplitude, i.e. p = |ϕ|2 . As is shown in Figure 6(b), the structure
of quantum q-attention model is almost the same as the classical version, except for the following
three differences:

• The classical probability of paying attention to C j, previously denoted by q j , is replaced by
a probability amplitude denoted by ϕ j . B is assumed to be in a superposition state, denoted
by:

|S n〉 =

N∑
j=1

ϕ j ·
∣∣∣C j

〉
(3)

where ϕ j represents the “potential” of B to consider the tweets from C j, but the potential is
represented by a complex number. The probability of paying attention to the tweets from
C j is obtained from the squared magnitude q j = |ϕ j|

2 and again we require
∑N

j=1 |ϕ j|
2 = 1.

Overall, Equation 3 represents B′s cognitive state of selecting spreaders C j to pay attention
to in a quantum manner;

• The classical probability that B retweets from A through C j, previously denoted by Pr(B|A; C j),
is replaced by the probability amplitude

〈
B|A; C j

〉
, which represents the B’s “potential” to

retweet but such potential is represented by a complex number. The probability of retweet-
ing is obtained from the squared magnitude Pr(B; A,C j) = |

〈
B; A,C j

〉
|2;

• The quantum probability obeys the law of total amplitude rather than the law of total prob-
ability. The probability that B retweets from A passed along by C j ∈ S n is represented by
Pr(B; A, S n) = | 〈B; A, S n〉 |

2. To determine the amplitude 〈B; A, S n〉, we replace the sum of
probabilities shown in Equation 1 with the sum of amplitudes given below:

〈B|A; S n〉 =
∑

C j∈S n

ϕ j ·
〈
B|A; C j

〉
(4)

To make it clear, we show some examples of how quantum q-attention model naturally encom-
pass interference effects. First, we consider n = 1 in which case only one spreader C1 exists. Then
〈B|A; S 1〉 = |ϕ1 · 〈B|A; C1〉 |

2 = |ϕ1|
2 · | 〈B|A; C1〉 |

2 = q1 · Pr(B|A; C1). Apparently, the quantum
version is exactly the same as the classical version because no interference occurs.
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Next we consider n = 2 in which case S 2 =
{
S 1, S 2

}
. From Equation 4 we have:

〈B|A; S 2〉 = |ϕ1 · 〈B|A; C1〉 + ϕ2 · 〈B|A; C2〉|
2 = |ϕ1 · 〈B|A; C1〉|

2 + |ϕ2 · 〈B|A; C2〉|
2

+
(
ϕ∗1 · ϕ2

)
· 〈B|A; C1〉

∗ · 〈B|A; C2〉 +
(
ϕ1 · ϕ

∗
2
)
· 〈B|A; C1〉 · 〈B|A; C2〉

∗.

The first two terms corresponds to the same probability that we obtain from the classical model,
while the last terms form a conjugate pair:(

ϕ∗1 · ϕ2
)
· 〈B|A; C1〉

∗ · 〈B|A; C2〉 = |ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉| · (cos (θ12) + i · sin (θ12))(
ϕ1 · ϕ

∗
2
)
· 〈B|A; C1〉 · 〈B|A; C2〉

∗ = |ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉| · (cos (θ12) − i · sin (θ12))

where θ12 is the phase difference of the two complex number ϕ1 ·〈B|A; C1〉 and ϕ2 ·〈B|A; C2〉, which
is dependent on the relation between C1 and C2. The sum of the conjugate pair produces a real
number that we call an interference term:

I12 = 2 · |ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉 | · cos(θ12)

Note that the cosine term can be positive (producing constructive interference), negative (produc-
ing destructive interference) or zero (no interference). Notably, if the cosine value is sufficiently
negative, then the probability of B retweeting from A through two spreaders C1 and C2 can be
smaller than the probability given only one spreader C1, i.e. |ϕ2 · 〈B|A; C2〉 |

2 + I12 < 0.
Finally we consider the case n = 3 and S 3 =

{
S 1, S 2, S 3

}
. Similarly, we obtain:

〈B|A; S 3〉 = |ϕ1 · 〈B|A; C1〉|
2 + |ϕ2 · 〈B|A; C2〉|

2 + |ϕ3 · 〈B|A; C3〉|
2 + I12 + I13 + I23,

with the interference term defined as:

Ii j = 2 · |ϕi · ϕ j · 〈B|A; Ci〉 ·
〈
B|A; C j

〉
| · cos(θi j) (5)

Again, each interference term can be positive or negative. If they are all large negative numbers,
then we may then find a decrease in the probability for three spreaders compared with one or two
spreaders. There is also a possibility that all the interference terms will cancel out each other in
which case the combinational interference would be equal to none. In other words, the quantum
version in this case is reduced to the classical version.

4.2.3. Comparison between two q-attention models
We now systematically compare the classical and quantum q-attention models and mathe-

matically interpret the locally decreased influence based on the quantum q-attention model. The
architecture of the two models is actually the same yet the main conceptual difference between
the two lies in the representation of probability. Based on above equations, we can obtain the
mathematical relation between the two models as:

Prq(n) = Prc(n) +

n−1∑
i=1

n∑
j=i+1

Ii j (6)
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where Prq(n) represents the average result of the quantum model while Prc(n) represents the av-
erage result of the classical model. The only difference between the two models is the sum of
interference terms, which represents the interference effect. If we consider the delta value, we
obtain:

4Prc(n) = Prc(n) − Prc(n − 1) = qn · Pr(B|A; Cn) (7)

4Prq(n) = Prq(n) − Prq(n − 1) = qn · Pr(B|A; Cn) +

n−1∑
j=1

I jn (8)

From Equation 7, we can easily obtain 4Prc(n) > 0, i.e., Prc(n) increases monotonously with n. In
other words, B′s intent to retweet A′s messages always becomes stronger as more spreader C j are
involved in relaying A′s messages. However, the situation becomes more complex in Equation 8,
due to the interference items. It becomes very difficult to predict the changing tendency of B′s
retweeting intent. Especially, if

∑n−1
j=1 Ii j > −|qn · Pr(B|A; Cn)|, we have 4Prq(n) < 0. In other

words, sometimes the destructive effect will become so strong that it decreases B′s intent.
Compared with the classical q-attention model, the quantum q-attention model fully captures

the trend of indirect influence shown in Figures 3(b) and 4(b). When constructive cognition in-
terference occurs or interference cancel out (i.e., the classical model), the influence increases and
complex contagion takes effect; when destructive cognition interference occurs, the influence may
decrease and complex contagion is violated. In addition, the constructive/null effect occurs more
frequently than the destructive effect, corresponding to the global increase of indirect influence
with occasional local drops. Although our proposed quantum cognition model shows promise, it
is a purely theoretical hypothesis based on current research in the field and needs further empirical
verification.

5. Discussion

Equation 6 shows that the core part of quantum q-attention model is the interference terms,
which can be modeled as a linear combination of different cos(θi j) terms. Then the remain problem
is how to evaluate the capability of quantum model (i.e. those θi j) in characterizing the dynamic
of indirect influence regarding retweeting behavior in Twitter. It is difficult to solve because those
interference terms are affected by complex human psychological or other factors, which needs
further investigation and experimentation. Moreover, the quantum cognition model is more like
a conceptual and theoretical prototypical model, rather than traditional probabilistic models, like
Markov random filed or Bayesian network, which already have mature frameworks for parameters
learning and prediction evaluation. Therefore, the complete evaluation of the quantum model is
beyond our work at the moment and we will leave it for future work.

In spite of the difficulty of model evaluation illustrated above, we still attempt to justify the
mathematical capability of the quantum q-attention model in interpreting the co-existence of global
increase and local drops found in the empirical data, by answering two questions: First, if we have
already observed the change of the retweeting probability with the number of spreaders in one
empirical dataset, can we find the valid mathematical solutions of cos(θi j)? Second, can we apply
some simple rule to generate simulated/fake cos(θi j) terms, which can lead to global increased but
locally dropped retweeting probabilities against different number of spreaders?
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To answer the first question, we rely on the simple classic linear model described in Equation 2
and 1. In addition, we assume that the empirical values of retweeting probabilities represent the
output of quantum model and the difference between the quantum and classical model are fully
captured by interference terms, as is shown in Equation 6. Then by solving the linear equations
composed of Equation 1,2,6, we can obtain θi j for different values of n. There’re two points that
worth attention. First, if |cos(θi j)| > 1, then it is an invalid solution and the quantum q-attention
model fails. Second, most of the time, the solutions are not unique and multiple combinative
solutions of cos(θi j) can be found.

We take dataset1 as the example to illustrate how to find those cos(θi j). We set N as half of the
total number of retweeting patterns found in dataset1, i.e. N=14. When n = 2, we solve the linear
equations above and obtain cos(θ12) = −0.524, which is a valid value since −1 ≤ cos(θ12) ≤ 1. It
also indicates that the interference between C1 and C2 is destructive, which leads to a local drop.
When n = 3, we solve the linear equations and use the already known value of cos(θ12). We obtain

44.4 · cos(θ13) + 7.8 · cos(θ12) = 7.9 (9)

Obviously, cos(θ13) and cos(θ12) have more than one solutions and they may have opposite signs.
In other words, when C3 is added, the interference between C1 and C3 and the interference between
C2 and C3 may behave in different directions, leading to the rise of the global indirect influence
again. To be general, those cosine terms satisfy the following equation when n = k > 2:

k−1∑
i

Di f f (i) + 2(αcos(θ1k) +

k∑
j=2

βcos(θ jk)) = Di f f (k) (10)

where Di f f (i) = Prq(i) − Prc(i), α =
√

Pr(1) · β and β =
Pr(N)−Pr(1)

N−1 . We also try to find values of
cos(θi j) for other n values and the solutions are all valid, which confirms the mathematical plau-
sibility of proposed quantum model. However, It is worth note that the cos(θi j) items calculated
from one dataset do not apply to other dataset, because different sets of users have different types
of interactions.

To answer the second question, we run a simple simulation to generate those cos(θi j) without
any prior knowledge by assuming that cos(θi j) is just uniformly distributed from [-0.5, 0.5] and can
be randomly sampled. Here we examine three types of retweeting probabilities: classical model
value from Equation 2, emprical value from the dataset1, and simulated quantum model value from
Equation 10, 6 and randomly sampled cos(θi j). We plot two groups of three retweeting probability
curves by using two different random number generator seeds. The simulated quantum model
curves in both Figure 7(a) and Figure 7(b) show the trend of global increase plus local drop, which
matches our motivation of building quantum q-attention model. However, the curve of retweeting
probability in Figure 7(b) shows large deviation from the empirical value curve, implying that the
set of cos(θi j) are not randomly distributed but follow some rules, which need further examination
in order to better fit the real data.

Although we demonstrate the mathematical plausibility of quantum model above, our work
just initiates a new direction of applying quantum cognition to social influence study, which is
not seen in any other current related researches yet. We will leave the study of complete param-
eter estimation and model evaluation of quantum q-attention model for future work, possibly by
combining existing machine learning techniques and psychological experiments.

13



1 2 3 4 5 6 7 8 9 10
No. of Spreaders

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

A
v
e
ra

g
e
 R

e
tw

e
e
ti

n
g
 P

ro
b
a
b
ili

ty

classical
simulated
empirical

(a)

1 2 3 4 5 6 7 8 9 10
No. of Spreaders

0.020

0.025

0.030

0.035

0.040

0.045

A
v
e
ra

g
e
 R

e
tw

e
e
ti

n
g
 P

ro
b
a
b
ili

ty

classical
simulated
empirical

(b)

Figure 7: Simulation results of quantum model with randomly sampled interference items using random
(a) seed 1 and (b) seed 2

6. Related Work

6.1. Information and Influence Propagation
The origin of information propagation in social networks comes from social influence, which

occurs when an individual’s thoughts, feelings or actions are affected by other people. Information
propagation characterizes the way that a node in social networks can spread an information meme
to its neighbor nodes via exerting social influence on them. The existence of social influence
has been validated by many researchers (Anagnostopoulos et al., 2008; Crandall et al., 2008).
Different types of influence across various fields has been studied, including social media like
Blog (Gruhl et al., 2004), Flickr (Cha et al., 2009) and Twitter (Yang et al., 2010), as well as
academia (Ding, 2011; Ding & Cronin, 2011; Yan et al., 2011). The maximization of influence
spread in the whole network was investigated (Kempe et al., 2003) as well. In addition, different
methods of probabilistic modeling of social influence were also proposed. Tang et al. (2009) used
Topical Affinity Propagation to model the topic-level social influence on large social network;
De Choudhury et al. (2007) found three contextual factors that affect the influence propagation
between two friends in MySpace. Although many interesting phenomena have been observed from
the above researches, most of the time only direct communication between two adjacent persons in
a social network is considered in modeling and analyzing the information propagation. Normally,
multiple intermediate persons called spreaders are involved in the indirect communication between
two persons, i.e., the sender and the receiver. Those spreaders may not be independent but have
combinational interference on the information flow from the sender to the receiver. Some have
studied the problem of serial indirect influence where indirect influence is propagated through n
serial nodes. Fowler & Christakis (2008) found that happiness spreads among people as far as 3
hops. Liu et al. (2010) tried to quantify the indirect influence of n-degree friends at the topical
level. However, very few studies have focused on the parallel indirect influence, where indirect
influence is propagated through n parallel nodes, the focus of our paper.
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6.2. Quantum cognition
A recent article from NewScientist pointed out the strong connection between quantum theory

and human thought processes, where human cognition is found to follow fuzzy logic more than
classical logic (Buchanan, 2011). Cognitive science researches have also identified the existence
of quantum-like cognitive interference in human decision-making (Busemeyer et al., 2009; Khen-
nikov, 2010), where the experiments showed that the classic law of total probability was violated.
Instead, quantum probability (Gudder, 1988) was introduced to explain the experimental results.
Quantum cognition has been introduced in the IR field with the hope to build more user-centric
methods in searching and ranking. Hou & Song (2009) proposed an extended vector space model
(EVSM) to model context-sensitive high-order information. Zuccon et al. (2009) suggestted rank-
ing the document relevance using QT as judgment of relevance that is not independent from other
documents, and the interference of other documents play an important role in judging the rele-
vance. They proposed a novel quantum probability ranking principle (QPRP) to model a situation,
where a document relevance assessment is influenced by other documents. Although quantum
cognition has been extensively applied in IR, our paper takes the first lead in applying quantum
cognition to analyze the indirect social influence in social networks.

6.3. Complex Contagion
Complex contagion (Centola & Macy, 2005) refers to the phenomenon where multiple sources

of exposure to a new idea are required before an individual adopts the idea. Simple contagion,
however, can spread in social networks with just one contact with a single infected neighbor, as a
disease may function. Centola (2010) found that individuals are more likely to acquire new health
practices while living in networks with dense clusters of connections, that is, when in close contact
with people they already know well. For instance, people are more likely to participate regularly
in the health forum if they had more health buddies who registered for it. Romero et al. (2011)
studied the spread of hashtags in Twitter and quantified the probability of a user adopting a new
hashtag as the function of the number of his/her neighbors who have already adopted it. They
found that the spread of political hashtags validates the complex contagion, where the adoption
probability increases monotonically as the number of neighbors who have already adopted the
same hashtags increases, until finally reaching a plateau. By contrast, for idiom hashtags, complex
contagion does not take effect and the adoption probability decays rapidly when more neighbors
have adopted the same hashtags.

7. Conclusions

In this paper, we investigate the propagation of parallel indirect influence on Twitter with a
focus on how the intensity of influence changes with the number of spreaders. We construct
two social networks formed by the following relations (confirmed by RT in messages) in Twitter,
quantify the intensity of indirect influence with the retweeting probability, and plot the curve of
retweeting probability with the number of spreads. We find that the phenomenon of complex
contagion is validated globally since the overall trend of the retweeting probability is gradual
increasing against the number of spreaders. However, the probability decreases locally as well.
We apply quantum cognition theory in an attempt to interpret the local anomaly.
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Although some interesting findings about indirect influence on Twitter are observed in this
study, a great deal of future work remains to be done on the topic. First, the phenomenon of
locally decreased influence needs further study. Quantum cognition itself may not be sufficient
to explain it. Some theories from psychology, sociology, and probability will help address these
complexities. Second, we plan to compare the indirect influence curves for different topics. We
think that different patterns in retweeting behaviors exist for different topics on Twitter. It will be
very meaningful to compare them and see whether complex contagion works or not in different
contexts. Third, we hope to testify our quantum cognition model on other social networks includ-
ing Facebook. For instance, “like” is a common action in Facebook. We can model the probability
of a use who “like” some item on Facebook as the number of his/her social neighbors who already
“liked” the same item, and see whether complex contagion with local drops reemerges. Finally,
our current work is more descriptive and observational than mathematical formulations. We hope
to build a probabilistic model to represent and predict indirect influence in the future.
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