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ABSTRACT
....................................................................................................................................................

Objective Traditional Chinese medicine (TCM) is a unique and complex medical system that has developed over thousands of years.
This article studies the problem of automatically extracting meaningful relations of entities from TCM literature, for the purposes of
assisting clinical treatment or poly-pharmacology research and promoting the understanding of TCM in Western countries.
Methods Instead of separately extracting each relation from a single sentence or document, we propose to collectively and globally
extract multiple types of relations (eg, herb-syndrome, herb-disease, formula-syndrome, formula-disease, and syndrome-disease
relations) from the entire corpus of TCM literature, from the perspective of network mining. In our analysis, we first constructed het-
erogeneous entity networks from the TCM literature, in which each edge is a candidate relation, then used a heterogeneous factor
graph model (HFGM) to simultaneously infer the existence of all the edges. We also employed a semi-supervised learning algorithm
estimate the model’s parameters.
Results We performed our method to extract relations from a large dataset consisting of more than 100 000 TCM article abstracts.
Our results show that the performance of the HFGM at extracting all types of relations from TCM literature was significantly better
than a traditional support vector machine (SVM) classifier (increasing the average precision by 11.09%, the recall by 13.83%, and
the F1-measure by 12.47% for different types of relations, compared with a traditional SVM classifier).
Conclusion This study exploits the power of collective inference and proposes an HFGM based on heterogeneous entity networks,
which significantly improved our ability to extract relations from TCM literature.

....................................................................................................................................................
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INTRODUCTION
The essential philosophy of traditional Chinese medicine (TCM) is ho-
lism, emphasizing the regulation of the integrity of the human body as
well as the interaction between individuals and their environment, which
provides a distinctive methodology and approach for diagnosing and
treating disease.1 TCM has attracted more and more attention world-
wide as an alternative to modern medicine. Hundreds of thousands of
TCM researchers have made great efforts to modernize TCM and inte-
grate it with modern medicine. A large number of TCM research articles
are published every year. Meanwhile, large-scale analyses of the large
body of TCM literature has become an interesting research area in re-
cent years, because such analyses can exploit the collective knowledge
of TCM researchers and, in turn, add to the body of medical knowledge.

On the other hand, TCM is a very complex medical system in
which multiple types of entities are involved, such as “herb,” “for-
mula” (a composition that consists of certain herbs), “symptom,” and
“syndrome” (“zheng” in Mandarin Chinese, a complex pattern of signs
and symptoms, which is used as a holistic summary of a patient’s
status).2 Multiple types of intricate relations can exist between these
heterogeneous entities, such as composition relations between herbs
and formulae, treatment relations between formulae and syndromes,
effectiveness relations between herbs and syndromes, and association

relations between syndromes and diseases. Establishing these rela-
tions is the goal of TCM research. Every researcher contributes his or
her discoveries to the TCM knowledge base to form a large-scale,
multi-source, and unstructured pool of natural language text data.

In this article, we study the problem of extracting relations from this
pool of TCM data. More specifically, given a set of published scientific
TCM documents, our goal is to identify all the relations between the in-
stances of different types of entities in those documents. One of the main
objectives of relation extraction from TCM literature is to help generate
scientific hypotheses and clinical guidelines for practical diagnoses and
treatments.3 Specifically, the knowledge of all TCM researchers (found in
the general body of TCM literature) can be integrated into one pool of
data, the most significant associations between entities can be extracted
from that pool, and these associations can be used to assist clinical treat-
ment or poly-pharmacology research. In addition, the extracted relations
may promote the understanding of TCM in Western countries.

Relation extraction from TCM data is somewhat more complicated
than relation extraction from biomedical data. The main challenge of
relation extraction from TCM data is the complexity of the TCM system
itself. Multiple types of interwoven relations can exist between tens of
thousands of heterogeneous TCM entities, so it is not advisable to
extract a single type of relation independently of the others. Figure 1
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gives an example of extracting multiple types of correlated relations
between heterogeneous TCM entities. In addition, the vast majority of
TCM literature is written in Chinese, a language in which the sen-
tences have no spaces between words and, therefore, word segmen-
tation is needed to automatically divide sentences into words. Errors in
word segmentation obstructs feature generation in the relation extrac-
tion process.

In this article, we propose a novel approach to relation extraction,
to collectively and globally extract relations from the entire corpus
of TCM literature from the perspective of network mining. In this ap-
proach, we first construct heterogeneous entity networks from the
TCM literature. Specifically, we take all types of TCM entities that oc-
cur in the literature as nodes and create an edge for each pair of het-
erogeneous entities co-occurring in the same document. All the edges
are treated as candidate relations to be identified. Figure 2 gives a
simple example of a heterogeneous TCM network. We then propose a
unified graphical model, called the heterogeneous factor graph model
(HFGM), to simultaneously infer the labels of all the candidate relations
by employing the concept of collective inference.4,5

To evaluate the performance of our proposed method, we collected
a dataset consisting of more than 100 000 article abstracts from a
Chinese publication database and randomly annotated a sample of the
relations found therein. We trained and evaluated our HFGM on this
partially labelled dataset in a semi-supervised way. Our results dem-
onstrate that our proposed method performs very well at extracting

multiple types of relations, including herb-syndrome, herb-disease,
formula-syndrome, formula-disease, and syndrome-disease relations.

RELATED WORK
Relation extraction has recently attracted increasing interest in the in-
formation extraction community, and many related methods have
been successfully applied in the medical field.6 Compared with open
information extraction,7–9 which tries to find all potentially useful facts
and extract as many relations as possible from a large and diverse
corpus in which no relation type is specified in advance, medical rela-
tion extraction only focuses on deriving the most salient prespecified
types of relations from a single domain.

Many techniques have been proposed for biomedical relation
extraction, in which a variety of biomedical relations (such as the inter-
actions between proteins, genes, phenotypes, biological targets, and
diseases) have been the subject of relation extraction tasks. The sim-
plest method of biomedical relation extraction is to calculate the
co-occurring frequency of the entity pairs.10 This method commonly
results in high recall but low precision.11,12 Other researchers use
part-of-speech rules13 defined by domain experts14 or derived from an
annotated corpus15 to describe the linguistic patterns of particular re-
lations, a method that exhibits high precision but low recall.
Classification-based approaches are also commonly used to identify
biomedical relations. Roberts et al.16 and Rink et al.17 both describe a
supervised classification system for detecting various clinical relations.

Figure 1: An example of extracting multiple types of correlated relations between heterogeneous traditional Chinese medi-
cine (TCM) entities. Words in red font indicate a disease, words in blue font indicate a formula, and words in green font indi-
cate an herb. The relations extracted from different documents are correlated with one another through their common
entities.
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Bundschus et al.18 used conditional rand fields to identify disease-
treatment and gene-disease relations. Abach and Zweigenbaum19

propose a hybrid approach that combines patterns defined by domain
experts as well as a support vector machine (SVM) classifier for ex-
tracting relations between diseases and treatments. Syntactic struc-
tures are also thought to assist relation extraction. Miyao et al.20

performed deep parsing to annotate predicate-argument structures in
order to identify and retrieve relational concepts from MEDLINE ab-
stracts. Fundel et al.21 produced dependency trees and generated syn-
tactic rules to identify gene and protein associations. Similarly, Rinaldi
et al.22 used dependency trees to support the process of querying in-
teractions between genes and proteins. Kernel methods have also
been employed in the relation extraction process.23–25

Related works on relation extraction from the TCM literature are
scarce. One of the pioneering works on this subject is a study by Wu
et al.,26 in which the authors used a bootstrapping method to extract
syndrome-disease associations from a corpus of data. Based on this
study, Zhou et al.27 developed an integrative data mining system,
called MeDisco/3S, to identify relations between syndromes and
genes. Fang et al.28 integrated the association information between
entities in both TCM and modern medicine literature into a database
system named TCMGeneDIT, in which a co-occurrence-based method
and a rule-based method are used to extract different types of rela-
tions. In a recent work by Xue et al.,29 the authors used a TCM inte-
grated database (TCMID), which contains the most comprehensive
information on TCM entities and relations to date, and employed co-
occurrence to collect relations between herbs, ingredients, and targets
from TCM articles published in Chinese.

All the above-mentioned methods assume that the labels of all re-
lations are independently and identically distributed. However, these
heterogeneous relations may be dependent on one another, through
their common entities. For example, if we have identified one relation
between herb A and formula B and another relation between formula
B and syndrome C, then it is very likely that there is a relation between
herb A and the syndrome C. This is a kind of transitive property among
relations. If we can adequately model the widespread dependencies in
the literature, it is likely that these dependencies will greatly help us to
identify relations. However, the previous methods cannot capture such
dependencies.

In this article, we propose a novel HFGM to incorporate all the data
gathered from the body of TCM literature into a unified framework, for
better identifying TCM relations. A factor graph30 is a type of probabil-
istic graphical model that provides an elegant way of representing
graphical structure with more emphasis on the factorization of the dis-
tribution of data. Many modified factor graph models have been pro-
posed and successfully used in social network analyses, such as
those measuring social influence,31 mining social relationships,32 in-
ferring social ties,33,34 and predicting reciprocal interactions.35

METHODS
Data Collection and Annotation
We collected abstracts of published articles on TCM from a Chinese
publication database, then used four authoritative terminology dictio-
naries to detect TCM entities in the text of these abstracts. Next, we
generated candidate relations between all co-occurring heterogeneous
entities. Finally, a sample of relations was labelled by domain experts.

Terminology Dictionaries
Extracting relations from text first requires recognizing instances of
the entities. Studying entity recognition is not within the scope of this
article. Several relatively complete TCM terminology dictionaries have
been published in online TCM databases such as TCMonline and
TCMID. TCMonline (http://www.cintcm.com) is the earliest online TCM
database system, built by the Institute of Information on Traditional
Chinese Medicine at the China Academy of Chinese Medical Science
in 1984. TCMID (http://www.megabionet.org/tcmid), which was built
by the Institute of Biomedical Sciences at East China Normal University
within the last few years, is a comprehensive database that provides
information on and bridges the gap between TCM and modern life sci-
ences. We collected dictionaries directly from these databases to de-
tect the instances of entities in TCM literature.

We collected four TCM entity dictionaries by copying and merging
the names of the four types of entities from both the TCMonline and
TCMID databases: an herb dictionary that contains 8082 herbs, a for-
mula dictionary that contains 39 932 formulae, a syndrome dictionary
that contains 2209 syndromes, and a disease dictionary that contains

Figure 2: An example of a simple heterogeneous traditional Chinese medicine (TCM) network. Different icons and line styles
indicate different types of TCM entities and candidate relations, respectively, which are closely correlated with one another.
Many triadic closures are formed in the network.
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3316 Medical Subject Headings (MeSH) (http://www.nlm.nih.gov/
mesh) disease terms.

TCM Literature
We collected a corpus of data from the China National Knowledge
Infrastructure (CNKI) (http://www.cnki.net), which is one of the largest
online Chinese publication databases. The collected corpus of data
contains the abstracts of all 106 150 papers published in the 114
most popular Chinese TCM journals over the past 5 years, which al-
most covers all the aspects of TCM research. We used the four termi-
nology dictionaries mentioned above to detect entities that occurred
in the corpus of data, and found 3024 herbs, 4957 formulae, 1126
syndromes, and 1650 diseases. We then generated the candidate
relations between the co-occurring heterogeneous entity pairs and
identified: 11 197 herb-syndrome candidate relations, 11 755 herb-
disease candidate relations, 9659 formula-syndrome candidate
relations, 7882 formula-disease candidate relations, and 9645 syn-
drome-disease candidate relations. Note that we did not extract herb-
formula relations, because all the formulae in the dictionary are classi-
cal TCM formulae, and their relations with herbs have already been
well-defined.

Data Annotation
For training and quantitatively evaluating our proposed model, we ran-
domly labelled a small fraction (ie, 10%) of each type of candidate re-
lation. We asked three TCM experts (respectively denoted as Kang,
Tang, and Zhan, according to their family names), who specialize in
Chinese materia medica and clinical TCM, to annotate the data. For
each candidate relation to be labelled, the three domain experts read
the corresponding papers’ abstracts to identify whether the two end-
entities were really related or had just co-occurred by chance. The sta-
tistics of our dataset are summarized in Table 1, and the entire dataset
is available online at http://arnetminer.org/TCMRelExtr.

We used Kappa statistics to measure inter-annotator agreements.
As shown in Table 2, the Cohen’s Kappa36 scores between any two
annotators and the Fleiss’s Kappa37 scores among the three annota-
tors are mostly above 0.7, indicating substantial agreement. After that,
we employed the majority rule to decide the final label of each candi-
date relation.

Problem Definition
In this paper, we propose extracting relations in the context of hetero-
geneous TCM networks. So, we first give the definition of heteroge-
neous TCM networks, then present the problem formulation.

We use ~V and ~E to denote the set of types of TCM entities and re-
lations, respectively. In this paper, we have ~V ¼ fH; F; S; Dg and
~E ¼ fHF; HS; HD; FS; FD; SDg, where H, F, S, and D represent
the entities “herbs,” “formulae,” “syndromes,” and “diseases,” re-
spectively, and HF, HS, HD, FS, FD, and SD represent the relations
“herb-formula,” “herb-syndrome,” “herb-disease,” “formula-syn-
drome,” “formula-disease,” and “syndrome-disease,” respectively.

Heterogeneous TCM Networks: Let V~v ð~v 2 ~V Þ be a set of TCM
entities of type ~v and E~e ð~e 2 ~E Þ be a set of TCM relations of type ~e .
We define a heterogeneous TCM network as a graph G ¼ ðV ; E ; XÞ,
where V ¼ [~v2~V V~v , E ¼ [~e2~E E~e and X ¼ fX~e g~e2~E is a set of at-
tribute matrices. Each jE~e j � d~e matrix X~e 2 X is associated with the
edges of type ~e , where d~e is the number of attributes of type ~e , each
row of matrix X~e corresponds to an edge, each column corresponds to
an attribute, and an element x~e ik denotes the value of the k-th attrib-
ute of edge e~e i .

TCM Relation Extraction Problem: Given a heterogeneous TCM
network, G ¼ ðV ; E ; XÞ, then our objective is to learn a function to
predict the label of candidate relations between TCM entities, ie,

f : G ¼ ðV ; E ; XÞ ! L

Where L is the label space of the problem.
In this work, our goal is to identify the correctness (ie, reliability) of

each candidate relation; therefore, we have L ¼ f1; 0g, where the
label of 1 means an edge is reliable and 0 means it is unreliable.

Heterogeneous Factor Graph Model
Model Framework
Given a heterogeneous TCM network G ¼ ðV ; E ; XÞ, we use y~e i to in-
dicate the label of edge e~e i of type ~e . Let Y~e ¼ fy~e ig and
Y ¼ [~e2~E Y~e . Our objective is to then estimate the values of Y , and
we can use a joint posterior probability P ðY jX; GÞ to model its distri-
bution. Here, G denotes all forms of network information. This joint
probability indicates that the labels of the edges depend not only on
the local attributes associated with each edge, but also on the struc-
ture of the network.

A factor graph provides a way to factorize the “global” joint proba-
bility as a product of “local” factors, each of which depends on a sub-
set of variables in the graph. To represent the dependencies between
the labels Y and the attributes X and the correlations among the labels
Y , we can define the following two categories of local factors:

• Evidence factors, which are used to capture the dependencies
between the labels of edges and their attributes. For instance,

Table 1: Statistics of the Dataset

Relation Type Number of Unique Candidate Relations

Labelled Unlabelled

Positive Negative

Herb-Syndrome 538 582 10 077

Herb-Disease 534 642 10 579

Formula-Syndrome 392 574 8693

Formula-Disease 377 411 7094

Syndrome-Disease 431 532 8681

Table 2: Inter-annotator Kappa Agreements

Relation Type Cohen’s j Score Fleiss’s j Score

Kang-
Tang

Tang-
Zhan

Kang-
Zhan

Kang-Tang-
Zhan

Herb-Syndrome 0.7199 0.7537 0.7236 0.7032

Herb-Disease 0.8271 0.8657 0.7994 0.7789

Formula-Syndrome 0.7983 0.8431 0.8323 0.8264

Formula-Disease 0.6849 0.8176 0.8124 0.7735

Syndrome-Disease 0.7460 0.8867 0.8411 0.8110
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an evidence factor P ðy~e i jx~e i Þ represents the dependency of the
label y~e i of an edge on its attributes x~e i .

• Compatibility factors, which are used to capture the compatibility
among the labels of edges. We use triadic closures in heteroge-
neous TCM networks to construct compatibility factors. Triadic
closure38 is one of the fundamental processes of linking informa-
tion in a network and has been applied in many aspects of social
network mining, such as in inferring social ties34 as well as social
roles and statuses.39 We use ~C ¼ fHFS; HFD; HSD; FDSg to
denote the set of types of triadic closures, where HFS, HFD, HSD,
and FDS represent “herb-formula-syndrome” relations, “herb-
formula-disease” relations, “herb-syndrome-disease” relations,
and “formula-disease-syndrome” relations, respectively. Let c~c j
be a triadic closure of type ~c and Y~c j its corresponding subset of
labels; then, the compatibility factor P ðY~c j Þ indicates the correla-
tions among the labels in Y~c j .

Then, the joint probability can be factorized as follows:

P ðY jX; GÞ ¼
Y
~e2~E

Y
e~e i2E~e

P ðy~e i jx~e i Þ
Y
~c2~C

Y
c~c j2C~c

P ðY~c j Þ (1)

Where E~e is the subset of edges of type ~e , and C~c is the subset of tri-
adic closures of type ~c .

The factors P ðy~e i jx~e i Þ and P ðY~c j Þ can be instantiated by
exponential-linear functions:

P ðy~e i jx~e i Þ ¼
1

Z~e i
exp

Xd~e

m¼1

a~e m f~e mðx~e im ; y~e i Þ
( )

¼ 1
Z~e i

exp aT
~e i f~e i

� �
(2)

P ðY~c j Þ ¼
1

Z~c j
exp

Xd~c

n¼1

b~c n g~c nðY~c j Þ
( )

¼ 1
Z~c j

exp bT
~c j g~c j

n o
(3)

Where Z~e i ¼
P

y 0
~e i

P ðy 0~e i jx~e i Þ and Z~c j ¼
P

Y 0
~c j

P ðY 0~c j Þ are local nor-

malization factors; f~e mðx~e im ; y~e i Þ is the feature function of the m-th at-
tribute x~e im associated with edge e~e i of type ~e , a~e m is its weight, and
d~e is the total number of attributes of edges of type ~e . Equation 3 indi-
cates that we define d~c feature functions for each triadic closure of
type ~c , and b~c n is the weight of the n-th feature function g~c nðY~c j Þ.

The joint probability defined in Equation 1 can be rewritten as:

PhðY jX;GÞ¼
1
Z

Y
~e2~E

Y
e~e i2E~e

exp
Xd~e

m¼1

a~e m f~e mðx~e im ;y~e i Þ
( )Y

~c2~C

Y
c~c j2C~c

exp
Xd~c

n¼1

b~c n g~c nðY~c j Þ
( )

¼ 1
Z

Y
~e2~E

Y
e~e i2E~e

exp aT
~e i f~e i

� �Y
~c2~C

Y
c~c j2C~c

exp bT
~c j g~c j

n o

¼ 1
Z

exp
X
~e2~E

X
e~e i2E~e

aT
~e i f~e i

8<
:

9=
;exp

X
~c2~C

X
c~c j2C~c

bT
~c j g~c j

8<
:

9=
;

¼ 1
Z

exp aTf
� �

exp bTg
� �

(4)

Where Z ¼
Q

~e2~E

Q
e~e i2E~e

Z~e i
Q

~c2~C

Q
c~c j2C~c

Z~c j is a global normaliza-
tion factor and h¼ðfa~e mg;fb~c ngÞ¼ða;bÞ are the parameters to be
estimated.

Figure 3 gives the graphical representation of an HFGM. The dotted
ellipse at the bottom of the figure encloses the constructed heteroge-
neous TCM network, in which a node represents a TCM entity of a cer-
tain type. The dotted ellipse in the middle of the figure encloses the
set of candidate relations, each of which corresponds to an edge in
the input network. The dotted ellipse at the top of the figure encloses
the factor graph generated from the input network, in which the col-
ored ovals represent variables (labels) corresponding to the candidate

relations, and the squares represent factors. The green ovals repre-
sent the known labels that are taken as supervised information, while
the red ovals represent the unknown labels to be predicted. The black
squares represent the evidence factors between variables and their at-
tributes, while the blue squares represent the compatibility factors of
triadic closures.

Features in Consideration
In general, the features of evidence factors should be able to reflect
prior knowledge of the labels of edges. In this study, we employed
three categories of features for evidence factors:

• Co-occurring frequency : This is the simplest feature, which
represents the instances in which the two end-entities of a rela-
tion co-occur in the same document.

• Lexical context: Intuitively, the context surrounding the two end-
entities is very important for identifying a relation. We used
ICTCLAS (Institute of Computing Technology, Chinese Lexical
Analysis System; http://ictclas.org) to segment the Chinese doc-
uments into words, and took the surrounding words of each en-
tity as features. Six surrounding words were collected for each
instance of an entity, three before and three after the instance.
After removing the infrequent words, 9784 distinct words re-
mained. We then defined a feature function for each of the
words, to indicate the frequency that each word appeared
around the two end-entities of a relation.

• Semantic distance: Determining the latent semantic relatedness
of the two end-entities may also be helpful for identifying a rela-
tion. For calculating semantic distance, we first need to represent
the semantic meanings of each entity. Distributed vector repre-
sentations facilitate learning word meanings from large collec-
tions of text. Each word is learned as a distinct pattern of
continuous values over a single, large vector, with each dimen-
sion corresponding to a latent topic. We can then measure the
semantic relatedness among words in terms of distances in the
resulting vector space. We used word2vec40 (https://code.google.
com/p/word2vec), an efficient tool for computing the vector repre-
sentations of words by employing deep-learning approaches, to
calculate the semantic vectors of TCM entities from our corpus of
data, and, with this tool, we generated a 200-dimension vector
for each entity. We then defined a feature function on each di-
mension by using the absolute value of the difference between
the values of the dimensions of the two end-entities.

Except for the above three categories of features, syntactic structure
(ie, dependency relation) is another type of information that is useful for
relation extraction. However, being able to determine syntactic structure
requires that the two end-entities co-occur within one single sentence.
So, we did not take syntactic structure into account in this study.

The feature functions fg~c nðY~c j Þg of compatibility factors should be
able to reflect dependencies among the labels of edges. We defined
one category of feature functions for compatibility factors based on the
transitive property of triadic closures. Figure 4 gives an illustration of
the transitive property, in which the labels of three edges form a triad
closure. According to the transitive property, we can define the feature
function as follows:

gðy1; y2; y3Þ ¼

�1; y1 þ y2 þ y3 ¼ 2

0; y1 þ y2 þ y3 ¼ 0 or 1

1; y1 þ y2 þ y3 ¼ 3

8>><
>>:
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Learning and Inferring the HFGM
We propose using a semi-supervised learning algorithm to estimate
the parameters of the model (see Supplementary Appendix A), which
enables us to predict the labels of unknown edges based on the esti-
mated parameters (see Supplementary Appendix B).

RESULTS
We trained and evaluated our proposed HFGM on the dataset we
collected and annotated. Five types of relations – herb-syndrome,
herb-disease, formula-syndrome, formula-disease, and syndrome-
disease – were extracted from the TCM literature we analyzed.

The HFGM model was implemented in Cþþ, and all experiments
were conducted on a server running Windows Server 2008, with an
Intel Xeon CPU E7-4820 2.00 GHz processor and 256 GB of memory.
The entire semi-supervised learning and inference process took about
4.5 h.

A traditional classification approach was employed as the baseline,
in which the co-occurring frequency, lexical context, as well as the
aforementioned semantic distance were taken as the classification
features. Because the number of features involved in this approach
was very large, we used an SVM41 (www.csie.ntu.edu.tw/�cjlin/
libsvm) as the basic classifier.

Figure 3: Graphical representation of a heterogeneous factor graph model (HFGM). Here, v~v j represents a traditional
Chinese medicine (TCM) entity of a certain type ~v (eg, vH1 represents an herb), e~e k represents an edge (a candidate
relation) of a certain type ~e (eg, eHF1 represents an herb-formula relation), y~e k represents the corresponding variable (label)
of an edge (eg, yHF1 represents the label of the edge eHF1), f~e mð:Þ represents a feature function for evidence factors defined
on the observed attributes, and g~c nð:Þ represents a feature function for compatibility factors defined among latent labels.
The labels yHF1, yHS1, and yFD1 are known in advance and are taken as supervised information, while the labels yHD1, yFS1,
and yFD1 are unknown and yet-to-be-predicted.
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In order to let the basic classifier utilize the relations’ compatibility
information, we also ran an iterative classification algorithm on our re-
lation extraction task. Compared with probabilistic graphical models
(eg, factor graph models), iterative classification provides a simple and
approximate way of implementing the concept of collective inference,
by graphing interdependent variables and taking the inferred neighbor-
ing values of a variable as known information to assist with iteratively
inferring the variable’s value. We designed an iterative SVM classifier
in our experiments that takes the results of the basic SVM classifier as
the initiate values of all the labels, then iteratively updates the label of
each relation by simultaneously using its observed features and in-
ferred neighboring label values, until the labels no longer change. The
key challenge of iterative classification is transforming the neighboring
label values into regular features in order to capture the labels’ com-
patibility information. In this study, we also defined iterative features
based on the transitive property of triadic closures. Specifically, we
calculated the numbers of triadic closures with different sums (ie, 0,
1, 2, and 3, as shown in Figure 4) that were formed by each relation
with its neighboring relations.

We performed a five-fold cross-validation to evaluate the perfor-
mance of our model. Table 3 shows the performance of the HFGM as
compared with that of two other approaches. Our results show that the
HFGM is more efficient at extracting relations from the TCM literature
compared with the basic SVM classifier (increasing precision by �10–
12%, recall by �12–15%, and the F1-measure by �11–14%, for dif-
ferent types of relations) and the iterative SVM classifier (increasing pre-
cision by �6–8%, recall by �7–10%, and the F1-measure by �7–
11%, for different types of relations). We performed a t-test between the
performances of these three approaches with regard to the extraction of
different types of relations and found that the difference between them
is extremely statistically significant (P< 0.001 for all precision, recall,
and F1-measures).

FD, formula-disease relation; FS, formula-syndrome relation; HD,
herb-disease relation; HFGM, heterogeneous factor graph model; HS,
herb-syndrome relation; SD, syndrome-disease relation; SVM, support
vector machine; TCM, traditional Chinese medicine.

To further determine the effectiveness of our approach, we plotted
receiver operating characteristic curves of the basic SVM and HFGM
approaches (as shown in Figure 5), where the y-axis represents the
rate of predicated positive labels in all the positive samples, and the
x-axis represents the rate of predicted positive labels in all the nega-
tive samples. It is clear that the HFGM significantly outperforms the
basic SVM classifier on extracting all types of relations.

DISCUSSION
After performing an in-depth analysis of some specific instances, we
found that our HFGM significantly improves the accuracy of relation
extraction in the following cases (in which traditional classifiers have
difficult identify relations):

• The context is very short. For a candidate relation, we took the
co-occurring frequency of the two end-entities appearing in the
same documents and the frequencies of their surrounding
words as the classification features, so if a relation only appears
once in a single, short document, then the context information
will not be enough to identify the relation.

• The context contains confusing information. In some TCM
treatment experiments, one or more control groups are used to
compare the effectiveness of different treatments, which often
misleads traditional classifiers to extract some relations from
the control groups that are not actually present.

• Several different studies are reported on in the same docu-
ment. Occasionally, several studies will be covered within a sin-
gle article or even a single sentence. An example of this would
be if an author wrote, “the herb A is curative to the disease B;
the herb C is curative to the disease D.” In this example, it
would be difficult for traditional classifiers to distinguish the cor-
rect relations (A–B and C–D) from the incorrect relations (A–C,
A–D, B–C, and B–D), which may lead traditional classifiers to
extract some incorrect relations from the document.

• The name of an entity is a polysemous word. Some Chinese
names for TCM entities have other meanings. For instance, the

Figure 4: Illustration of the transitive property of triadic closures. (a) Complies with the transitive property, because all the
three labels are equal to 1; (b) violates the transitive property, because only two labels are equal to 1; for (c) and (d) the
transitive property does not apply, because only one label or no labels are equal to 1.

RESEARCH
AND

APPLICATIONS
Wan H, et al. J Am Med Inform Assoc 2015;0:1–10. doi:10.1093/jamia/ocv092, Research and Applications

7



term “ ” refers to a syndrome called “Tai Yang” in
the TCM domain, but it means “the sun” in most contexts, and
the term “ ” refers to dehydration in a medical context,
but can also mean “the physical process of dewatering.” Such
polysemous terms complicate the process of identifying candi-
date relations.

Our HFGM utilizes the correlations between all types of relations to
overcome the above difficulties by employing collective inference in
the context of heterogeneous entity networks, thus greatly improving
the model’s ability to extract TCM relations. The effectiveness of the
HFGM demonstrates the existence of correlations among different
types of relations. In addition, using the transitive property of triadic

Table 3: Performance of TCM Relation Extraction by Different Approaches (%)

Relation Type HS HD FS FD SD Average

Basic SVM Precision 78.89 79.13 80.12 81.04 77.72 79.30

Recall 72.34 74.59 72.32 73.08 73.22 73.15

F1 75.47 76.79 76.02 76.85 75.40 76.09

Iterative SVM Precision 83.35 (þ4.46) 83.1 (þ3.97) 84.33 (þ4.21) 85.55 (þ4.51) 81.88 (þ4.16) 83.54 (þ4.24)

Recall 77.66 (þ5.32) 79.51 (þ4.92) 77.75 (þ5.43) 78.41 (þ5.33) 78.34 (þ5.12) 78.36 (þ5.21)

F1 80.4 (þ4.93) 81.27 (þ4.48) 80.91 (þ4.89) 81.82 (þ4.97) 80.07 (þ4.67) 80.87 (þ4.78)

HFGM Precision 90.94 (þ12.05) 89.48 (þ10.35) 90.81 (þ10.69) 91.07 (þ10.03) 89.87 (þ12.15) 90.39 (þ11.09)

Recall 86.93 (þ14.59) 87.34 (þ12.75) 85.69 (þ13.37) 88.25 (þ15.17) 86.87 (þ13.65) 86.98 (þ13.83)

F1 88.89 (þ13.42) 88.40 (þ11.60) 88.18 (þ12.16) 89.64 (þ12.78) 87.86 (þ12.94) 88.56 (þ12.47)

Figure 5: Receiver operating characteristic curves of different approaches for extracting (a) herb-syndrome, (b) herb-
disease, (c) formula-syndrome, (d) formula-disease, and (e) syndrome-disease relations. The y-axis represents the true
positive rate and the x-axis represents the false positive rate.
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closures to model the dependencies among the labels of edges in the
network is a reasonable and practicable approach.

However, some of our results can be improved upon, and some of
the approaches we employ can be expanded upon in the future.
Firstly, some other types of important TCM entities, such as symp-
toms, are not incorporated into our model. This is because there is not
a standard or unified terminology glossary for TCM symptoms, so en-
tity recognition techniques are needed to detect the instances of
symptom entities in text. If we can bring such entities into our unified
model in the future, then more types of relations can be extracted.
Secondly, many biomedical discoveries, such as known disease-target
and ingredient-target relations or research on the integration of
Chinese and Western medicine (eg, established herb-ingredient rela-
tions), can be used as prior knowledge in our model and are expected
to further improve the model’s performance.

Another challenge is that the computational complexity of learning
the HFGM is very high, because multiple rounds of approximate infer-
ences are required over the entire dataset (see Algorithm 1 of the online
supplementary data). Consequently, we need to develop efficient learning
approaches. Tang et al.33 has proposed a parallel algorithm to learn fac-
tor graph models, which can be used for reference in our future research.
In addition, other approximation techniques, such as the pseudolikelihood
measure,42,43 may also be used in our collective inference methods.

Our approach also be directly applied to relation extraction in the
field of biomedical text mining. We can construct heterogeneous net-
works between biomedical entities (eg, proteins, genes, phenotypes, bi-
ological targets, diseases, drugs, treatments) gathered from biomedical
literature or clinical records, then employ the HFGM to extract biomedi-
cal relations in the context of these heterogeneous biomedical networks.

The HFGM model proposed in this article is only suitable for het-
erogeneous entity networks that contain at least three kinds of enti-
ties, because we use triadic closures formed by three kinds of entities
to construct compatibility factors in the model.

Another limitation of the current version of our model is that it can
only extract one class of relations between the same two types of enti-
ties at the same time, because we treat the relation extraction problem
as a binary classification problem in this study. For instance, the
annotated dataset in this study contains only “herb-treatment-
disease” relations, so the learned model also can only extract “herb-
treatment-disease” relations. However, if the user wants to extract
“herb-hasSideEffect-disease” relations, they may use the data that
contains annotated “herb-hasSideEffect-disease” relations to re-train
the model.

CONCLUSION
In this article, we examine the problem of automatically extracting
meaningful entity relations from TCM literature and propose an HFGM
that exploits the power of collective inference in the context of hetero-
geneous entity networks to simultaneously and globally extract all
types of relations (eg, herb-syndrome, herb-disease, formula-
syndrome, formula-disease, and syndrome-disease relations) from the
entire corpus of TCM data. We propose using a semi-supervised learn-
ing algorithm to estimate the parameters of the model. The results of
our analysis of a professionally annotated dataset show that our ap-
proach is superior to traditional classification methods in extracting
multiple types of relations from TCM literature.
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