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Abstract 
 
Support Vector Machines (SVMs) is aimed at finding an optimal separating hyper-plane that 

maximally separates the two classes of training examples (more precisely, maximizes the margin 

between the two classes of examples). The hyper-plane, corresponding to a classifier, is obtained 

from the solution of a problem of quadratic programming that depends on a cost parameter. The 

choice of the cost parameter can be critical. However, in conventional implementations of SVMs 

it is usually supplied by the user or set as a default value. In this paper, we study how the cost 

parameter determines the hyper-plane. We especially focus on the case of classification using 

only positive and unlabeled data. We propose an algorithm that can fit the entire solution path by 

choosing the ‘best’ cost parameter while training SVM models. We compare the performance of 

the proposed algorithm with the conventional implementations that use default values as the cost 

parameter on two synthetic data sets and two real-world data sets. Experimental results show that 

the proposed algorithm can achieve better results when dealing with positive and unlabeled 

classification.  
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Introduction 

Support Vector Machines (SVMs), a new generation learning system based on recent advances 

in statistical learning theory, deliver state-of-the-art performance in real-world applications such 

as text categorization, hand-written character recognition, image classification, and 

bioinformatics [1] [2]. 

We recall the standard formulation of SVM. Given a set of training data {(x1, y1), … , (xn, yn)}, 

in which xi denotes an example (feature vector) and yi∈{+1, -1} denotes its classification label. 

In the linear case, the formulation of SVM is 
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where the ξi are non-negative slack variables that allow points to be on the wrong side of their 

“soft margin” (f(x) = ±1), as well as the decision boundary. C is the cost parameter that controls 

the trade-off between the largest margin and the lowest number of errors. Intuition shows that in 

the separable case, with a sufficiently large C, the solution achieves the maximal margin 

separator and in the non-separable case, the solution achieves a largest margin with minimum 

errors (sum of the ξi). 

The choice of the C can be critical [3]. The characteristics of the hyper-plane can vary largely 

using different values of C. This is especially true in the problem of positive and unlabeled 

classification (shortly PU classification) that is aimed at building classifiers with only positive 

and unlabeled examples, but no negative examples [4]. PU classification problem naturally arise 

in many real-world applications, for example, text classification, homepage finding, filtering 

spam from people’s emails, image segmentation, and information extraction. In such cases, the 



user only annotates part of the positive examples while let the others unlabeled, and hope that a 

good classifier can be learned. 

Unfortunately, in conventional implementations of SVMs, the cost parameter C is usually 

supplied by the user or set as a default value. For example, SVM-light [5] uses the average norm 

of training examples as the default value. In practice, our empirical study shows that the quality 

of the trained SVM model may be very sensitive to C in PU classification. Thus, it is very 

important to discover an optimal value for C given a specific task of PU classification. This is 

exactly the problem addressed in this paper. 

Recently, several approaches have been proposed to deal with PU classification using SVMs. 

For example, Liu et al. propose Biased SVM applying SVM to PU classification [6]. In Biased 

SVM, the authors propose to choose the best value for C by employing a cross validation method 

to verify the performance of resulting SVM models with the various values. Yu proposes an 

extension of the standard SVM approach called SVMC (Support Vector Mapping Convergence) 

for PU classification [7] [8]. SVMC basically exploited the natural “gap” between positive and 

negative examples in the feature space, which eventually corresponds to improve the 

generalization performance. However, SVMC suffered from under-sampling of positive 

documents, leading to overfit at some points and generalize poor results. See also Roc-SVM [4], 

S-EM [9], and PEBL [10]. Most of the approaches avoid the problem of the choice of C or use 

the empirical method (e.g. cross validation), which results in very high computational cost. It is 

also possible to discard the unlabeled data and learn only from the positive data. This was done 

in the one-class SVM [11], which tries to learn the support of the positive distribution. However, 

its performance is limited because it cannot take advantage of the unlabeled data. 



The other type of related work is unbalance classification, where the task is to deal with very 

unbalanced numbers of positive and negative examples. Methods, for example two cost 

parameters are introduced for SVM to adjust the cost of false positives vs. false negatives [12], 

have been proposed. [13] also proposes a variant of the SVM — the SVM with uneven margins, 

tailored for text classification with the unbalanced problem. The unbalance classification is in 

nature different from the PU classification, as in the former problem labels of both positive and 

negative examples are annotated while in the later problem the unlabelled examples include part 

of positive examples and all negative examples. 

Pontil and Verri have studied properties of Support Vector Machines [14]. They have 

investigated the dependence of hyper-plane on the changes of the cost parameter. In [3] the 

authors argue that the choice of the SVM cost parameter can be critical. They propose an 

algorithm, called SvmPath, which can fit the entire path of SVM solutions for all possible values 

of C. The algorithm is based on the properties of so called piecewise-linear. [15] [16] also 

investigate the issue of the solution path for support vector regression to the cost parameter. [15] 

derives an algorithm to compute the entire solution path of the support vector regression. [16] 

proposes an algorithm for exploring the two-dimensional solution space defined by the 

regularization and cost parameters. See also [17] [18]. Our work is inspired by the work of [3]. 

The difference is that we focus on the problem of PU classification while [3] focuses on the 

classical classification. 

This paper addresses the issue of fitting the entire solution path for SVMs in PU classification. 

We propose an algorithm, called PU-SvmPath, to do the choice of the cost parameter 

automatically while training SVM models for PU classification. We implemented the algorithm 



and conducted experiments on synthetic data to evaluate the effectiveness of the proposed PU-

SvmPath. We also applied PU-SvmPath to Bio-medical data classification and text classification. 

Experimental results show that the new algorithm is superior to the existing algorithms in PU 

classification. 

This paper is organized as follows. In Section 2 we give the problem setting. In Section 3 we 

describe our approach and in Section 4 we explain our algorithm in details and in Section 5, we 

present the experimental results. We make concluding remarks in Section 6. 

 
1. Problem Setting 

 
In this paper, we consider PU classification. Here we first give the definition of the problem.  

Let {(x1, y1), … , (xn, yn)} be a training data set, in which xi denotes an example (a feature vector) 

and yi∈{+1, -1} denotes a classification label. Assume that the first k-1 examples are positive 

(labeled +1), the rest are unlabeled, which we considered as negative (-1) (Note: they might 

consist of unlabeled positive examples and real negative examples.). We denote by I+ the set of 

indices corresponding to yi=+1 points (positive examples), there being n+=|I+| in total. Likewise 

for I- and n-, with I I I+ −= ∪ . Our goal is to estimate a decision function f(x) = βTx + β0 (also 

called classifier). The noiseless case (no errors for positive examples but only for unlabeled 

examples) results in the following SVM formulation: 
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Here, only unlabeled examples have the slack variables ξi indicating that errors only are allowed 

for unlabeled examples. To distinguish this formulation from the classical SVM, we call it as 

PU-SVM. 

The objective function in the above formulation can be written in an alternatively equivalent 

form with the same constraints: 
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where the parameter λ corresponds to 1/C in (2). The formulation is also called as Loss+Penalty 

criterion [3]. In this paper, we will use the later formulation in explaining our algorithm and thus 

our goal of choosing the cost parameter C is cast as choosing the parameter λ (we call it as 

regularization parameter). For (3), we can construct the Lagrange primal function: 

1
(1 ( ))

2
n n n n

T
i i i i i i i

i k i i k i k
y f xi

λξ β β α α ξ γ ξ
= = = =

−+ + − −∑ ∑ ∑ ∑  (4) 

and set the derivatives to zero. We have: 
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along with the KKT conditions: 

,(1 ( )) 0i i iy f x i Iα +− = ∈ (8) 
,(1 ( ) ) 0i i i iy f x i Iα ξ −− − = ∈ (9) 

,0i i i Iγ ξ −= ∈ (10) 
Substituting the formula (5) - (7) into (4), we obtain the Lagrange dual form: 
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We see that for positive examples we have constraints αi≥0 (i∈I+), for unlabeled examples we 

have constraints 1≥αi≥0 (i∈I-). When yi f(xi) = 1, the point xi is on the margin (called Support 

Vector). For the positive support vectors, we have αi > 0, while for the unlabeled support vectors, 

we have 1 > αi > 0. When yif(xi) > 1, the point xi is outside the margin. In this case, both positive 

and unlabeled examples have αi=0. When yif(xi) < 1, the point xi is inside the margin (since we 

are dealing with the noiseless case, only unlabeled examples can lie inside the margin). When 

this occurs, unlabeled examples have their αi=1. 

Our goal now is to solve the equation (11) so as to find the entire solution path for all possible 

λ≥0. 

 
2. Our Approach: The Entire Generalization Path for SVM 
 
We propose an algorithm for solving the equation (11). Our basic idea is as follows. Same as that 

in [3], we start with λ large and decrease it toward zero, keeping track of all the ‘events’ that 

occur along the way. Different from [3], as the initial value of λ, we propose to carefully select a 

‘large’ one, with which we can construct an initial hyper-plane with all positive examples 

correctly classified. Then as λ decreases, ||β|| increases (See formula (5)), and hence the width of 

the margin decreases. As this width decreases, points move from being inside to outside the 

margin (in our problem, only unlabeled examples inside the margin at the beginning). Their 

corresponding αi change from αi=1 when they are inside the margin (yif(xi) < 1) to αi=0 when 

they are outside the margin (yif(xi) > 1). By continuity, those points must linger on the margin 

(yif(xi) = 1) while their αi decrease from 1 to 0. In this process we always keep all the positive 

examples correctly classified. Positive points can only leave the margin to outside the margin, 



with their corresponding αi>0 changing to αi=0 or join the margin from the outside with αi=0 

changing to αi>0. 

In our approach, each point xi belongs to one of the following three sets. (For convenience, we 

denote αi of positive examples as αi
p={αi|i∈I+} and likewise, αi

n={αi|i∈I-}.) 

• M={i: yif(xi) = 1, αi
p>0, 1>αi

n>0}, M= p nM M∪  for Margin, where Mp denotes positive points 

on the margin (f(x)=1) and Mn denotes unlabeled ones on the margin (f(x)= -1). 

• L={i: yif(xi) < 1, αi
n =1}, L for inside the margin, only unlabeled points. 

• R={i: yif(xi) > 1, αi=0}, R for outside the margin. 

Points in various sets may have various events (one event can be viewed as an action of leaving 

one set to enter into another set). By tracking all the events in iterations, we can solve the entire 

generalization path and select the best solution. One of the key issues here is how to define the 

events for efficiently learning. We will give the detailed definitions of the events in Section 4.3. 

 
3. Algorithm: PU-SvmPath 
 
We have implemented our algorithm PU-SvmPath by extending SvmPath [3], which is used for 

finding entire generalization path for conventional Support Vector Machine. In this paper, we 

only consider the noiseless case of positive and unlabeled classification for facilitating the 

description. However, the proposed algorithm can be extended to the noisy case also (allowing 

noise in the labeled positive examples). The related issues are what we are currently researching, 

and will be reported elsewhere. 

 
3.1. Outline 
 



The input of our algorithm is a training set which consists of positive and unlabeled examples. 

The objective is to find a PU-SVM model (including β and λ in (3) or α and λ in Lagrange form 

implicit in (11)).  

Algorithm: PU-SvmPath 
Step 1. Initialization: determine the initial values of α and λ, and thus β and 
β0; 
1.  αi

n=1, i I−∀ ∈ ; 
2.  Finding the values of αi

p
 by solving; (see Section 4.2) 

2*min ( )α β α  
3.  Calculating λ0, β and β0 using the initial values of α; 
Step 2. Finding entire generalization path; (see Section 4.3) 
4.  do{ 
5.  Building all possible events based on the current values of the 
parameters; 
6.  For each event, calculating the new λ by supposing it occurs; 
7.  Selecting the largest λ<λl from all the events as λl+1; 
8.  Updating α with λl+1 by the fact that α are piecewise-linear in λl+1; 
9.  Updating the sets M, L, and R; 
10. }while (terminal conditions are not satisfied).

Figure 1. The Algorithm of PU-SvmPath 
 

In our algorithm: PU-SvmPath, we propose solving the entire regularization path in the 

following steps: 

(1) Initialization. It determines the initial values for β, α and λ. With the initial values, we can 

establish the initial state of the three point sets defined above. When determining the initial 

values, we need consider the fact that n- is much larger than n+ and the constraint that all positive 

examples should be correctly classified. Moreover, we need to satisfy the constraints (6). We 

then employ a quadratic programming algorithm to obtain the initial configuration. 

(2) Finding entire generalization path. The algorithm runs iteratively. In each iteration, we try to 

find a new λl+1, based on the current value λl (l denotes the l-th iteration). It searches in the 

possible event space for an event which has the largest λ<λl. Then it establishes the λl+1 and 



hence updates α with λl+1 according to the fact that α are piecewise-linear in the regularization 

parameter λl+1. 

(3) Termination. The algorithm runs until some terminal conditions are satisfied. 

Figure 1 summarizes the proposed algorithm. In the rest of the section, we will explain the three 

steps in details. 

 
3.2. Initialization 
 
In initialization, the task is to find the initial values for β0, α, and λ. We denote the initial λ as λ0. 

In order to find an initial value for λ, we first consider all unlabeled example inside the margin 

(note: the larger the λ, the larger the margin). Thus for all unlabeled example (i∈I-), all the ξi > 0, 

γi = 0, and hence αi = 1. In this case, when β=0, the optimum choice for β0 is 1, and the loss is 

1
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=∑ . However, we are required that (6) holds. 

We formalize the initialization problem as that of optimization. Here we use Lagrange primal 

form (11) of the PU-SVM as the objective function. 

At the start point, all unlabeled examples have their αi = 1, along with the KKT 

condition
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Solving this problem, we can get the values of αi ( i I+∈ ). We now establish the “starting point” 

λ0 and β0. We can first calculate the β* by (12). As mentioned above, all αi
p (i∈I+) are either 0 or 

αi
p>0. Suppose αi

p>0 (say on the margin). Let i-=argmini∈I- βTxi. Then the points i+ and i- are on 

the positive margin (βTxi++β0=1) and the negative margin (βTxi-+β0 = -1) respectively. From the 

following equations: 
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3.3. Finding λl+1 
 
As mentioned above, the points fall into three sets: M, L, and R. For each set of points, there are 

several possible events. We define the events as follows: 

a. The initial event, which means that two or more points enter the margin. The event happens at 

the beginning of the algorithm (initialization) or when the set M is empty. 

b. A point leaves from R to enter M, with its value of αi initially 0. 

c. A point i∈I- leaves from L to enter M, with its value of αi initially 1. 

d. One or more points in M leave to join R. 

e. One or more points i∈I- in M enter L. 

Whichever the case, for continuity reason, the sets will stay stable until an event occurs. For a 

point in R, only one event can occur, i.e. event b; two events can occur on a point in M, i.e. event 

e and event d; one event (event c) can occur on a point in L (only unlabeled points). At the 

beginning of the algorithm or when the set M is empty, the event a will occur. 



When staying in a stable situation, i.e. α changes linearly with λ, as implicit in equation 21, we 

can imagine the possible events of all the points. For each event, we calculate the new value λ 

and hence the new α. We select the event that has the largest λ<λl and use its λ as the λl+1. Then 

we can update α. The process continues until some terminal conditions are satisfied. 

The key point then is how to compute the new value of λl+1 for an event. Considering a point 

passing from R through M to L, its α will change from 0 to 1, vice versa (points in I+ are 

constrained to stay in M or R only). When the point xi is on the margin, we have yif(xi) = 1. In 

this way, we can establish a path for each αi. 

We adopt the method proposed in [3] to compute the λl+1 for an event. We now explain the 

method in details. We use the subscript l to represent the l-th event occurred. Suppose |Ml|=m, 

and let αi
l, β0

l, and λl be the values of these parameters at the point of entry. Likely f l is the 

function at this point. For convenience we define α0=λβ0, and hence α0
l=λβ0

l. Then we have 
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The second line follows because all the unlabeled points in Ll have their αi=1, and those in Rl 

have their αi=0, for this range of λ. Since each of the m points xi∈Ml are to stay on the margin, 

we have yif(xi) = 1.   According to (17), we have: 
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Writing δj=αj
l - αj, from (18) we have 
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Furthermore, since at all times we are required that (6) holds, we have that 

0
l

j j
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Equation (19) and (20) constitute m+1 linear equations with m+1 unknown δj. We can obtain 

δj=(λl - λ)bj, 0 lj M∈ ∪ , where bj is a variable obtained by solving the equations. Hence: 

,( ) 0l
j j l j lb j Mα α λ λ= − − ∈ ∪ (21) 

The equation (21) means that for λl> λ >λl+1, the αj will change linearly in λ. 

We can also write (17) as 
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Thus the function changes in an inverse manner in λ for λl> λ >λl+1. 

We now obtain an important property that αj change linearly in λ between two events (called 

piecewise-linearly), which enables us easily establish λ for each event from (21) and (22): 

- when one of the point xi leave M to enter L or R, we have its αi=1 or αi=0. According to (21), 

we can compute its λ by 

(1 )l
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λ λ
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- when one of points from L or R to enter M, we have yif(xi)=1. Substituting it into (22), we 

can obtain its λ by 
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In this way, we obtain λ for each possible event and thus are able to select the largest λ<λl as the 

λl+1. We then make use of the property that αj change piecewise-linearly in λ to obtain all α. 

 
3.4. Termination 
 



In positive and unlabeled learning, λ runs all the way down to zero. For this to happen without f 

blowing up in (22), we must have f l - hl=0. So that the boundary and margins remain fixed at a 

point where iiξ∑  is as small as possible, and the margin is as wide as possible subject to this 

constraint. 

 

3.5. Kernels 
 
The proposed algorithm can be easily extended to the more general kernel form. In the kernel 

case, we can replace the inner product (x • xj) in (16) by a kernel function K 

0
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This general kernel case makes our algorithm support non-linear classification problem. 

 
4. Experiments 
 
4.1. Datasets and Experiment Setup 
 
4.1.1. Datasets  
 
We evaluated our proposed method on two synthetic data sets and two real-world data sets. 

We first constructed two synthetic data sets: PU_toy1 and PU_toy2. Both of them are two-

dimensional. PU_toy1 consists of 100 positive examples and 100 negative examples, which were 

generated using a function of two-multivariate norm distributions with mean [2,2]T and 

covariance [2,0; 0,2] for positive examples and mean [-2, -2]T and covariance [2,0; 0,2] for 

negative examples. PU_toy2 consists of 200 positive examples and 200 negative examples, 

which were also generated using a function of two-multivariate norm distributions with mean [2, 

-3]T and covariance [2,0; 0,2] for positive points and mean [-3, 2]T and covariance [2,0; 0,2] for 

negative points. 



We also tried to carry out experiments on real-world data sets: a Bio-medical data set: Types of 

Diffuse Large B-cell Lymphoma (DLBCL)2 and a Text Classification data set: 20newsgroups3. 

The former data describes the distinct types of diffuse large B-cell lymphoma (DLBCL), the 

most common subtype of non-Hodgkin’s lymphoma, using gene expression data. There are 47 

examples, 24 of them are from “germinal centre B-like” group while 23 are “activated B-like” 

group. Each example is described by 4026 genes [19]. For the text classification data, we chose 

eight categories from 20newsgroups2 to create a data set. The eight categories are: ms-

windows.misc, graphics, pc.hardware, misc.forsale, hockey, christian, sci.crypt, rec.autos. Each 

category contains 100 documents. 

 
4.1.2. Experiment Setup  
 
In all experiments, we conducted evaluation in terms of F1-measures, which is defined as F1 = 

2PR / (P + R). Here P and R respectively represent precision and recall. 

We made comparison with existing methods: SvmPath [3], SVM-light [5], Bias-SVM [6], and 

One-class SVM [11]. SvmPath is proposed for fitting the entire regularization path for the 

classical SVM, not for PU classification. We made comparison with SvmPath to indicate the 

necessity of proposed method. SVM-light is also designed for classical SVM and it needs the 

user to provide values for the cost parameter. We use the default values as the parameters in 

SVM-light. For SvmPath and SVM-light, we view the unlabeled examples as negative examples. 

Bias-SVM targets at PU classification. It takes into consideration of both labeled and unlabeled 

examples. It needs the user to provide two cost parameters respectively for labeled positive 

examples and unlabeled examples. In [6] the authors propose employing cross-validation to 

                                                           
2 http://sdmc.lit.org.sg/GEDatasets/Datasets.html#DLBCL 



select the best cost parameters. It obviously results in high computational cost. In our 

experiments, we use a typical method by considering the numbers of positive and unlabeled 

examples to determine the values for the cost parameters. One-class SVM is appropriate for one-

class classification (it tries to learn a classifier from the positive data). Table 1 indicates the 

methods we used to set the values for the cost parameters in the experiments. 

Table 1. The Methods for Setting the Cost Parameters 
Methods Cost Parameter 
SVM-light C=1/avg^2 
Bias-SVM C1=log(n-)/(avgp^2*log(n+)) C2=1/(avgn^2)

 

In the table, C, C1, and C2 denote the cost parameters. avg, avgp, avgn respectively represent the 

average norm of all examples, positive examples, and negative examples. n+ and n- are the 

numbers of the positive and negative examples (Note that in PU classification, we take unlabeled 

examples as negative). 

 
4.2. Experimental Results 
 
4.2.1. Results on the Synthetic Dataset  
 
We conducted the experiments as follows. We split each of the data set into two sub sets with the 

same size, one for training and one for test. In the training data set, γ percent of the positive 

points were randomly selected as labeled positive examples and the rest of the positive examples 

and negative examples were viewed as unlabeled examples. We ranged γ from 20% to 80% (0.2-

0.8) to create a wide range of test cases. Table 2 shows experimental results on the synthetic data 

sets. In the table, SvmPath, SVM-light, Bias-SVM, and One-class SVM respectively represent 

the methods introduced above. PU-SvmPath denotes our method. PU_toy1-20% denotes that we 

                                                                                                                                                                                           
3 http://people.csail.mit.edu/jrennie/20Newsgroups/ 



use 20% of the positive examples in PU_toy1 as labeled positive examples and the others as 

unlabeled examples (including unlabeled positive examples and negative examples). Likewise 

for the others. 

We see from the table that the proposed PU-SvmPath can significantly outperform the other 

methods in most of the test cases, especially with few labeled positive examples (20% and 40%). 

When γ (the ratio of labeled positive examples) increases to 80%, all of the methods can obtain 

good results. 

Table 2. Average F1-scores on Synthetic Datasets (%) 
Test Case SvmPath PU-SvmPath SVM-light Bias-SVM One-class SVM 

PU_toy1-20% 35.48 94.23 0.00 3.85 41.27 
PU_toy1-40% 82.35 95.24 0.00 60.27 61.11 
PU_toy1-60% 85.06 96.15 88.89 95.83 48.48 
PU_toy1-80% 96.91 92.59 96.97 96.97 48.48 
PU_toy2-20% 95.00 98.52 0.00 0.00 49.62 
PU_toy2-40% 99.00 98.52 0.00 0.00 62.07 
PU_toy2-60% 92.47 97.56 95.29 95.83 63.95 
PU_toy2-80% 99.50 97.09 99.50 99.50 63.01 

 

The method of using SVM-light with one default cost parameter can only work well in the cases 

that have enough labeled positive examples and cannot come up with any results when there are 

only few labeled positive examples, for example, in the cases of PU_toy1-20%, PU_toy1-40%, 

PU_toy2-20%, and PU_toy2-40%. We also note that when there are sufficient labeled data, say 

γ=0.8, the SVM-light can achieve the best performance (96.97% on PU_toy1 and 99.50% on 

PU_toy2). 

The Bias-SVM can achieve better results than the SVM-light. However, the performances of the 

resulting models are sensitive to the data sets. For example, Bias-SVM can obtain 60.27% (F1 

score) on PU_toy1 with γ as 0.4, but cannot yield any results on the other data set PU_toy2 with 



the same γ. The performances are also sensitive to the values of the cost parameters. With 

different values, the performances might vary largely. 

One-class SVM can learn a classifier with only positive examples, however it cannot take 

advantage of the unlabeled data. Its performance is poorer than PU-SvmPath. It is also inferior to 

SvmPath, SVM-light, and Bias-SVM. When γ is small (0.2 and 0.3), it outperforms SVM-light 

and Bias-SVM. 

 
SvmPath SvmPath SvmPath 

PU-SvmPath (51 steps) PU-SvmPath (61 steps) PU-SvmPath (135 steps) 
(a) PU_toy1-20% (b) PU_toy1-60% (c) PU_toy2-40% 

Figure 2. Hyper-planes generated by SvmPath and PU-SvmPath 

SvmPath can fit the entire regularization path so that it can find a ‘best’ value for the cost 

parameter. However, SvmPath is proposed for classical classification, not for PU classification. 

From table 2, we can see that in most of the test cases, the proposed PU-SvmPath significantly 

outperforms SvmPath. We made detailed analysis for comparing the two algorithms. Figure 2 



shows the hyper-planes learned by SvmPath and PU-SvmPath in three test cases: PU_toy1-20%, 

PU_toy1-60%, and PU_toy2-40%. In the figures, “*”, “o”, and “x” indicates labeled positive 

examples, unlabeled positive examples, and unlabeled negative examples respectively. The 

upper three figures are hyper-planes generated by SvmPath and the below three figures are those 

generated by PU-SvmPath. 

We see that in the three test cases, PU-SvmPath can construct more accurate hyper-planes (see 

Figure 2(a)) and more regular hyper-planes (see Figure 2(b) and Figure 2(c)) than SvmPath. 

The major problem of SvmPath in the PU classification is that it treats all the unlabeled 

examples as negative ones, thus results in a very unbalance classification task (with only a few 

positive examples while a large number of negative examples). This leads the hyper-lanes 

constructed by SvmPath to move toward to the positive examples (see Figure 2 (a) and (b)). 

 

4.2.2. Results on the Biomedical Dataset  
 
The SVM is popular in situations where the number of features exceeds the number of examples. 

The Bio-medical data set (DLBCL) is just in such case, where it has 4026 features while only 47 

examples. Here one typically fits a linear classifier. We argue that the proposed PU-SvmPath can 

play an important role for these kinds of data. 

In DLBCL, we have two categories with each containing half of the examples. The task is to 

classify an example into one of the two categories (equally positive and negative classes). With 

the two categories, we then have two test cases with one category as positive and the other as 

negative. For each test case, we split the data set into two sub sets with the same size, one for 

training and one for test. In the training data set, γ percent of the positive points were randomly 



selected as labeled positive examples and the rest of the positive examples and negative 

examples were viewed as unlabeled examples. For γ, we only selected as 50% and 75% (0.5 and 

0.75), because the number of the examples is limited. Table 3 shows experimental results on 

Biomedical dataset. Gene data size is small. The features are much more than the data size. It is a 

difficult classification problem. 

 

Table 3. Average F1-scores on Biomedical Dataset (%) 
γ SvmPath PU-SvmPath SVM-Light Bias-SVM One-class SVM 

0.50 43.48 47.06 0.00 15.38 0.00 
0.75 41.67 73.68 28.57 58.82 0.00 

 

The results show that PU-SvmPath can significantly outperform SvmPath (+3.58% when γ as 0.5 

and +32.01% when γ as 0.75) as well as significantly outperform SVM-light. SVM-light cannot 

learn a good classifier using the default cost parameter. It confirms the necessity of the choice of 

the cost parameter. PU-SvmPath outperforms Bias-SVM as well. One-class SVM cannot result 

in any results on this data. 

 
4.2.3. Results on the Text Classification Dataset  
 
We illustrate our algorithm on another real-world data: 20newsgroup. The data set consists of 

eight categories with each containing 100 documents. Then the task is to classify a document 

into one of the eight categories. We adopt the “one class versus all others” approach, i.e., take 

one class as positive and the other classes as negative. Then we have eight document 

classification tasks. For each document, we employ tokenization, stop-words filtering, and 

stemming. For each classification task, we split the data set into two sub sets with the same size, 

one for training and one for test. In the training data set, same as that in the above experiments, γ 



percent of the positive points were randomly selected as labeled positive examples and the rest 

of the positive documents and negative documents were viewed as unlabeled examples. We 

ranged γ from 10% to 90% (0.1-0.9) and create 10 test cases. 

Table 4 shows the experimental results on 20newsgroup. The results show that in most of the test 

cases, PU-SvmPath can significantly outperform SvmPath and SVM-light as well as One-class 

SVM. However, we need note that PU-SvmPath is only comparable with Bias-SVM when γ is 

small (from 0.1 to 0.5) and is inferior to Bias-SVM when γ increases. This is because the 

20newsgroups data has some noisy examples, which indicates that the γ percent labeled positive 

example consists of noisy examples. So far PU-SvmPath can only handle the noiseless case. The 

results also indicate that using the methods of two cost parameters can better describe the 

unbalance situation between the positive and negative examples in the training data. 

Table 4. Average F1-scores on 20newsgroup (%) 
γ SvmPath PU-SvmPath SVM-Light Bias-SVM One-class SVM 

0.1 13.72 11.10 3.92 11.09 14.27 
0.2 29.88 21.58 4.46 21.85 21.95 
0.3 40.33 35.83 3.46 36.60 24.06 
0.4 39.55 45.34 7.60 50.43 24.62 
0.5 56.15 55.22 13.02 60.42 24.45 
0.6 57.87 60.17 24.63 71.00 24.81
0.7 67.88 69.72 43.35 80.51 24.66 
0.8 68.47 78.20 65.06 87.79 25.05 
0.9 73.54 85.45 76.81 93.22 24.63 

 
4.3. Discussion 
 

Our work is inspired from Hastie’s piecewise solution path for SVMs. As [18] points out, 

many models share piecewise-linear relationships between coefficient path and the cost 

parameter C or 1/λ. Positive and Unlabeled data is a special example of SVM model. This bias 

model also has the piecewise-linear property. However, the difference lies in that we should keep 

all positive examples correct. The hyper-planes obtained by different algorithms show that the 



constraint that positive examples are outside the margin does affect the final SVM solution. 

Applying the piecewise-linear algorithm to real data still needs more investigation. We will 

detect more on the different solutions obtained by PU_SvmPath and the solutions of traditional 

SVM model on the text classification dataset. 

5. Conclusion 
 
In this paper, we investigated the issue of fitting the entire solution path for SVM in positive and 

unlabeled classification. We proposed an algorithm which can determine the cost parameter 

automatically while training the SVM model. Experimental results on synthetic data and real-

world data show that our approach can outperform the existing methods. 

As future work, we tried to extend the proposed algorithm to the noisy case, where the positive 

examples can be noisy (e.g. mistakenly labeled). We intend to use two parameters C+ and C- to 

control the errors of positive and negative examples respectively. One of the key points is to 

investigate the properties of the two parameters with the Lagrange multiplier α. 
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