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Multiple-Instance Learning with Instance Selection via Constructive
Covering Algorithm

Yanping Zhang, Heng Zhang, Huazhen Wei, Jie Tang, and Shu Zhao�

Abstract: Multiple-Instance Learning (MIL) is used to predict the unlabeled bags’ label by learning the labeled

positive training bags and negative training bags. Each bag is made up of several unlabeled instances. A bag is

labeled positive if at least one of its instances is positive, otherwise negative. Existing multiple-instance learning

methods with instance selection ignore the representative degree of the selected instances. For example, if an

instance has many similar instances with the same label around it, the instance should be more representative

than others. Based on this idea, in this paper, a multiple-instance learning with instance selection via constructive

covering algorithm (MilCa) is proposed. In MilCa, we firstly use maximal Hausdorff to select some initial positive

instances from positive bags, then use a Constructive Covering Algorithm (CCA) to restructure the structure of

the original instances of negative bags. Then an inverse testing process is employed to exclude the false positive

instances from positive bags and to select the high representative degree instances ordered by the number of

covered instances from training bags. Finally, a similarity measure function is used to convert the training bag into a

single sample and CCA is again used to classification for the converted samples. Experimental results on synthetic

data and standard benchmark datasets demonstrate that MilCa can decrease the number of the selected instances

and it is competitive with the state-of-the-art MIL algorithms.
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1 Introduction

Multiple-Instance Learning (MIL) is a machine learning
framework proposed by Dietterich et al.[1, 2] for the
prediction of drug molecule activity. MIL has become
widely used in many applications, including drug-
activity prediction, image classification[3, 4], image
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retrieval[5], text categorization[6], face detection[7], etc.
At the high-level, existing MIL methods can be

grouped into two main classes. The first class is to
locate a region of interest in the instance space such
that all true positive instances lie in their vicinity and all
negative instances are far from them. The target concept
can be found by DD[8], EM-DD[9], and GEM-DD[10]

algorithms. However, a single target concept may be
insufficient to represent all positive instances because
the distribution of positive instances could be arbitrary.

The second class employs discriminative method to
convert MIL into the Standard Supervised Learning
(SSL). The conversion process is mainly divided into
two kinds. The first is to label the instances with
the corresponding bags’ label directly. Then an SSL
algorithm is employed to learn and the result of SSL is
adapted at the same time. For example, MI-SVM[1] and
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mi-SVM[6] were proposed by employing the Support
Vector Machine (SVM) classifier. Citation K-Nearest
Neighbour (KNN) and Bayesian-KNN[11] algorithms
were proposed by extending the standard KNN[12]. The
other kind is to embed each bag into an instance space
based on a Representative Set of Instances (RSI) that
are selected from the training bags, and then to learn
a classifier in the instance space. This kind of methods
mainly uses the RSI and are similarity function to map
bags into an instance space, which includes KID[13],
DD-SVM[5], MILIS[14], MILES[3], MILD B[15], and
MILDS[16].

However, most existing multiple-instance
learning methods with instance selection ignore
the representative degree of the selected instances. To
address this problem, in this paper, we focus on
the method of instance selection and propose a
multi-instance learning with instance selection via
constructive covering algorithm (MilCa), which is
able to select the high representative degree instances
and gain the representative degree of the selected
instances. Synthetic data and five standard benchmark
datasets are used in the experiment and the results
demonstrate MilCa is competitive with state-of-the-art
MIL algorithms.

2 Preliminaries

2.1 Notation

Let � denotes the instance space. Given a data set
DS D f.X1; y1/; .X2; y2/; � � � ; .Xm; ym/g, where Xi D

fxi1; xi2; � � � ; xini
g � � .i D 1; � � � ; m/ is a set of

instances called a bag and yi 2 f�1;C1g is a class
label. Here xij D Œxij1; xij 2; � � � ; xijd � 2 �.j D 1; � � � ;

ni /, where ni denotes the number of instances in
Xi and xijk .k D 1; � � � ; d / is the value of xij at
the k-th attribute. The training set is represented as:
X D fXC1 ; � � � ; X

C

mC
; X�1 ; � � � ; X

�
m�g, where XCi

and X�i denote that Xi is a positive or negative bag
and mC Cm� D m. XCins D fx

C

i j i D 1; 2; � � � g and
X�ins D fX

�
i j i D 1; 2; � � � g denote the sets of all

the instances in the positive bag and negative bag,
respectively. The model created by CCA is a cover set:
C D fci jci D .centeri ; ri ; noi /; i D 1; 2; � � � g; centeri

denotes the center of ci ; ri denotes its radius, and
noi denotes the number of samples that are covered
by ci : C� � C denotes the cover set of X�ins and
C�ins denotes the set of centers of C�. RSIC.RSI�/
denotes the set of selected representative instances

from positive (negative) bags.

2.2 Multiple-instance learning

Definition 1 Given a bag Xi , Xi is a positive bag if
at least one of its instances is positive; otherwise, Xi is
a negative bag.

Theorem 1 Given two bags Xi and Xk .i ¤ k/;

Xi

T
Xk D ∅.

The goal of MIL is to learn a classifier based on
instances f .x/ W x ! y; x 2 � or a classifier based
on bags F.X/ W X ! y that correctly predicts the
unlabeled bag[1, 2, 17-24]. The framework of MIL is given
in Fig. 1.

2.3 Constructive covering algorithm

Constructive Covering Algorithm (CCA) is a standard
supervised learning algorithm proposed by Zhang and
Zhang[25]. The main idea of CCA is to construct a
set of sphere neighbors (a set of covers), and each
sphere neighbor covers the samples with the same class
label. This set of covers can be regarded as a classifier.

Given a set of samples: K D f.si ; li /ji D 1; � � � ;

n; li D 1; � � � ; t; si 2 Rd g, where n and t represent
the number of samples and the number of the classes.
Sij is the value of Si at the j -th attribute. Let
S D fS1; S2; � � � ; Stg and Si contains all samples of
i-th class, i D 1; 2; � � � ; t . We use a flag to determine
whether a sample is covered or not. For a sample s,
flag.s/ D 1 means that s is covered, flag.s/ D 0

means that s is not covered. Note that the bigger inner
product makes the smaller distance between s and s

0

and the more similarity of s and s
0

. The outline of
CCA’s training process is summarized in Algorithm
1. < s; s

0

> denotes the inner product of sample s

and s
0

.
After the training of CCA, we can obtain a cover

set C and construct a three-layer feed forward neural
network for classification. Each cover ci .ci 2 C/ is
used to make up a hidden node. For a hidden node ci ,
the output function is defined as

resulti D sign.< ts; centeri > �ri / � li (1)

where “sign” is a sign function, ts.ts 2 Rd / denotes the

Fig. 1 The framework of MIL.



Yanping Zhang et al.: Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm 287

Algorithm 1 The outline of CCA’s training process

Input: Training set K.
Output: Cover set C.

Begin
1: Initialization

Set C D ∅; T .s/ D .s; 2
p
R2 � ksk2/; R >

maxfksks 2 Kg.
2: Use the transform T .s/ to do a projection s ! Hd , where

Hd is an d -dimensional sphere of an (d+1)-dimensional
space.

3: For each Si in S .
While Si ¤ ∅ do

randomly select a s in Si and flag.s/ D 0
d1 D maxf< s; s

0

> js 2 Si ; s
0

62 Sk ; k D 1; � � � ; m;
k ¤ ig

d2 D minf< s; s
0

> js; s
0

2 Si ; < s; s
0

>> d1g

r D .d1 C d2/=2
create a cover c with s as its center (center D s) and r

as its radius,
computer the number of samples(no) that covered by c

in Si , set
flag.s/ D 1 and flag.s

00

D 1/ where s
00

is covered by c
in Si

C D C [ c
End while

End For
End.

test input sample, the centeri and li denote the center of
ci and its class label. A sample falls in ci if resulti > 0.

The output layer uses a “OR” operation to output
the test result. The operation of “OR” denotes if a new
sample is covered by several overlapped covers or is not
covered by any covers, the output class is corresponding
to the class of the nearest cover which has the largest
inner product between ts and centeri . Figure 2 gives the
three-layer neural network[17, 25-27] constructed by CCA.

From the training and testing processes of CCA,
we know that the CCA has the character of clustering
because the samples with the same class label are
classified into several covers. In this sense, the cover

Fig. 2 A three-layer neutral constructed by CCA.

center can be regarded as the representative samples of
the sphere neighbors. In the experiment, we update noi

according to the number of samples that are covered by
ci . Because the more samples covered by ci , the more
representative the center of ci .

Note: Clustering analysis is an important method
in machine learning. CCA also has the character of
clustering. The cover of CCA can be regarded as a
cluster. Because the samples in the same cover have
the same class, the cover center can be used as the
clustering center. If there are many samples in a cluster,
the representative degree of the center is higher than the
others.

3 MilCa Algorithm

In this section, we present the novel MIL method
called MilCa. MilCa aims to exclude the false positive
instances and select the high representative degree
instances from both positive and negative bags. It makes
use of the clustering character of CCA for instance
selection to build a more effective instance space.

3.1 Instance selection via constructive covering
algorithm

This section mainly introduces the process of instance
selection via CCA. Firstly, the definition of the inverse
testing process is introduced.

Definition 2 Inverse testing process: The process
is testing the instances in the i-th class bags by using
the cover set of the j-th class .j ¤ i/ so that some
representative instances can be selected.

As the false positive instances have great effects
on the prediction of positive bags, it is necessary to
exclude these instances. Firstly, maximal Hausdorff [2]

and CCA are used to select some initial positive
instances and restructure the structure of the original
instances of negative bags. An inverse testing process
is employed to exclude the false positive instances and
to select the instances who have the high representative
degree. Obviously, the number of instances in a cover
is used to measure the representative degree of the
representative instances.
3.1.1 Finding the initial positive instances
A distance metric between a positive bag and the set
of negative bags is defined to select the initial positive
instances. Here, the maximal Hausdorff distance is a
natural distance metric for this purpose. Particularly, the
distance between bag XCj and X�ins is given by
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d.XCj ; X
�
ins/ D max

x�
k
2X�ins

min
x
C

j
2X
C

j

kxCj � x
�
k k

2 (2)

where kxCj � x
�
k
k2 is the Euclidean distance between

the instances xCj and x�
k

.
An instance can be obtained from the j-th positive bag

(XCj ) via Eq. (3).

xCj D arg d.XCj ; X
�
ins/ (3)

mC initial instances (RSIC) can be selected as the
initial positive instances via Eq. (3) from all the training
positive bags. These instances are more likely to belong
to the true positive instances.
3.1.2 Excluding false positive instances
There are many negative instances around the instances
of the positive bags and the instances of the positive
bags are probably negative. These false positive
instances in the positive bags will be excluded by CCA
and an inverse testing process.

We label the instances in X�ins .RSIC/ with
�1.C1/. CCA is used to construct the cover set
of negative instances in X�ins and RSIC. In order
to exclude the false negative instances from the
remaining instances in positive bags, an inverse
testing process can be employed via C� to select the
instances in XCins that are not covered by C�. If the
instance in the positive bags is covered by the cover
of C�, the instance will more probably be a negative
instance. Hence the instance can be excluded from the
positive bags. If xCi .xCi 2 XCins/ is covered by C�,
then X�ins D x

C

i [X
�
ins. The RSIC is as follows:

RSIC D fxCi jx
C

i 2 X
C
ins; x

C

i 62 X
�
insg (4)

3.1.3 Selecting high representative degree
instances

In this step, CCA is employed to construct the cover set
with the instances in X�ins and RSIC. All the instances
in RSIC are used as a cover center to create the cover
for themselves respectively and top mC instances are
selected from RSIC in descending order with noC to
prune RSIC.

At the same time, the instances of C�ins are regarded
as the set of representative negative instances (RSI�). If
jC�insj > m

�, C�ins is sorted from large to small according
to no�i and top m� instances of C�ins are selected as
RSI�. Because the larger no�i of x�i makes x�i more
representative, hence the RSI� is as follows:

RSI� D fx�i jx
�
i 2 C

�
insg (5)

Then the set of high degree representative instances
is RSI .RSI D RSIC [ RSI�/. So jRSICj D mC;
jRSI�j D m0� .m0� D min.jC�j; m�//. The outline of

the proposed instance selection with CCA can be found
in Algorithm 2.

The efficiency of the algorithm is discussed
below. The computational complexity of MilCa is
O.E2/, where E is the number of the instances in
all positive and negative bags. In a word, the time
complexity of MilCa is equal to CCA. The complexity
of MilCa is mainly determined by Step 1 and Step 3
in Algorithm 2. The computational complexity of other
steps is less than O.E2/.

3.2 Transformation and classification

A similarity function will be used to transform a bag
to a single sample so that the ML problem becomes
a SSL problem. For RSI D fxC1 ; x

C
2 ; � � � ; x

C

mC
g [

fx�1 ; x
�
2 ; � � � ; x

�
m0�g and the numbers of instances

in the corresponding covers are noCi and no�j ; i D
1; � � � ; mC; j D 1; � � � ; m�; respectively. The similarity
between xk .xk 2 RSI/ and the i-th bag Xi is

s.xk; Xi / D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

noC
k

mCX
pD1

noCp

� min
xk2RSIC

exp

 
d.xC

k
; xij /

2

2�2

!
;

no�
k

m�X
pD1

no�p

� min
xk2RSI�

exp

 
d.x�

k
; xij /

2

2�2

!

(6)
Equation (6) calculates the minimum distance

between xk and Xi , xij 2 Xi . Then, we employ the
exponential function and the parameter of � to adjust

Algorithm 2 The outline of instance selection in MilCa

Input: Training bags X D fXC
1
; � � � ; XC

mC
; X�

1
; � � � ; X�m�g.

Output: RSI.
Begin

1: Label all instances of positive(negative)training bags with
C1.�1/:

2: Select mC initial instances (RSIC) from positive bags via
Eq. (3).

3: Obtain a negative cover set C� via Algorithm 1, the
instances in RSIC and X�ins

4: Use C� to do an inverse testing process and select the
instances from positive bags that are not covered by C� via
Eq. (4)

5: Construct a cover set via Algorithm 1, the instances in RSIC

and X�ins. Then obtain the new RSIC with mC instances and
RSI� with m0� instances according to noC and no� via
Eq. (4) and Eq. (5)

6: Form the high degree representative set of instances,
RSI (RSI=RSIC [ RSI�/
End.
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the similarity measure function. If xk 2 RSIC, then
a positive bag should be similar to the instance xk

highly. Otherwise the positive bag has a low similarity
with the instance. The number of instances nok is used
to measure the weight of xk .

Then an embedding function ��� is defined, which
converts a bagXi to a .mCCm0�/-dimensional sample:

���.Xi / D Œs.x
C
1 ; Xi /; � � � ; s.x

C

mC
; Xi /;

s.x�1 ; Xi /; � � � ; s.x
C

m0� ; Xi /�
T (7)

The converted single sample is also labeled as the
label of Xi and the MIL problem can be converted into
the SSL problem. For classification, Algorithm 1 can be
employed to train the converted samples.

4 Experiments

In this section, the proposed method (MilCa) is
evaluated in both synthetic data and benchmark
datasets.

4.1 Datesets

The synthetic data is used to describe the effect of
false positive instances and to explain the process
of instance selection. The benchmark datasets are
used to compare with other MIL methods. The
benchmark datasets used in this paper can be found at
http://www.cs.waikato.ac.nz/�eibe/multi instance/.

Synthetic data: This data is described in Fig. 3
which each instance is generated by one of the
five two-dimensional probability distributions:
N1 � N.Œ5; 5�

T; I /; N2 � N.Œ5;�5�
T; I /; N3 � N.Œ�5;

5�T; I /; N4 � N.Œ�5;�5�T; I /; N5 � N.Œ0; 0�T; I /,
where N.Œ5; 5�T; I / denotes the normal distribution
with mean Œ5; 5�T and identity covariance matrix. It
contains 6 positive bags and 6 negative bags. Each bag
comprises at most 8 instances. A bag is labeled positive
if it contains instances from at least two different
distributions among N1, N2, and N3. Otherwise, the
bag is negative.

Musk1 and Musk2: The task of Musk1 and Musk2
is to predict the drug’s activity. The positive bags are
active and the remaining negative bags are inactive.

Elephant, Fox, and Tiger: The task of the three
datasets is to estimate whether the images contain
elephants, tigers, and foxes or not. In these three
datasets, each image is considered as a bag, and the
interest region of the image as an instance.

More details of the benchmark datasets can be found
in Table 1.

Table 1 Information of the MIL benchmark datasets.

Dataset
Bags Total Instances in the bag

Dim.
(pos./neg.) bags Total Average

Musk1 47/45 92 476 5.17 166
Musk2 39/63 102 6598 64.69 166

Elephant 100/100 200 1391 6.96 230
Fox 100/100 200 1320 6.60 230

Tiger 100/100 200 1220 6.10 230

4.2 Experiment setup

In the experiment, the parameter � of Eq. (6) needs
to be adjusted. The values of � are selected by
using 10-fold Cross Validation (CV) from the sets
of linespace .0:6�; 1:4�; 10/, where � is the average
distance between each pair of instances in the RSI,
and linespace .a; b; n/ denotes the set n linearly spaced
numbers between and including a and b.

4.3 Experimental and analysis

The synthetic data is used to describe the effect of
false positive instances and to introduce the process of
instance selection. Then, the five benchmark datasets
are used to compare with other MIL methods.

4.3.1 Synthetic data
Figure 3 depicts all the instances on two-dimensional
plane. Note that positive and negative instances
are represented by circles and equilateral triangles,
respectively. Specially, the positive bags are labeled
with 1 to 6 and the negative bags are labeled with 7
to 12 in turn. The instances in the same bag are labeled
with the bags’ label.

The results of selected instances from negative bags
in Fig. 4 are the centers of the negative covers I

Fig. 3 Raw data.
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Fig. 4 Result of CCA and the process of instance selection.

to VII. As Fig. 3 depicts, there are many instances
in the positive bags distributed around the negative
instances. It is difficult to deal with the instance in the
positive bag directly. Specifically, if an instance in the
positive bag is a true positive instance, there will be less
negative instances around the true positive instance. As
the number of instances covered by cover III is the
biggest one, it can convince that the center of cover
III is more important than others. Then the number of
instances covered by a cover can be used to measure the
representative degree of the cover center. It is important
to select the high representative degree instances from
the training bags.

At the same time, the labels of rectangles and
right triangle are added to the selected instances from
the positive bags in Fig. 4. The instances labeled
by rectangles represent the initial positive instances
via Eq. (3). The labels of right triangles are added
to the instances in positive bags not covered by the
negative cover I to VII. These instances are mainly
distributed around the upper left corner and the lower
right corner. There are less negative instances in these
two areas. It can convince that the selected instances
in positive bags are more likely to the true positive
instances.

4.3.2 Benchmark datasets
MilCa is compared with other methods via ten times
10-fold CV (i.e., we repeat 10-fold CV for ten
times with different random data partition), with the
exception of MILIS, which is over 15 times. The details
of experimental results are shown in Table 2. The
best performances on each dataset are in bold. The

Table 2 Accuracy (%) on benchmark datasets.

Algorithm Musk1 Musk2 Elephant Fox Tiger
MilCa 88.7 90.0 85.4 61.4 81.6

MILDS[16] 90.9 86.1 84.8 64.3 81.6
MILD B[15] 88.3 86.8 82.9 55.0 81.6
MILIS[14] 88.6 91.1 n=a n=a n=a

MILES[3] 83.3 87.7 84.1 63.0 80.7
DD-SVM[11] 85.8 91.3 83.5 56.6 77.2

EM-DD[9] 84.8 84.9 84.9 56.1 72.1
Bag-KI-SVM[18] 88.0 82.0 84.5 60.5 85.0

MIGraph[19] 90.0 90.0 85.1 61.2 81.9
MI-SVM[6] 77.9 84.3 81.4 59.4 84.0
MILD I[15] 89.9 88.7 83.2 49.1 73.4

Average 86.9 86.4 83.7 58.3 79.1

result demonstrates that MilCa is competitive with
and often better than the most state-of-the-art MIL
algorithms. The first six algorithms are based on
instance selection.

The average accuracies of other algorithms on
different datasets are listed in the last row. The accuracy
of MilCa is higher than the average accuracy on the five
benchmark datasets. It increases about 2:54% than the
average accuracy on the five datasets.

Especially, in Elephant dataset, MilCa can achieve
the highest accuracy among the algorithms in Table
2. MilCa can also achieve better accuracy than most
of the algorithms which based on instance selection
on the benchmark datasets. Although MilCa has a
lower accuracy on Tiger dataset, MilCa can achieve
the highest accuracy among the first six algorithms
based on instance selection and the average number of
instances in RSI extracted from Tiger dataset is also less
than other methods in Table 3 except MILD B.

The average numbers of instances in RSI are given
in Table 3. In Musk1 and Fox datasets, MILDS can
achieve the best performance. However, the average
number of instances in RSI in MILDs is more than our
method’s and MILDS does not achieve higher accuracy
in other three datasets than our method.

Table 3 The average number of instances in RSI.

Algorithm Musk1 Musk2 Elephant Fox Tiger
MilCa 61.1 97.4 133.3 133.8 124.7

MILDS[16] 75.0 92.0 169.4 180.0 139.2
MILD B[15] 42.4 35.2 90.0 90.0 90.0
MILIS[14] 83.0 92.0 180.0 180.0 180.0
MILES[3] 429.4 5943.8 1251.9 1188.0 1098.0

DD-SVM[11] 83.0 92.0 180.0 180.0 180.0
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The average number of instances in MILD B is the
smallest, because MILD B only selects one instance
from each positive training bag. However, the results
are also poorer than many other methods. The average
number of instances of our method is only more than
MILD B’s and less than other methods except on the
dataset Musk2. MilCa decreases average number of
selected instances by about 25:6%-30:7%, as compared
to MILD B and MILIS.

The number of the selected instances in MILES is the
largest among three methods because its RSI includes
all instances in training bags and the performance of
MILES is not better than our method except on dataset
Fox. In a word, MilCa can achieve better results while
decrease the number of selected instances.

5 Conclusions

The false positive instances in positive bags have a
negative impact on the MIL problem. It is necessary
to exclude the false positive instances and select the
representative true positive instances. In this paper,
a novel MIL method named MilCa, is proposed
which tackles multiple-instance problems by using
the clustering of constructive covering algorithm and
an inverse testing process. The instance selection
approach can select the high representative degree
instances from the training bags effectively. Moreover,
it can use the number of instances in a cover to
measure the representative degree of the selected
instances. Experiments show that MilCa is competitive
with many existing multi-instance learning algorithms
and decreases the number of selected instances.

However, some false positive instances may still exist
in RSI. The effects of false positive instances of RSI
would be decreased in future work and our research will
be extended to multi-class problem and multi-instance
multi-label learning problem.
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