
Under consideration for publication in Knowledge and Information
Systems

Query-dependent Cross Domain
Ranking in Heterogeneous Network

Bo Wang1, Jie Tang2, Wei Fan3, Songcan Chen1, Chenhao Tan2 and Zi Yang2

1Department of Computer Science, Nanjing University of Aeronautics and Astronautics, China
2Department of Computer Science, Tsinghua University, Beijing, China
3IBM T.J. Watson Research Center, New York, USA

Abstract. Traditional learning-to-rank problem mainly focuses on one single type of
objects. However, with the rapid growth of the Web 2.0, ranking over multiple interre-
lated and heterogeneous objects becomes a common situation, e.g., the heterogeneous
academic network. In this scenario, one may have much training data for some type of
objects (e.g. conferences) while only very few for the interested types of objects (e.g.
authors). Thus, the two important questions are: 1) Given a networked data set, how
could one borrow supervision from other types of objects in order to build an accurate
ranking model for the interested objects with insufficient supervision? 2) If there are
links between different objects, how can we exploit their relationships for improved
ranking performance? In this work, we first propose a regularized framework called
HCDRank to simultaneously minimize two loss functions related to these two domains.
Then, we extend the approach by exploiting the link information between heteroge-
neous objects. We conduct a theoretical analysis to the proposed approach and derive
its generalization bound to demonstrate how the two related domains could help each
other in learning ranking functions. Experimental results on three different genres of
data sets demonstrate the effectiveness of the proposed approaches.

Keywords: Cross domain ranking; Heterogeneous network; Latent space; Learning to
rank

1. Introduction

With the emergence and rapid proliferation of web applications, ranking over
heterogeneous data sources is becoming more and more important for many
applications. And we often encounter the problem that we have very few data
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in the target domain, while we have much labeled data in the existing domains.
For example, to predict the users’ rating scores based on product reviews, one
may have much training data (rated reviews) of existing products, but little
or no training data for a new product; in social networks, we may have much
training data for movie recommendation, but very few for recommending friends
or web communities. Thus, one basic question is how to make use of the labeled
information from existing (source) domain(s) to build an accurate ranking model
for the target domain.

Although quite a few related studies have been conducted, for example, trans-
fer learning [7, 3, 19, 55], domain adaptation [8, 9], multi-task learning [3, 10],
learning to rank [13, 27], there are only a few theoretical studies on the heteroge-
neous cross-domain (HCD) ranking problem [52]. The major difference between
the HCD ranking problem and learning to rank is that HCD ranking needs to
consider how to borrow the preference orders from the source domain (as the su-
pervision information) to the target domain for learning a better ranking model.
The main differences between the HCD ranking problem and previously pro-
posed transfer learning methods are as follows. First, the main focus of previous
methods are on classification problems where the objective is to minimize clas-
sification error, while the proposed HCD ranking problem focuses on preference
orders of multiple interested objects and there is no direct and obvious rela-
tionship between classification error and preference order based loss functions.
Second, the proposed HCDRank approach takes full advantage of the non inde-
pendent and identically distributed (i.i.d.) topological order of objects that are
incorporated into the problem formulation.

Motivating Application
Figure 1 (a) shows an example of heterogenous academic search. The ob-

jective is to learn functions that can rank different objects for a given query.
Figure 1 (b) shows an example of query-dependent cross domain ranking. For
the term “query-dependent”, we mean that the ranking results are specific to
a query, and for different queries, the ranking results may be different. For the
query “data mining”, the rank levels of conferences are relatively easy to obtain
(e.g., from several online resources1), while collecting the training data for the
papers/authors would not be obvious. In this problem, we try to exploit the
correlations between conferences and papers/authors for transferring knowledge
from conference ranking to help learn good ranking functions for papers/authors.
Figure 1 (c) shows an example of query-dependent cross domain ranking in het-
erogeneous network. In the right panel, the larger the author’s icon is, the more
authoritative he/she is. Besides many preference constraints over conferences
under different queries, and very limited preference constraints over experts, we
may also have the following relationships: co-author relationship, author writes
paper, paper publishes on a conference, and paper cites paper. In this prob-
lem, we try to exploit the network structure to learn a better ranking function.
Intuitively, we hope that an approach can take advantage of the available super-
vision information (labeled conferences) and the correlation between conferences
and papers/authors in the academic network to help learn the ranking functions
for papers and authors. Further, if we have the information about the network
structure, how can we exploit the links between heterogeneous objects for better
knowledge transfer?

1 For example, http://www.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
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Fig. 1. Example of query-dependent cross domain ranking in heterogeneous network.

Summaries
The challenges of query-dependent cross domain ranking in heterogeneous

network are as follows:

1. Domain correlation. As the types of objects in the HCD ranking problem may
be different or even heterogeneous, the first challenge is how to capture the
content correlation between these two different domains.

2. Transfer ranking. It is necessary not only to transfer the knowledge from the
source domain to the heterogeneous target domain, but also to preserve the
preference order with the learnt ranking model.

3. Efficiency. Generally, a ranking problem needs thousands (or millions) of train-
ing examples. It is important to develop methods that can scale well to large
data sets.

4. Network structure. There are also different kinds of links between objects,
so how to efficiently exploit the structure information for better knowledge
transfer is important.

To address the first three challenges, we propose a unified cross-domain rank-
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Table 1. List of notations.

Notation Description

G the heterogenous network
GS, GT subgraphs for two domains
V,E all the nodes/edges in the network
I index set of different types of nodes

IS , IT index sets of objects in two domains
VS , VT node sets for two domains
XS,XT instance spaces for two domains
YS , YT rank level sets for two domains
LS ,LT labeled data in two domains

A unlabeled test set in target domain
o, o′ cardinality of the rank level set in two domains

nS , nT , n # queries of the training sets in two domains and test set
xi associated attribute vector of node vi

The following are important notations used in later Sections

pij the transition probability from node vi to node vj
fS , fT ranking functions for two domains
wS , wT weight vectors for two domains
α1, α2 weight vectors for two domains in latent space
n1, n2 # instance pairs in source and target domains
||W ||2,1 (2,1)-norm of matrix W

ing model, named HCDRank, which simultaneously models the correlation be-
tween the source domain and the target domain, as well as learning the ranking
functions. In particular, HCDRank uses a “latent feature space” defined over
both the source and target domains to measure their correlation. Examples from
both domains are mapped onto the new feature space via a projection matrix,
where a common (sparse) feature space is discovered. HCDRank adopts a regu-
larization method to simultaneously minimize two loss functions corresponding
to the two domains, and supervision from the source domain is transferred to the
target domain via the discovered common feature space. An efficient algorithm
has been developed and a generalization bound is discussed. Regarding the fourth
challenge, we propose another model called Net-HCDRank which first encodes
the network structure into Markov random walk representations and then use it
to augment the node-specific attribute features. Experimental results on three
different types of data sets verify the effectiveness of the proposed methods, in
particular when the target domain has very few labeled examples. The proposed
framework is general, and allows us to utilize many different algorithms to learn
the ranking function.

2. Problem Formulation

For ease of reading, hereafter we will denote the problem “query-dependent cross
domain ranking in heterogeneous network” by “heterogenous cross-domain rank-
ing problem (HCD Ranking)”. The HCD ranking problem can be formalized as
follows. For clarity, Table 1 summarizes the notations.

Two inputs are required for our HCD ranking problem: 1) the structure of
the heterogeneous network; 2) the preference constraints over a subset of the
nodes.

Heterogeneous Network: In a heterogeneous network (e.g. academic social
network), there are � types of objects, let I = {1, 2, . . . , �} denote the type index
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set and Vi be the set of objects of i-th type, then the network can be represented
as a graph G = (V,E), where V =

⋃
i∈I Vi is the set of heterogeneous nodes (e.g.

author, paper and conference) and E ⊂ V × V is the set of directed/undirected
links between nodes including inter-type links and intra-type links (e.g. author
publishes papers in the conferences or the co-author relationship). For each node
vi ∈ V , there is an associated attribute vector xi ∈ R

d which is query-dependent.
For each edge eij ∈ E, there is an associated weight ωij which indicates the
importance of the relationship (e.g. the total number of co-author relationship )
between vi and vj and Ω = [ωij ].

Let IS denote the set of object types which can be relatively easily labeled
and IT denote the set of interested object types for which we can only collect
little supervision information. From IS we can induce a subgraph GS = (VS , ES)
where VS =

⋃
i∈IS

Vi and ES ⊂ E which consists of the relationships between

the nodes in VS . Similarly, we can also define the subgraph GT = (VT , ET ).

Query-dependent Cross Domain Ranking: Let XS ∈ R
dS be the in-

stance space for the source domain where dS is the number of features, YS =
{rS1 , rS2 , · · · , rSo

} denote a set of rank levels where o is the number of rank levels.
The rank levels satisfy rS1 � rS2 � · · · � rSo

, where � denotes the preference
relationship. The preference constraints on the subgraph GS (the source domain)

is denoted by LS =
{
(qkS , �x

k
S , �y

k
S)
}nS

k=1
, where nS is the number of queries in the

source domain. That is, for query qkS , �v
k
S ⊆ VS is the related node collection

with �xk
S = {xk

Si
}
Nk

S

i=1 as the associated attribute vector collection and �ykS as the

corresponding labels where xk
Si

∈ XS , y
k
Si

∈ YS and Nk
S is the total number of

nodes related to this query. Further, for the subgraph GT (the target domain), let
XT ∈ R

dT be the instance space for the target domain where dT is the number of
features, YT = {rT1 , rT2 , · · · , rTo′

} be the set of rank levels where o′ is the number

of rank levels. There are two parts of data in this subgraph: A =
{
(qk, �xk)

}n

k=1

represents the unlabeled test data in which xk
i is the attribute vector associated

with node vki ∈ VT and LT =
{
(qkT , �x

k
T , �y

k
T )

}nT

k=1
represents the labeled data

where xk
Ti

∈ XT is the attribute vector associated with node vkTi
, ykTi

∈ YT and
nT is the number of queries in the target domain.

Query-dependent Cross Domain Ranking in Heterogeneous Net-
work: The HCD ranking problem can be defined as: given the network structure
G = (V,E), sufficient preference constraints LS on the subgraph GS = (VS , ES),
the limited number of preference constraints LT and a large number of unlabeled
data A on the subgraph GT = (VT , ET ), the goal is to learn a ranking function
f∗
T for predicting the rank levels of the unlabeled data in the subgraph GT with
the help of supervision on both subgraphs GS and GT .

There are several key issues: (1) there exist inter-type and intra-type link
structures of the two subgraphs GS and GT , we need to exploit the structure
information for transferring knowledge; (2) the nodes in two subgraphs may
have different attribute feature distributions or even different feature spaces (e.g.,
different types of objects); (3) the number of rank levels in the two subgraphs can
be different; (4) the number of preference constraints in two different subgraphs
may be very unbalanced.
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6 B. Wang et al

Fig. 2. Basic idea of HCD Ranking for a given query. We take the ranked conferences as the
source domain and the partially ranked authors as the target domain. By using the transfor-
mation function φ, we can map all of them onto the latent space which can be utilized for
knowledge transfer across domains.

3. HCD Ranking

3.1. Assumption

In HCD Ranking problem, the objects in two domains may have different feature
spaces, so we first map them into a unified feature space to make them compa-
rable. After that, the marginal distributions p(XS) and p(XT ) of two domains
may be still different, where XS and XT are constructed by the feature vectors
of the nodes in VS and VT respectively. So our assumption is that there exists a
low-dimensional latent feature space determined by the transformation function
φ, in which the marginal distributions p(φ(XS)) and p(φ(XT )) from two domains
are similar.

We conduct further analysis on the heterogeneous academic data set. The
conferences and experts may have different feature spaces, but both of them
may focus on similar topics. That is, the research topics of an expert will have
some overlaps with the target topics of the conferences. Thus, these overlapping
topics will act as the low-dimensional latent space for knowledge transfer.

3.2. Basic Idea

In HCD ranking, we aim at transferring preference information from an inter-
related (heterogeneous) source domain to the target domain by exploiting the
correlation between them. Figure 2 intuitively shows how our approach works
for a given query. We take the ranked conferences as the source domain and the
partially ranked authors as the target domain. After feature extraction, all the
examples with different distributions in two domains will be the inputs for the
transformation function φ. After mapping them onto the latent space, we can
find the correlation between the examples in two domain by which the knowledge
can be transferred from the source domain to the target domain.

First of all, because the feature spaces of the source and target domains may
be different, we use a simple way for mapping them into a unified one. Specifically,
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let Fc denote the set of overlapping features across domains, F+ denote the set
of features only in the target domain, F− denote the set of features only in the
source domain and d = |Fc| + |F+| + |F−|, then the instances xS and xT from
the source and target domains in the unified feature space can be represented
by xS = 〈Fc, F−,0+〉 and xT = 〈Fc,0−, F+〉 respectively, where 0+ ∈ R

|F+| and
0− ∈ R

|F−| are two zero vectors. Following this way, we can map the different
feature spaces (RdS vs. RdT ) from the two domains into a unified space (Rd).

More specifically, as the feature distributions and the objects’ types may be
different across domains, the first challenge is how to quantitatively measure the
correlation between the different domains, which reflects what kind of informa-
tion can be transferred across the domains. On the other hand, our ultimate
goal is to obtain a higher ranking performance. Based on these considerations,
we have two main ideas: First we assume there is a common feature (latent)
space between the two domains. Examples (e.g., x) from the two domains can
be mapped onto the latent space through a transformation function φ(x). Such
a common latent space provides a potential way to quantify the correlation be-
tween the two domains. Second, in the target domain we aim to learn a ranking
model that can minimize the error (loss) on the unlabeled test data while pre-
serving the preference orders in the labeled training data. When transferring the
supervision information from the source domain, we also desire to preserve its
original preference orders, equivalently minimizing the loss in the source domain.
Therefore, we propose a general framework (HCDRank), in which we use a latent
space to bridge the two domains (i.e., the source domain and the target domain)
and define two loss functions respectively for the two domains. We further pro-
pose an efficient algorithm to optimize the two loss functions and learn the latent
space simultaneously.

3.3. The General Framework: HCDRank

Given the labeled training data from the target domain LT =
{
(qkT , �x

k
T , �y

k
T )

}nT

k=1
,

we aim to learn a ranking function fT for predicting the preference relationships
between instances for each query qkT , i.e. fT (x

k
Ti
) > fT (x

k
Tj
) : ∀ykTi

� ykTj
. For

ranking, based on the learnt ranking function fT , we can predict the rank level
of a new instance. To learn the ranking function, we can consider to minimize
the following loss function:

min
fT

O(fT ,LT ) = R(fT ,LT ) + ηE(fT )

=
nT∑
k=1

∑
yk
Ti

≺yk
Tj

I

[
fT (xk

Ti
) > fT (xk

Tj
)
]
+ ηE(fT ) (1)

where I[π] is the indicator function returning 1 when π is true and 0 otherwise;
R(fT ,LT ) counts the number of mis-ranked pairs in the target domain; η is a
parameter that controls the tradeoff between the empirical loss (the first term
R) and the penalty (the second term E) of the model complexity.

When transferring the supervision from the source domain, we hope to pre-
serve the preference orders between instances from the source domain. For bridg-
ing instances from the two heterogeneous domains, we define a transformation
function φ : Rd → R

d′

to map instances from both domains to a d′-dimensional
common latent space. Then we can define a general objective function for the
HCD ranking problem as follows:
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8 B. Wang et al

min
fS ,fT ,φ

Rφ(fS ,LS) + CRφ(fT ,LT ) + λJφ(fS , fT )

=
nS∑
k=1

∑
yk
Si

≺yk
Sj

I

[
fS

(
φ(xk

Si
)
)
> fS

(
φ(xk

Sj
)
)]

+ C
nT∑
k=1

∑
yk
Ti

≺yk
Tj

I

[
fT

(
φ(xk

Ti
)
)
> fT

(
φ(xk

Tj
)
)]

+ λJφ(fS , fT )

(2)

where Jφ(fS , fT ) is a penalty for the complexity of the HCD ranking model, λ
is a parameter that balances the empirical losses and the penalty, and C is a
parameter to control the imbalance of labeled instances across domains.

The problem now is to find the best parameters for fS , fT and φ, that mini-
mize the objective function (Eq. 2). In the following section, we give an instan-
tiation of the framework and present a preferred solution.

3.4. The Proposed Solution

In HCDRank, we do not simply want to learn the ranking function fT , fS for
the two domains but also learn the transformation function φ. In addition, it is
desirable to leave out features that are not important for transferring knowledge
across domains and result in a sparse solution.

Instantiation of the HCDRank framework. For simplicity, fT is assumed
to be a linear function in the instance space: fT (x) = 〈wT , x〉, where wT are
parameters (feature weights) to be estimated from the training data and 〈·〉
indicates the inner product. By plugging it into Eq. 1 we have

O(fT ,LT ) =

nT∑
k=1

∑
yk
Ti

≺yk
Tj

I

[
〈wT , xk

Ti
− xk

Tj
〉 > 0

]
+ ηE(fT ) (3)

The loss function R(fT ,LT ) is not continuous, so we just use Ranking SVM
hinge loss to upper bound the number of mis-ranked pairs [11].

First of all, we give a brief introduction to Ranking SVM [27]. Given the
labeled data in the target domain LT , for each query �qkT (k = 1, · · · , nT ), given
an instance pair xa

Ti
, xb

Ti
from different rank levels and their corresponding la-

bels yaTi
, ybTi

, Ranking SVM aims to learn a ranking function fT which can
correctly predict the preference orders between instances satisfying the following
constraints:

yaTi
� ybTi

⇔ f(xa
Ti

) > f(xb
Ti

) (4)

Ranking SVM reduces the ranking problem into a binary classification prob-
lem by using the instance pairs as follows:⎛

⎝xa
Ti

− xb
Ti

, zTi
=

{
+1 ya

Ti
� yb

Ti

−1 ya
Ti

≺ yb
Ti

⎞
⎠ (5)

where xa
Ti

− xb
Ti

is the new instance and zTi
is the new label for the instance

pair. In this way, we can get a new training data set consisting of instance pairs
in the target domain L′

T =
{
(xa

Ti
− xb

Ti
, zTi

)
}n2

i=1
.

Then Ranking SVM aims to minimize the following objective function for
model learning on the new training data L′

T :
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min
wT

n2∑
i=1

[
1− zTi

〈
wT , xa

Ti
− xb

Ti

〉]
+

+ λ‖wT ‖2 (6)

where the first term is called the Ranking SVM hinge loss, and the second term
is the regularization term.

For the source domain, we can make the same assumption and use the par-
allel notations wS and L′

S =
{
(xa

Si
− xb

Si
, zSi

)
}n1

i=1
. Finally, we can rewrite the

objective function Eq. 2 by optimizing the Ranking SVM hinge loss (the convex
upper bound of the original loss) as:

min
wS ,wT ,φ

n1∑
i=1

[
1− zSi

〈
wS , φ(x

a
Si

)− φ(xb
Si

)
〉]

+

+ C
n2∑
i=1

[
1− zTi

〈
wT , φ(xa

Ti
) − φ(xb

Ti
)
〉]

+

+ λJφ(wS , wT )
(7)

Now the problem is to define the transformation function and the penalty of
the model complexity.

Instantiation of the transformation function. We use a d× d matrix U to
describe the correlation between features, then the inner product of examples can
be defined as x�

i UU�xj . Such parameterization is equivalent to projecting every
example x onto a latent space spanned by φ : x → U�x. With the transformation
function, we can redefine the loss function, for example, by replacing the second
term in Eq. 7 with:

n2∑
i=1

[
1− zTi

〈
wT , U�(xa

Ti
− xb

Ti
)
〉]

+

(8)

For HCD Ranking, our assumption is that there exists a low-dimensional
latent space between the source domain and the target domain. For simplicity,
we assume that the common features in the latent space φi(x), shared by the
two domains, are the linear combination of the original features. That is, φi(x) =
u�
i x, where ui is the orthogonal combination parameter vector, and x is the

original feature vector. Further we use U to denote the matrix with the columns
the vectors ui(i = 1, · · · , d), thus it is an orthogonal matrix. After projecting the
examples from the two domains onto the latent space by matrix U , they will
have similar representations.

To intuitively illustrate the semantics of the transformation function, we con-
duct an analysis on the academic social network data set, and plot the feature
distributions in different spaces for comparison in Figure 3. In Figures 3 (a)
and (c), black crosses, green triangles and blue circles denote “not relevant”,
“marginal relevant” and “relevant” conferences respectively. In Figures 3 (b) and
(d), black crosses, green triangles, cyan pluses and blue circles denote “not rele-
vant”, “marginal relevant”, “relevant”, and “most relevant” experts respectively.
Figures 3 (a) and (b) show the distributions of the conferences and experts in the
original space, where we use principle component analysis (PCA) for extracting
the first two principal directions. Figures 3 (c) and (d) show their correspond-
ing distributions in the latent space, where we use HCDRank for finding the
first two principal directions. Among them, all the ranking directions (red lines
with arrows) are learned by Ranking SVM. In this example, the original ranking
directions for the conferences and experts differ very largely. By the transforma-
tion function, the ranking directions of the conferences and experts in the latent
space have become very similar.
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Fig. 3. An example for illustrating the transformation function by comparison of the ranking
learning in the original space and the latent space.

Instantiation of the penalty function. As for the penalty Jφ(wS , wT ) of
the model complexity, we define it as a regularization term, specifically, a (2,1)-
norm ‖W‖2,1, for the parameters of the source and the target domains, where
W = [wS , wT ] is a d×2 matrix with the first column corresponding to wS and the

second wT . The (2, 1)-norm of W is defined as ||W ||2,1 =
∑d

i=1 ||a
i||2 where ai is

the i-th row of W. The 2-norm regularizer on each row of W leads to a common
feature set over the two domains and the 1-norm regularizer leads to a sparse
solution. The (2,1)-norm regularizer thus offers a principled way to interpret the
correlation between the two domains and also introduce useful sparsity effects.
Finally, we can redefine the objective function as:

min
wS ,wT ,U

n1∑
i=1

[
1− zSi

〈
wS , U

�(xa
Si

− xb
Si

)
〉]

+

+ C
n2∑
i=1

[
1− zTi

〈
wT , U�(xa

Ti
− xb

Ti
)
〉]

+

+ λ‖W‖22,1

s.t. U�U = I

(9)

where U�U = I denotes an orthogonal constraint which makes the projection
matrix U unique.

Learning algorithm. Directly solving the objective function (including pa-
rameters wS , wT , U in Eq. 9) is intractable, as it is a non-convex problem.
Fortunately, we can derive an equivalently convex formulation of the objective
function Eq. 9 as follows: (Derivation of the equivalence is given in appendix A.)
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Query-dependent Cross Domain Ranking in Heterogeneous Network 11

Algorithm 1: HCDRank for transfer ranking

Input:

Training set: LS

⋃
LT ; Test set: A

Output:

Ranking function f∗

T = 〈w∗

T , x〉 and the predicted
preferences over test data: {yi}

n
i=1

Initialization:

D =
Id×d

d

Step 1: Latent Space Finding
1: while not reached maximal iteration number Q do

2: α1 = argmin

{
n1∑
i=1

[
1 − zSi

〈α, xa
Si

− xb
Si

〉
]
+

+ λ〈α,D+α〉

}

3: α2 = argmin

{
n2∑
i=1

[
1 − zTi

〈α, xa
Ti

− xb
Ti

〉
]
+

+ λ〈α,D+α〉

}

4: M = [α1, α2]

5: set D = (MM�)
1
2

Tr(MM�)
1
2

6: end while

7: Apply SVD decomposition on D, D = UΣV �

8: Construct U by the eigenvectors corresponding to the
top two eigenvalues of D

Step 2: Learning in Latent Space

9:w∗

T = argmin

⎧⎨
⎩

n1∑
i=1

[
1 − zSi

〈
w,U�(xa

Si
− xb

Si
)
〉]

+

+C
n2∑
i=1

[
1 − zTi

〈
w,U�(xa

Ti
− xb

Ti
)
〉]

+

+ λ||w||2

⎫⎬
⎭

10: for i = 1 to n do

11: yi = 〈w∗

T , U�xi〉
12: end for

min
M,D

n1∑
i=1

[
1− zSi

〈α1, x
a
Si

− xb
Si

〉
]
+
+ C

n2∑
i=1

[
1− zTi

〈α2, x
a
Ti

− xb
Ti

〉
]
+

+λ
2∑

t=1
〈αt, D

+αt〉

s.t. D � 0, Tr(D) ≤ 1, range(M) ⊆ range(D)

(10)

where M = [α1, α2] = UW , D = UDiag( ||ai||2
||W ||2,1

)U� and the superscript “+” of

D indicates the pseudoinverse of the matrix D. X is a p × q matrix, range of
X is the span of columns of X which can be defined as range(X) = {x|Xz =
x, for some z ∈ Rq}. The trace constraint of D is imposed because if D is set
to ∞, the objective function will only minimize the empirical loss. The range
constraint bounds the penalty term below and away from zero. The equivalence
has been previously used in [3].

We can solve the equivalently convex problem with an iterative minimization
algorithm, as outlined in Algorithm 1, and detailed as follows:

Step 1. We use an iterative algorithm to optimize matrix M and D. First,
in lines 2-4, we keep D fixed, and learn α1 and α2 (that is, matrix M) from the
labeled training data in two domains respectively. Second, in line 5, we update
matrix D by the learnt matrix M . We run the above two steps iteratively until
convergence or excess of the maximal iteration number. Then in lines 7 and
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12 B. Wang et al

8, we apply SVD decomposition [51] on the learnt intermedia matrix D, i.e.
D = UΣV �; then the matrix U is constructed by the eigenvectors corresponding
to the top two eigenvalues of D.

The reason why we only use the two eigenvectors corresponding to the top
two eigenvalues for constructing matrix U is as follows. In algorithm 1, M is
a d ∗ 2 matrix, so rank(M) ≤ 2, where rank(M) is the maximum number of
linearly independent column vectors of matrix M . Thus the rank of matrix D
also satisfies rank(D) ≤ 2. After SVD decomposition on matrix D, there are at
most two non-zero eigenvalues, so we just use the two eigenvectors corresponding
to the top two eigenvalues for constructing the projection matrix U .

Step 2. In line 9, we learn the weight vector of the target domain from all the
labeled data in the latent space. In lines 10-12, we use the learnt w∗

T to predict
ranking levels of new instances from the target domain.

Complexity. The size of the two matrices to be optimized in HCDRank depends
only on the feature number d, e.g., matrix D is d × d and W is d × 2. The
complexity for SVD decomposition on matrix D is O(d3). Further, for dealing
with large-scale problem, PEGASUS library can be used on peta-level data [35].

Let N = n1 + n2 be the total number of instance pairs for training and s be
the number of non-zero features. Using the cutting-plane algorithm[34], linear
Ranking SVM training has O

(
sN log(N)

)
time complexity. In our algorithm HC-

DRank, let Q be the maximal iteration number, then the training of HCDRank
has O

(
(2Q+ 1) · sN log(N) + d3

)
time complexity.

3.5. Generalization Bound

In this section, we theoretically analyze our algorithm HCDRank and derive the
generalization bound for it. See appendix B for the proof.

Theorem 3.1. Let H be a hypothesis space of VC-dimension k. Let US and UT

be unlabeled samples of size m′ each, drawn from DS and DT respectively, and

d̂H�H is the empirical distance between them. Let L = LS

⋃
LT be the labeled

samples of size m generated by drawing (1−β)m points from DS and βm points
from DT , labeling them according to fS and fT respectively. Let εS(h), εT (h) be
the true risks for the hypothesis h in the source and target domains respectively,
θ = 1/(1+C) and ε̂θ(h) be the empirical weighted risk of two domains. For each

ranking function h with zero training risk, if ĥ ∈ H is the empirical minimizer
of ε̂θ(h) on L, then with probability of at least 1 − δ(over the choice of the
samples)[8, 27]

εT (ĥ) ≤ 2
βm−1

(
k log

(
8e(βm−1)

k

)
log

(
32(βm − 1)

)
+ log

(
8(βm−1)

δ

))
+ 2

√
θ2

β
+ (1−θ)2

1−β

√
k log(2m)−log δ

2m

+ 2(1− θ)

(
1
2
d̂H�H(US ,UT ) + 4

√
2k log(2m′)+log( 4

δ )
m′ + γ

) (11)

where γ = minh∈H εS(h) + εT (h) and β = nT

nS+nT
.

The error bound is comprised of three components: the first one is the upper
bound for the target risk using only the labeled data in the target domain; the
second one corresponds to the difference between the true and empirical weighted
risks; the last one measures the distance between target risk and weighted risk.
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Query-dependent Cross Domain Ranking in Heterogeneous Network 13

When we have many labeled data in the source domain and few labeled data

in the target domain, θ will be small and the distance d̂H�H will be vital for the
performance of HCDRank algorithm. In the latent space found by our algorithm,
the instances from the two domains will have similar representations, then the

distributions of the two domains will be similar, so d̂H�H will be small and
the bound is tight. When the latent space is bad, the difference between these
distributions is large, the bound is loose.

4. Net-HCDRank

For HCD Ranking problem, the proposed HCDRank approach transfers knowl-
edge via the latent space by exploiting the correlations between the contents
of different objects. As the rapid development of Web 2.0, the heterogenous
networks are becoming more and more common where many interrelated links
between different objects exist. The links are also very important for transferring
ranking supervision across domains. Let us take the heterogeneous academic net-
work as an example, there are many relationships between papers, conferences
and authors, for example, author writes paper, and paper publishes on a confer-
ence and so on. The intuition for knowledge transferring by links is as follows: a
paper with significant impact is very likely written by an author with significant
impact, a paper with significant impact is very likely accepted by a conference
with significant impact, and an author with significant impact may publish pa-
pers on a conference with significant impact. So our problem now is “while the
network structure is available, how can we exploit the structural information for
knowledge transfer?” In this section, we will discuss how to sufficiently exploit
both content and structural information for knowledge transfer in heterogenous
networks.

4.1. Basic Idea

Figure 4 demonstrates the framework of the proposed Net-HCDRank algorithm.
There are two phases in our algorithm: 1) feature extraction; 2) HCDRank algo-
rithm. After extracting structural features from the heterogeneous network, the
HCDRank algorithm can be applied for transferring knowledge in heterogeneous
network.

While the network structure is available, there are inter-type and intra-type
links across two domains(subgraphs). Sufficiently exploiting this kind of informa-
tion inside the links can boost the rank performance. Meanwhile, for each node
of the network G = (V,E), there is an associated attribute vector xi ∈ R

d. So the
first challenge is how to leverage both node-specific attribute vector and network
structure to help the ranking function learning in the subgraph GT . For phase
1, we propose a novel way to encode the network structure into Markov random
walk representations based on the random walk over heterogeneous network .
Then we can use the new structural feature vector to augment the node-specific
attribute feature vector for learning a better ranking model. For phase 2, we just
use the HCDRank algorithm for transferring knowledge between different types
of objects.
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14 B. Wang et al

Fig. 4. Framework of the Net-HCDRank algorithm. There are two phases: feature extraction
and HCDRank algorithm.

4.2. Markov Random Walk Representation

First, we briefly define the process of random walk over the heterogeneous net-
work. Recalling our previous definitions, the heterogeneous network G = (V,E)
is a directed graph with V =

⋃
i∈I Vi and E ⊂ V × V where Vi is the set of

i-th type nodes. As Figure 5 shows, there are three different collections of nodes:
nodes in the subgraph GS (the source domain), nodes in the subgraph GT (the
target domain), the other nodes in the graph G − GT − GS . There can be dif-
ferent types of nodes in each collection, we just use one type of nodes in each
collection for illustration. For example, Vx is the node set of x-th type object in
the source domain. There can be inter- and intra-links between different node
collections. For example, there may exist intra-links between nodes in Vx in the
source domain, there also exist inter-links between Vx and Vy, Vz . Let the tran-
sition probability from x-th type object to y-th type object be μxy, then the
transition probability from node vi of type x to vj of type y can be defined as

pij = μxy ×
ωij∑

k∈Vy
ωik

with
�∑

k=1

μxk = 1 (12)

where � is the total number of different object types in the network.
Let us take the heterogeneous social network as an example for introducing

the intuition of Eq. 12. After the user has found his interested expert, then with
some probability he will view the expert’s coauthors (intra-links), papers (inter-
links) and their published conferences (inter-links). By this way, he will surf over
the heterogeneous academic social network.

Regarding the μxy, a simple way for specifying its value is to calculate the
ratio between the sum of edge weights from x-th type object to y-th type object
and the sum of edge weights from x-th type object to all the other objects. More
specifically, μxy can be specified as follows:

μxy =

∑
i∈Vx

∑
j∈Vy

wij∑�
k=1

∑
i∈Vx

∑
j∈Vk

wij

(13)

If the data set is sufficient, the values of μxy calculated in this way would be
more accurate. Prior knowledge can also be utilized for this purpose.
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Query-dependent Cross Domain Ranking in Heterogeneous Network 15

Fig. 5. Random walk over heterogeneous network.

Further, we define pij after t steps as p
(t)
ij , which can reflect the structure of the

heterogeneous network via the probability propagation. Similar to the PageRank
algorithm [16], we introduce a random jump parameter α, which allows a surfer
to randomly jump to other nodes in the graph. Let B = [pij ] denote the one-step
transition matrix, then we have

P = (1 − α)B + αE, E = (1, . . . , 1)�
(

1

|V |
, . . . ,

1

|V |

)
(14)

where |V | is the total number of nodes in the graph.

After t steps the transition probability from vi to vj can be defined as p
(t)
ij =

[P t]ij where P t is the t-th power of matrix P .
The t-step transition probability of one node is a good representation of its

network structure, so we use the transition probabilities from one node to the
other nodes to form the structure feature vector associated with that node, that
is, for node vi, we use the vector x′

i =
(
pti1, . . . , p

t
i|V |

)
∈ R

|V | to encode the

structure information associated with this node.
Finally, we can obtain the data sets LS =

{
(qkS , �x

k
S , �y

k
S)
}nS

k=1
,A =

{
(qk, �xk)

}n

k=1

and LT =
{
(qkT , �x

k
T , �y

k
T )

}nT

k=1
where xk

Si
,xk

i and xk
Ti

are the feature vectors associ-

ated with nodes vkSi
, vki and vkTi

respectively in the Rd+|V | space by concatenating
x′
i into the original feature vector xi.
The representation based Markov random walk has been used in [48], in their

work, they use points of the same type to construct the k-nearest neighbor(k-
NN) graph by a predefined distance metric. But for our problem, the network
is intrinsic, the objects are heterogeneous and the weight is defined by the rela-
tionship (or co-occurrence).

5. Experiments

Our approach is general and can be applied to various data sets. We perform
the experiments on three different genres of data sets: a homogeneous data set
which consists of documents from different domains; a heterogeneous data set
which consists of three different types of objects; a heterogeneous task data set
which consists of data from two different ranking tasks.
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16 B. Wang et al

Table 2. Three baseline methods.

RSVM RSVMt MTRSVM HCDRank

Training data LT LS

⋃
LT LS

⋃
LT LS

⋃
LT

Test data A A A A

5.1. Evaluation Measures, Baseline Methods

Evaluation measures. To quantitatively evaluate our method, we use Preci-
sion@n, MAP (mean average precision)[5] and NDCG(normalized discount cu-
mulative gain)[30]. More evaluation measures can be found in [4].

The precision of top n results for a query is measured by precision at n which
is defined as follows:

P@n =
#{relevant documents in top n results}

n

Average precision is defined based on the P@n to measure the accuracy of
ranking results for a given query.

AP =
∑
n

P@n · I[document n is relevant]

#{relevant documents}

MAP is defined as the mean of all APs over test set and measures the mean
precision of ranking results over all the queries. Different from MAP, NDCG
gives high weights to the top ranked relevant documents. The NDCG score at
position n is defined as

N@n = Zn

n∑
j=1

2r(j) − 1

log(1 + j)

where r(j) is the rank of j-th document, and Zn is a normalization factor.

Baseline methods.We compare HCDRank with three baselines. Ranking SVM
(RSVM) [27] is one of the state-of-the-art ranking algorithms for information
retrieval which is designed for ranking in a single domain. For fair comparisons,
we conduct two experiments with RSVM, one is to train the ranking model only
by the labeled data in the target domain LT and the other (called RSVMt) is
to train the ranking model by the labeled data in the source domain and the
target domain LS

⋃
LT . The third baseline is MTRSVM which is a multi-task

feature learning approach using ranking SVM hinge loss. MTRSVM is adapted
from [3], and aims at learning a low-dimensional representation shared by a set of
multiple related tasks. MTRSVM is designed for addressing the situation where
all the tasks have the same number of training data, by minimizing the total loss
of all the learning tasks. However, in HCD Ranking problem, the training data
of ranking tasks are very imbalanced, there are many labeled training data in
the source domain while only limited labeled data in the target domain. Further,
HCDRank only focuses on the ranking function learning for the target domain
by learning the ranking function from all the labeled data in the latent space
with cost-sensitive factor.

All the experiments are carried out on a PC running Windows XP with Dual-
Core AMD Athlon 64 X2 Processor(2 GHz) and 2 G RAM. We use SVMlight [33]
with linear kernel and default parameters to implement RSVM, RSVMt and
the preference learning step of MTRSVM and HCDRank. The other part of
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Query-dependent Cross Domain Ranking in Heterogeneous Network 17

Table 3. Description of features in LETOR data set.
Data Set Category Description #Features Feature IDs

TREC

A low-level content features 16 {2-5,9-12,28-35}
B some high-level content features 6 {15,16,19,20,23,24}
C some high-level content features 7 {1,17,18,21,22,25,26}
D hyperlink features 7 {6-8,14,36-38}
E hybrid features 8 {13,27,39-44}

OHSUMED
F low-level title features 10 {1-10}
G low-level abstract features 10 {11-20}
H high-level content features 5 {21-25}

MTRSVM and HCDRank have been implemented using Matlab 7.1, and the
maximal iteration number Q of HCDRank is set to five. Also without special
specification, we use the grid search to choose parameter C from {2−6, 2−5, 2−4,
2−3, 2−2, 2−1, 1, 2, 22, 23, 24, 25}, the results reported below are all averaged over
10 runs and we judge statistical significance using the dependent t-test with
p < 0.05.

5.2. Results on Homogeneous Data

Data Set. We use LETOR 2.0 [39] as the homogeneous data set, which is a
data set for evaluating various algorithms for learning to rank. LETOR 2.0 is
comprised of three sub data sets: TREC2003, TREC2004, and OHSUMED, with
respectively 50, 75, and 106 queries. A set of query-document pairs are collected
in each of the data sets. The TREC data set is a collection from a topic distillation
task which aims to find good entry points principally devoted to a given topic.
The OHSUMED data set is a collection of records from medical journals. In the
OHSUMED data set, there are three rank levels, i.e. relevant � partially relevant
� non-relevant, while in the TREC data set, there are only two, i.e. relevant �
non-relevant. In LETOR, all the features are highly abstract. In TREC, there
are 44 features divided into four categories. In OHSUMED, there are 25 features
falling into three categories. Table 3 summarizes the features in the LETOR data
set. For example, for TREC data, there are 16 low-level content features (e.g.
tf and idf), 13 high-level content features (e.g. BM25 and language model for
IR), 7 hyperlink features (e.g. PageRank and HITS) and 8 hybrid features (e.g.
hyperlink-based relevance propagation).
Feature definition. To adapt to the cross-domain ranking scenario, we make
slight revision to the LETOR data set. After revision, the whole data set and
three sub data sets are correspondingly referred to as LETOR TR, TREC2003 TR,
TREC2004 TR and OHSUMED TR. Specifically, we split each data set into two
domains (source domain and target domain), according to the feature types. Ta-
ble 4 lists statistics of the data sets in which the 4th column shows the details of
features used in each domain of every data set by feature categories A-H in Table
3. We split features in this way which can simulate some real applications. For
example, the source domain of TREC2003 TR only contains feature categories
A and B with queries 1-25 which correspond to features for document contents;
while the target domain of TREC2003 TR consists of feature categories B, C,
D, E with queries 26-50 which may correspond to features in blogs. After this
splitting, intuitively the features in two domains are quite different. In all exper-
iments, we use all the labeled query-document pairs from the source domain as
the training data LS , and randomly sample 20% queries with all their labeled

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



18 B. Wang et al

Table 4. Data characteristics of LETOR TR data set. #D/Q and #Dp/Q denote the average
number of documents and document-pairs corresponding to a query respectively.

Data Set Domain Query IDs Features #Doc #D/Q #Dp/Q

TREC2003 TR
SOURCE 25:{1-25} AB 24079 963 6450
TARGET 25:{26-50} BCDE 25092 1004 13761

TREC2004 TR
SOURCE 38:{1-107} AE 37154 978 5969
TARGET 37:{111-221} BCDE 37016 1000 5696

OHSUMED TR
SOURCE 56:{1-56} FH 8136 145 5726
TARGET 50:{57-106} GH 8004 160 5239

MAP N@1 N@3 N@5 N@10
0
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Fig. 6. MAP and NDCG performances for LETOR TR.

documents from the target domain as the training data LT (that is, 5, 8 and 10
queries for TREC2003 TR, TREC2004 TR and OHSUMED TR respectively),
while all the other data in the target domain are viewed as the unlabeled test
set A.

For ease of implementation, in this experiment, we still define each instance
by a vector of 44 (TREC) or 25 (OHSUMED) dimensions. We set the feature
values that are not defined in a domain as zeros. For example, in the source
domain of TREC2003 TR, only features of categories A and B are set with their
actual values, the values of others (B, C, D, E) are set to zeros. Similarly, in the
target domain of TREC2003 TR, features in categories B, C, D and E have their
actual values and the others are zeros.
Results and analysis. Figure 6 and Table 5 show the results of all methods on
the LETOR TR data sets. Generally, our approach achieves higher performances
and has a nice convergence property (converging after several iterations in most
cases). Specifically, we have the following observations:

1. Ranking accuracy. HCDRank performs much better (by +5.6% and +6.1%

Table 5. MAP and NDCG performances for LETOR TR. Best performances are in bold-font,
and statistically significant improvements are with asterisk(*).

Data Set Baselines MAP N@1 N@3 N@5 N@10

TREC2003 TR

RSVM .1330* .2100 .2144* .2098* .1970*
RSVMt .0986* .1100* .1631* .1489* .1368*

MTRSVM .1100* .1850* .1730* .1703* .1656*
HCDRank .1404 .2300 .2325 .2214 .2089

TREC2004 TR

RSVM .2526* .3000 .3019* .3153* .3251*
RSVMt .2866 .4138 .3371 .3408 .3383

MTRSVM .2464* .2966 .2949* .3038* .3151*
HCDRank .2795 .3552 .3571 .3508 .3586

OHSUMED TR

RSVM .3541* .3483 .3255* .3141* .3044*
RSVMt .3171* .2600* .2465* .2446* .2402*

MTRSVM .3411* .3208* .3015* .2989* .2868*
HCDRank .3758 .3700 .3654 .3573 .3459
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respectively in terms of MAP) than the comparisonmethods on both TREC2003 TR
and OHSUMED TR. On TREC2004 TR, HCDRank results in a comparable
performance with RSVMt.

2. Effect of difference. We measure the difference of the source domain and
the target domain in each data set by the cosine-based similarity. We first
use the mean vectors of the two domains as their representatives, and then
the cosine similarity is calculated between these two mean vectors. The cosine
similarities of the three sub data sets are 0.01, 0.23, and 0.18. We see that when
the similarity is relatively high (0.23 on TREC2004 TR), simply combination
of the training data from both domains for learning would result in a better
ranking performance: RSVMt performs better than MTRSVM and RSVM.
When the similarities are relatively low (0.01 on TREC2003 TR and 0.18
on OHSUMED TR), such a brute combination will introduce a lot of noise
which hurts the performance: RSVMt underperforms MTRSVM and RSVM.
In both situations, our approach can balance the difference and consistently
outperform the three methods.

3. Reason for performance. We conduct an analysis of why HCDRank is
effective on LETOR TR. An important observation is that, in the ranking
problem, many features are extracted from query-document pairs, so the fea-
tures already contain information from both queries and documents. Thus a
good latent space means that if the new feature representations in that space
of two query-document pairs q1-d1 and q2-d2 from the two domains are similar,
then the rank levels of the two documents are also similar. For example, if d1
is relevant to q1, then it is highly possible that d2 is also relevant to q2.

5.3. Results on Heterogeneous Data

Data Set. The second data set is a heterogeneous academic data set, which
contains 14, 134 authors, 10, 716 papers, and 1, 434 conferences. The queries are
44 most frequent queried keywords (e.g., “data mining”, “information retrieval”)
collected from the query log of the ArnetMiner2 system[50]. For evaluation, we
used the method of pooled relevance judgments [12] together with human judg-
ments. Specifically, to obtain the ground truth for experts, for each query, the
top 30 experts from Libra3, Rexa4 and Arnetminer were collected respectively
and pooled into a single list by removing the same or ambiguous ones. Then, an-
notators (two faculties and five graduates from CS) provided human judgments
in terms of how many publications he/she has published, how many publica-
tions are related to the given query, how many top conference papers he/she has
published, what distinguished awards (Turing award, IEEE/ACM fellow and so
on) he/she has been awarded. There are four rank levels (3, 2, 1, and 0), which
respectively represent definite relevance � relevance � marginal relevance � not
relevance. To obtain the ground truth for conferences, the top 30 conferences

2 ArnetMiner(arnetminer.org) is a free online service to search and perform data mining oper-
ations against academic publications on the Internet, using social network analysis to identify
connections between researchers, conferences, and publications.
3 Libra(libra.msra.cn) is the academic search engine from Microsoft, which supports the search
of conferences, papers and experts.
4 Rexa(rexa.info) is a digital library and search engine covering the computer science research
literature and their authors.
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Table 6. Data characteristics of the heterogeneous academic data set.
Domain #Query Object type #Feature #Object #Object/Query
SOURCE 44 conferences 16 1,434 33
TARGET 44 experts 17 14,134 321

Table 7. Feature definitions for expertise search.

Features Description

L1-L10 Low-level content features, refer to [39]
H1-H3 High-level content features, refer to [39]
S1 The number of years the conference has been held
S2 The total citation of one conference during recent 5 years
S3 The total citation of one conference during recent 10 years
S4 The number of years passed since his first paper
S5 The total citation of one expert
S6 The number of papers cited more than 5 times
S7 The number of papers cited more than 10 times

from Libra and ArnetMiner are collected and three online resources5 are mainly
referenced for conference ranking. Table 6 lists the statistics of this heterogeneous
academic data set.

In this experiment, we aim to answer the question: how can heterogeneous
data be bridged for better ranking? We use the labeled data of one type of ob-
ject (e.g., conferences) as the source domain and another type of object (e.g.,
authors) as the target domain. Thus, our goal is to transfer the conference rank-
ing information for ranking authors.

Feature definition. We use titles of all papers published in a conference to
form a conference “document”, and use titles of all papers written by an author
as the author’s “document”. Thus we can define features for each object as listed
in Table 7. For each “document”, there are 10 low-level content features (e.g. L1
is term frequency(tf), L5 is inverse doc frequency(idf)) and 3 high-level content
features (e.g. H1 and H2 are the original and log values of BM25 score, H3 is
the value of language model for IR). S1-S3 are special features for a conference
which measure the number of years held and the total citations. S4-S7 are special
features for an expert, for example, the year of his first paper and the citations
of all his papers. Finally, we define 16 features (L1-L10, H1-H3 and S1-S3) for
conferences and 17 features for experts (L1-L10, H1-H3 and S4-S7).

We normalize the original feature vectors by query. Suppose there are N (i)

documents {d
(i)
j }N

(i)

j=1 for i-th query, then after normalization the feature x
(i)
j of

document d
(i)
j will become

x
(i)
j −mink {x

(i)
k

}

maxk {x
(i)
k

} −mink {x
(i)
k

}
k = 1, · · · , N(i)

Results and analysis. In this experiment, we take the labeled conference data
as the source domain, and the expert data as the target domain in which we
use one query with its corresponding documents as the labeled data and the rest

5 http://www.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html and http://www3.
ntu.edu.sg/home/ASSourav/crank.htm and http://www.cs-conference-ranking.org/
conferencerankings/alltopics.html
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Table 8. Performances of different approaches for expert finding. Best performances are in
bold-font, and statistically significant improvements are with asterisk(*).

Approach MAP N@1 N@3 N@5 N@10

Libra .5823* .3393* .2942* .3054* .3799*
Rexa .6218* .2560* .2705* .2759* .3602*
RSVM .8084 .6071 .5839* .5854 .6385
RSVMt .8096* .5944 .6026 .5956 .6387

MTRSVM .8059* .5791 .5796 .5810 .6379
HCDRank .8195 .6250 .6257 .6152 .6615
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Fig. 7. Feature correlation analysis in the source and the target domains. The red colored
weights w∗

T
are learnt by HCDRank; the blue and black ones (wS and wT ) are learnt from

the two domains separately. The table lists top 10 features learnt from the academic data set
for HCD ranking.

as the unlabeled test data. The results reported below are averaged over all the
queries. The parameter C is empirically set to 1.

As for the baseline methods, besides RSVM,RSVMt and MTRSVM, we also
compare our approach with the results of two online academic search systems:
Libra.msra.cn and Rexa.info, which are mainly based on unsupervised learning
algorithm, e.g., the language model [60]. Table 8 shows the results of different
approaches, the main observations are as follows:

1. Ranking accuracy. Among all the approaches, HCDRank outperforms the
five baselines. The performances of RSVM and MTRSVM are comparable.
Also all learning-to-rank methods outperform the two systems which suggests
the usefulness of supervision in a specific domain for improving the ranking
performance.

2. Feature analysis. Figure 7 shows the important features for knowledge trans-
fer via the latent space, which can be identified by the learnt final weight vec-
tors. We can see that the final w∗

T can exploit the data information from two
domains and adjust the weights learnt from single domain to better predict
preferences in the target domain. This is the major reason why the proposed
method performs best. The right table in the figure lists the top 10 features
vital for knowledge transfer in this academic data set by the descending order
of the absolute weight values. There are L2, L6, L9, L10 in low-level content
features, H1-H3 in high-level content features and S1, S2, S4 in self-defined
features.

3. Reason for performance. The key reason is that even in the heterogeneous
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Table 9. Data characteristics of the heterogeneous task data set.
Domain #Query Object type #Feature #Object #Object/Query
SOURCE 44 experts 21 14,134 321
TARGET 9 researchers 53 488 54

network, there might be latent dependencies between the objects, some com-
mon features can still be extracted from the latent dependencies. For example,
in the expertise search, authors and conferences are connected by the papers
they have published. The discovered latent dependencies can be used to trans-
fer supervised knowledge between the heterogeneous objects. Our approach
can effectively discover the common latent space in the heterogeneous net-
work, thus can achieve better performance for expertise search.

5.4. Results on Heterogeneous Tasks

Data set. The third experiment is for heterogeneous tasks, where we have two
different ranking tasks: expert finding and best supervisor finding. The goal of
expert finding is to find experts on a given topic (query), while best supervisor
finding is about finding the best supervisors in a specific domain, which is useful
for junior students to find “good” supervisors in their interested fields. An ex-
pert can be a good supervisor, but not necessarily, thus the two tasks are related
but different. The goal of this experiment is to evaluate whether the proposed
approach can transfer knowledge to improve a different ranking task (best super-
visor finding) using training data of an existing related heterogeneous ranking
task (expert finding).

The evaluation data set for best supervisor finding is created by collecting
the feedbacks from many researchers in related domains. The data set for best
supervisor finding consists of 9 most frequent queries, for each query, we choose
the top ranked 50 researchers by ArnetMiner.org and another 50 researchers who
start publishing papers only in recent years (>2003, 91.6% of them are currently
graduates or postdoctoral researchers). We sent to each of the researchers an
email, in which we listed the top 50 researchers for each query, and ask for feed-
backs on whether each candidate is the best supervisor (“yes”) or not (“no”),
or “not sure”. Participants can also add other best supervisors. Based on the
feedbacks from the participants, we organized a list for evaluating best supervi-
sor finding. We rated each candidate person by simply counting the number of
“yes”(+1) and “no” (-1) from the received feedbacks, and averaged the ratings
over the number of the corresponding definite feedbacks (“yes” and “no”). In
this way, we created a relatively commonly accepted best supervisor list for each
query. Table 9 lists the statistics of this heterogeneous task data set.

Feature definition. We define 21 common features for expert finding and best
supervisor finding (as shown in Table 10). Features L1-L10 and H1-H3 are scores
calculated using language models, while features B1-B8 represent the expertise
scores of an author from different aspects. B5-B7 are the same as S5-S7 in Table
7. More features for expert finding can be found here [63]. In addition, we define
another 32 special features for best supervisor finding. SumCo1-SumCo8 rep-
resent the overall expertise of his coauthors, and we average SumCo1-SumCo8
scores over the total number of his coauthors, denoted by AvgCo1-AvgCo8. Sim-
ilarly, we consider the summation and average of the expertise of only his ad-
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Table 10. Features for expert finding and best supervisor finding.

Feature Description

L1-L10 Low-level language model features, refer to [39]
H1-H3 High-level language model features, refer to [39]
B1 The year he/she published his/her first paper
B2 The number of papers of an expert
B3 The number of papers in recent 2 years
B4 The number of papers in recent 5 years
B5 The number of citations of all his/her papers
B6 The number of papers cited more than 5 times
B7 The numebr of papers cited more than 10 times
B8 PageRank score in academic network

SumCo1-8 The sum of coauthors’ B1-B8 scores
AvgCo1-8 The average of coauthors’ B1-B8 scores
SumStu1-8 The sum of his/her advisees’ B1-B8 scores
AvgStu1-8 The average of his/her advisees’ B1-B8 scores

Table 11. Features for relationship identification.

Feature Description Formula

f1 Coauthor paper ratio nco
ni

− nco
nj

f2 Absolute paper difference g
(

ni−nj
N

)

f3 Year of first paper g
(

tj−ti
T

)
f4 Time interval until cooperation g (tco − ti) − g (tco − tj)

visees through features SumStu1-SumStu8 and AvgStu1-AvgStu8. For SumStu1-
SumStu8 and AvgStu1-AvgStu8, we need identify the adviser-advisee relation-
ship between researchers.

We employ a heuristic-based method for that. Table 11 defines four features
to identify the adviser-advisee relationship. Notation ni is the number of pub-
lications of author i, and nco is the number of cooperation publications, ti is
the year of author i’s first publication, and tco is the first year of coauthors’
cooperations. Notation N is a constant that describes the average difference of
number of publications between an ordinary teacher and a student, and T is the
time interval between their first publications. We take N = 10 and T = 10 in
our experiments. g(x) is an identity function if −1 < x < 1 and a sign func-
tion if x ≤ −1 or x ≥ 1. For any two researchers i and j, we calculate a score
sij =

∑
k λkfk(i, j), where weight {λ} of the features is predefined. Finally, if

sij > r, we say author i is the advisor of author j; if sij < −r, we say author
i is advised by author j, where r is a predefined threshold, and usually takes
2.5∼3.5. Experiments show that the accuracy of relationship identification with
this method is 67.0%. Interested readers can refer to [58] for our demo.
Results and analysis. In this experiment, for the source domain data, we use
all the labeled data from the expert finding task, and for the target domain
data, we use two sampled queries with their corresponding documents from the
best supervisor finding task as the labeled data, and the rest as the unlabeled
test data. Table 12 shows the performance of best supervisor finding. We see
that the proposed method performs better than the baseline methods of using
RSVM, RSVMt, MTRSVM and the language model based method [60]. Also we
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Table 12. Results of best supervisor finding. Best performances are in bold-font, and statis-
tically significant improvements are with asterisk(*).

Approach P@5 P@10 P@15 MAP N@5 N@10
RSVM .7714 .8429 .8285 .7756 .5545 .5947
RSVMt .8000 .8286 .8476 .7837 .5923 .5999

MTRSVM .8000 .8286 .8476 .7875 .6140 .6075
Language model .6250* .6875* .6500* .6726* .3343* .3809*

HCDRank .8285 .7857 .8571 .7971 .6189 .6112

Table 13. Example lists of expert finding verse best supervisor finding.
Best Supervisor Finding Expert Finding

Machine Learning SVM Machine Learning SVM
Geoffrey E. Hinton Bernhard Scholkopf Pat Langley Bernhard Scholkopf

Sanjay Jain Vladimir Vapnik Ivan Bratko Vladimir Vapnik
Michael I. Jordan John Shawe-Taylor Thomas G. Dietterich Olvi L. Mangasarian
Tom M. Mitchell Alex J. Smola Carl H. Smith Chih-Jen Lin

Avrim Blum Thomas Hofmann Jaime G. Carbonell Thorsten Joachims

can see that all supervised learning-to-rank methods can achieve higher ranking
accuracies than the unsupervised ranking method (language model).

Table 13 show the top 5 best supervisors/experts for two example queries.
From that, we can see the traditional expert finding algorithm is inappropriate
for the best supervisor finding task.

5.5. Results on Heterogenous Data with Network Structure

Data set. There is no existing publicly available data set in our problem setting,
so we only perform our experiment on the heterogeneous academic dataset in the
second experiment with minor modification. Because there is no link informa-
tion in the original dataset, we utilize ArnetMiner for generating the links, but
there are some authors who cannot be matched perfectly, so we remove them.
Finally, the academic data set contains 14, 023 authors, 10, 212 papers, and 1, 382
conferences. In this experiment, we aim to transfer preference constraints from
conference subgraph to author subgraph via both the content correlation and
the structure of the whole network.

Feature definition.There are two different parts of features: 1) for node-specific
attribute feature, we use the same definition as Table 7; 2) for network structure
feature, we will define them later in this subsection. We have three different types
of objects: paper(p), author(a) and conference(c). In this heterogeneous network,
for nodes, we use all of the three different types of objects; for edges, we use
the paper citation relationship, co-author relationship, the author writes paper
relationship, the paper publishes on the conference relationship; for weights, if
there is an edge between two nodes, then the weight is 1, otherwise 0. Further,
the set IS only contains the conference object type, and IT only contains the
author object type.

We use Figure 8 to demonstrate the inter-type and intra-type link structure
of the heterogeneous academic network. Now the problem is how to calculate
the transition probabilities between nodes. Specifically, let Va, Vp, Vc denote the
set of authors, papers and conferences. Because there are different kinds of links
between heterogeneous objects, we define different types of transition probabili-
ties. Let μpp denote the transition probability for paper citations, μpa and μap for
paper-author relationship, μpc and μcp for paper-conference relationship. Clearly,
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Fig. 8. Random walk over heterogeneous network.

Table 14. Feature definitions for heterogenous data with network structure.

Features Description

L1-L10 Low-level content features, refer to [39]
H1-H3 High-level content features, refer to [39]
S1-S7 Special features for conferences and experts, refer to Table 7

M1-MK Structural features by Markov random walk representation

we need μpp +μpa +μpc = 1 and we define μap = 1 and μcp = 1. Then, the tran-
sition probability from node vi to node vj can be defined as follows (more details
can be found in [49]):

pij = μxy ×
1

Out Degree
(
vi → Vy

) (15)

where x, y ∈ {a, p, c} are the types of node vi and vj ; Out Degree(vi → Vy) is
the total number of directed edges from vi to all the nodes in Vy.

We use the Markov random walk representation at step t in section 4 to
define the network structure features. There are 25,617 different nodes in total
for this heterogeneous academic network data, so we did not directly use all
the structure features. After we obtain the transition matrix at step t, we can
easily calculate the authority scores for each node by simply summing up the
corresponding column. Then we just use the top K nodes with highest authority
scores as the representatives of the whole network. Specifically, for node vi, we
just use the transition probabilities from it to the top K nodes at step t to form
the node-specific structure feature vector.

To summarize, Table 14 lists all the features for the this experiment. Among
them, the first 20 features (L1-L10, H1-H3, S1-S7) are the same as Table 7,
M1-MK are K structural features by Markov random walk representation.
Results and analysis. In this experiment, we use the same setting as Section
5.3. Empirically, we set the cost-sensitive parameter C = 1, the step parameter
t = 4, K = 100. By analyzing the log data of ArnetMiner, we set the transition
probabilities μpp = 0.7, μpa = 0.29 and μpc = 0.01. Specifically, we first split
the log data into different sessions of users, then in each session we can further
analyze the actions of the user: viewing conferences, viewing papers, or viewing
experts. Finally, we can count the co-occurrence of any two actions, and get the
transition probabilities.

As for the baselines, besides RSVM, RSVMt and MTRSVM, we also com-
pare the performance of our approach with Net-RSVM, Net-RSVMt and Net-
MTRSVM which are the corresponding structural versions of those baselines by
exploiting network structural information. Table 15 shows the results of different
approaches, the main observations are as follows:

1. Ranking accuracy. Note that the results for RSVM, RSVMt, MTRSVM and
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Table 15. Performances of different approaches for expert finding. Best performances are in
bold-font, the improved performances by exploiting the network information are in italic font,
and statistically significant improvements are with asterisk(*).

Approach MAP N@1 N@3 N@5 N@10

RSVM .8457 .6811 .6228 .6083 .6695
RSVMt .8431* .5995* .6001 .5885 .6501*
MTRSVM .8439 .6709 .6224 .6071 .6651
HCDRank .8533 .6480 .6323 .6188 .6812

Net-RSVM .8422 .6760 .6400 .6199 .6701

Net-RSVMt .8374* .5995* .6122 .5989 .6446*
Net-MTRSVM .8386 .6454 .6235 .6045 .6613
Net-HCDRank .8508 .6760 .6428 .6318 .6816
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Fig. 9. Feature correlation analysis in the source and the target domains. The red colored
weights w∗

T
are learnt by Net-HCDRank; the blue and black ones (wS and wT ) are learnt

from the two domains separately. The table lists top 15 features learnt from the academic data
set for Net-HCDRank.

HCDRank are a little different from Table 8, that is because we remove some
authors who can not be matched perfectly. Among all the approaches, Net-
HCDRank outperforms the other baselines in most measures which verify the
effectiveness of our approach. Generally speaking, all the structural versions
of the baselines outperform the original ones in most measures which implies
that exploiting the network structural information can significantly boost the
performances.

2. Feature analysis. Figure 9 shows the final weight vectors learnt in this data
set. We can see that the final w∗

T can exploit the data information from two do-
mains and adjust the weights learnt from single domain data to better predict
preferences in the target domain. This is the major reason why the proposed
method performs best. The right table in the figure lists the top 15 features
vital for knowledge transfer in this academic data set by the descending order
of the absolute weight values. Among them, there are one low-level content
feature (L10), two high-level content features (H2, H3), one special feature for
conference (S1). All the other 11 features are extracted from network structure,
that is, the network structure information is very important for transferring
knowledge across domains.

3. Parameter sensitivity analysis. Figure 10 shows how the measures change

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Query-dependent Cross Domain Ranking in Heterogeneous Network 27

50 100 150 200 250 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

K

N
et

−
H

C
D

R
an

k

MAP
N@1
N@3
N@5
N@10

50 100 150 200 250 300

0.65

0.7

0.75

0.8

0.85

K
N

et
−

H
C

D
R

an
k

MAP
N@1
N@3
N@5
N@10

(a)t = 2 (b)t = 4

Fig. 10. How performances vary as K increases.

while the parameters K and t vary. From this figure, we can mainly conclude
that: 1) When t = 2, as K varies, all the measures (MAP, N@1, N@3, N@5,
N@10) are relatively not stable, and the performance drops relatively sharp,
which indicates that the score after 2 steps may include more noise. 2) When
t = 4, as K varies, all the measures (MAP, N@1, N@3, N@5, N@10) are very
stable and very close. That means, the random walk results at step 4 are more
reasonable to describe the network structure.

4. Reason for performance. The academic data have intrinsic link structure
which is very useful for ranking objects. We try to exploit this information
by Markov random walk representation. The supervision can be propagated
from the source subgraph to the target subgraph via the links within the
whole network. That’s the main reason why Net-HCDRank can outperform
HCDRank significantly.

6. Related work

6.1. Learning to Rank

Considerable works have been conducted for supervised learning-to-rank [32, 6],
which can be divided into three categories: pointwise approach, pairwise ap-
proach [46] and listwise approach. In pointwise approaches, the ranking problem
aims at predicting the rank level of an object. In pairwise approaches, the rank-
ing problem can be reduced to binary classification by comparing the rank levels
of instance pairs. Ranking SVM [27], RankBoost and RankNet [13] are three
state-of-the-art algorithms in this category. In listwise approaches, the ranking
problem is formulated to directly optimize some listwise performance measures
of information retrieval [56, 59, 61].

Regarding the unavailability of a large amount of training data, there are
also some works for ranking by semi-supervised learning and transductive learn-
ing. For example, Duh and Kirchhoff propose a framework for ranking in the
transductive setting. They try to extract query-specific features in order to learn
a query-specific ranking function [20]. Amini et al. propose a semi-supervised
rankboost algorithm [2]. Hoi and Jin propose a semi-supervised ensemble rank-
ing with a SVM-like formulation [29].

Some work takes the relations between objects to be ranked into considera-
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tion. Agarwal et al. propose a framework for ranking networked entities based
on a maximum entropy flow algorithm with weight function for different types
of edges [1]. In their work, they combine pairwise preference constraints into a
Markov random walk process and use the total amount of in-flow to rank the
entities. Our work is different from theirs in three folds: 1) we have query infor-
mation; 2) we have attribute vector for each node; 3) our work is in a transfer
learning setting. Qin et al. propose a problem referred to as “learning to rank
relational objects” while the ranking function takes the relationships between
the objects to be ranked into consideration [44], they also formulate it into an
optimization problem based on Ranking SVM for solving it. They need to prede-
fine an outer ranking function based on relations, so it can not be used to other
tasks different from the two tasks defined in that paper, that is also the reason
why we do not use it as a baseline method. The major difference from our work
is that our data objects is in a heterogeneous network under transfer learning
setting.

Also there are quite a few work done in cross domain ranking problem [24, 25].
Chen and Lu et al. propose a tree based ranking adaptation algorithm, aiming
to make use of the training data from an existing domain [15]. Wang et al.
propose a novel problem called heterogeneous cross domain ranking problem
and also propose a unified regularized framework for solving it [52]. Chapelle et
al. propose a novel multi-task learning algorithm with boosted decision trees for
jointly learning different web search ranking tasks [14]. Another noting thing is
that the second track of Yahoo! Learning to Ranking Challenge 6 is for transfer
ranking. In the second track, there are two data sets for this challenge, each
corresponding to a different country. Both data sets are related, but also different
to some extent. The larger set serves as the source domain and the smaller one
as the target domain. The biggest difference from our work is that, our main
focus is on the knowledge transfer across heterogeneous objects (eg., conferences
vs. experts).

6.2. Transfer Learning

Another related work is transfer learning, which aims to transfer knowledge from
a source domain to a related target domain. Two fundamental issues in transfer
learning are “what to transfer” and “when to transfer” [43]. Many approaches
have been proposed by reweighting instances in source domain for the use in
target domain [17] . Gao et al. propose a locally weighted ensemble framework
which can utilize different models for transferring labeled information from mul-
tiple training domains [22].

Also many works have been done based on new feature representation [31, 36].
For example, Argyriou and Evgeniou propose a method to learn a shared low-
dimensional representation for multiple related tasks [3]. The algorithm can learn
the features and the task functions simultaneously in a convex optimization for-
mulation which can be solved very efficiently. Blitzer et al. propose a structural
correspondence learning (SCL) approach to induce correspondences among fea-
tures across two domains[9]. Raina et al. propose to use large amount of un-
labeled data in source domain to improve the performance on target domain

6 http://learningtorankchallenge.yahoo.com
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in which there are few labeled data [45]. Xie et al. propose a framework called
LatentMap for dealing with the transfer learning problem where the spaces of
two domains are at most overlapping, the marginal and conditional distributions
are different, and the dimensionality can be extremely high [55]. Gupta et al.
propose a novel nonnegative shared subspace learning framework for improving
the retrieval performance by leveraging a second data source [26].

Some works about knowledge transfer across heterogenous feature spaces have
been done [37]. For example, Yang et al. propose an approach called annotation-
based probabilistic latent semantic analysis(aPLSA) for boosting unsupervised
learning with the help of another heterogeneous data collected from the social
Web [57]. Shi et al. propose a novel algorithm called HeMap for borrowing super-
vised information from dataset with different feature spaces, distributions and
output spaces via spectral embedding [47].

Recently, there are some works done about knowledge transfer in heteroge-
neous network [23, 28]. Dai et al. propose a general framework called Eigen-
Transfer for tackling many existing transfer learning problems[18]. They learn
the spectra of a graph consisting of features, instances and class labels by nor-
malized cut, then based on the spectral representation, they learn a classifier
from all the labeled data in the target domain. They transfer the knowledge
across domains via constructing a task graph. That is different from ours in two
folds: 1) we are dealing with heterogeneous network which is in an inherent graph
setting; 2) we need to exploit the link structure between objects to boost the
performance.

There are also many other works which transfer information by shared param-
eters [10, 21], relational knowledge [41], or kernel method [62]. Transfer learning
techniques are widely used in classification, regression, clustering, dimensional-
ity reduction [53], collaborative filtering [40], sentiment classification [42] and
information extraction [54].

7. Conclusion and Future Work

We formally define the problem of heterogeneous cross domain (HCD) ranking
and address four challenges: (1) how to formalize the problem in a unified and
principled framework even when the types of objects across domains are differ-
ent; (2) how to transfer the knowledge of heterogeneous objects across domains;
(3) how to preserve the preference relationships between instances across het-
erogeneous data sources; (4) how to efficiently exploit the structure information
for better knowledge transfer. To address these, we propose a general regular-
ized framework to discover a latent space for two domains and minimize two
weighted ranking functions simultaneously in the latent space. We solve this
problem by optimizing the convex upper bound of the non-continuous loss func-
tion and derive its generalization bound. Further, we try to exploit the network
link structure for better knowledge transferring between objects with different
types by Markov random walk representation. Experimental results on three dif-
ferent genres of data sets demonstrate the effectiveness of the proposed methods.

There are several directions for future work. It would be interesting to develop
new algorithms under the framework and to reduce the computing complexity
for online application. Another issue is, if there are no supervision in the target
domain, so how to transfer ranking information from the source domain by the
link structure of the network. Another potential issue is to apply the proposed
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approach to other applications (e.g., recommendation, rating, and link predic-
tion) to further validate its effectiveness.
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A. Derivation of the Equivalent Convex Formulation

For completeness, we give a brief proof on the equivalence between Eq. 9 and
Eq. 10. We follow the same structure as the proof of equation equivalence in [3].
For easy explanation, we denote the objective functions in Eq. 9 and Eq. 10 as
E(W,U) and R(M,D) respectively.

Theorem A.1. Problem of min
{
E(W,U) : U�U = I

}
is equivalent to the

problem min
{
R(M,D) : D � 0, Tr(D) ≤ 1, range(M) ⊆ range(D)

}
.

Proof. The correspondence between the two problems is M = UW ,

D = UDiag
( ||ai||2
||W ||2,1

)
U�. Let ai be the i-th row of W, ‖ai‖2 = ‖M�ui‖2. So

2∑
t=1

〈αt, D
+αt〉 = Tr(M�D+M) = ‖W‖2,1 Tr

(
M�UDiag(‖M�ui‖2)

+U�M
)

= ‖W‖2,1 Tr
( d∑
i=1

(‖M�ui‖2)
+M�uiu

�
i M

)
= ‖W‖2,1

d∑
i=1

‖M�ui‖2 = ‖W‖22,1

Therefore, minM,D R(M,D) ≤ minW,U E(W,U).
On the other side, let D = UDiag(λi)U

�, then
2∑

t=1

〈αt, D
+αt〉 = Tr

(
M�UDiag(λ+

i )U
�M

)
= Tr

(
Diag(λ+

i )WW�
)
≥ ‖W‖22,1

Hence, minM,D R(M,D) ≥ minW,U E(W,U). So they are equivalent.

B. Proof for the Generalization Bound of HCDRank

Proof. First of all, some notations will be introduced. A domain is defined by two
terms: the distribution D on instance space X , and a ranking function f : X →
R. Then the source and target domains are denoted by 〈DS , fS〉 and 〈DT , fT 〉
respectively.

Following [8], suppose f∗ is the ideal ranking function for the target domain,
and h : XT → R is a hypothesis for instance space XT , then according the target
domain distribution DT , the probability of h disagreeing with f∗ can be defined
as follows which is also the risk of this hypothesis:

εT (h, f
∗) = Ex1,x2∼DT

[
cpref

(
x1, x2, h(x1), h(x2)

)]
(16)
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where cpref
(
x1, x2, h(x1), h(x2)

)
=

{
1 y1 � y2 ∧ h(x1) ≤ h(x2)
1 y1 ≺ y2 ∧ h(x1) ≥ h(x2)
0 otherwise

in which y1, y2 are the corresponding rank levels of x1, x2.
This risk can be abbreviated to εT (h) and the corresponding empirical risk

is denoted as ε̂T (h). The parallel notations εS(h, f
∗), εS(h), ε̂S(h) are used for

the source domain. These can be used to calculate the distance between the two
domains DS andDT by a hypothesis class specific measure. LetH be a hypothesis
class for instance space X , AH be the subset of H consisting of each hypothesis
h ∈ H,

{
x1, x2 : x1, x2 ∈ X , y1, y2 ∈ Y, I[y1 � y2] ∗ I[h(x1) > h(x2)] + I[y1 ≺

y2] ∗ I[h(x1) < h(x2)] = 1
}
∈ AH where y1, y2 are the rank levels of x1, x2.

Then the distance between the source and target domains is defined as

dH(DS ,DT ) = 2 sup
A∈AH

∣∣PrDS
[A]− PrDT

[A]
∣∣ (17)

According to [8], when H has finite VC dimension k, dH can be computed
from finite unlabeled samples of the two domains. Let H be the hypothesis space,
we can define the symmetric difference hypothesis space H��H as

H��H =
{
c(x1, x2, h, h

′) = 1 : h, h′ ∈ H
}

(18)

where c(x1, x2, h, h
′) =

{
1 h(x1) > h(x2) ∧ h′(x1) ≤ h′(x2)
1 h(x1) < h(x2) ∧ h′(x1) ≥ h′(x2)
0 otherwise

(19)

For a pair of hypotheses in H, if they disagree with each other on a point,
then that point will be labeled as positive by each hypothesis g ∈ H��H. Sim-
ilarly, AH��H can be defined as the set of A such that A =

{
x1, x2 : x1, x2 ∈

X , I[h(x1) > h(x2)] �= I[h′(x1) > h′(x2)]
}

for some h, h′ ∈ H. Then the dis-
tance dH��H can be proven satisfying the following inequality for any hypotheses
h, h′ ∈ H:∣∣εS(h, h′)− εT (h, h

′)
∣∣ ≤ 1

2
dH��H(DS ,DT ) (20)

Further, for the combined source and target task, the ideal hypothesis which
can minimize the combined risk can be defined as

h∗ = argmin
h∈H

εS(h) + εT (h) (21)

This combined risk can be denoted as λ = εS(h
∗) + εT (h

∗).
Regarding our problem, an equivalent formulation for Eq. 9 is as follows:

min
W,U

n1∑
i=1

[
1− zSi

〈wS , U
�(xa

Si
− xb

Si
)〉
]
+

+C
n2∑
i=1

[
1− zTi

〈wT , U
�(xa

Ti
− xb

Ti
)〉
]
+

s.t. ||W ||2,1 ≤ κ, U�U = I

(22)

where κ ≥ 0 and there is a one-to-one correspondence between λ and κ [38].
In Eq. 22, the objective function is ε̂S(h)+Cε̂T (h) with parameter C ∈ [0,∞).

It is easy to prove that C is equivalent to the ratio (1− θ)/θ with θ ∈ [0, 1]; that
is, θ = 1/(1+C). Thus, by replacing C with (1−θ)/θ and multiplying both sides
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of the equation by θ, we can obtain the following equivalent objective function
which is a convex combination of empirical source and target risk:

ε̂θ(h) = θε̂T (h) + (1− θ)ε̂S(h) (23)

where θ = 1
1+C

, ε̂θ(h) and εθ(h) are the empirical/true weighted risks respec-
tively. Hereafter, we will analyze the weighted risk function in Eq. 23.

Following [8], we can use the following two lemmas for bounding the target
domain risk. Lemma B.1 bounds the difference between the target risk and the
weighted risk, and Lemma B.2 bounds the difference between the empirical and
true weighted risks.

Lemma B.1. Let h be a hypothesis in H, then∣∣εθ(h)− εT (h)
∣∣ ≤ (1− θ)

(1
2
dH��H(DS ,DT ) + λ

)
(24)

Lemma B.2. Let H be a hypothesis space of VC-dimension k. If we label βm
points from DT and (1 − β)m points from DS by fT and fS respectively with
β = nT /(nS + nT ), then with probability at least 1− δ, for every h ∈ H∣∣ε̂θ(h)− εθ(h)

∣∣ <
√

θ2

β
+

(1 − θ)2

1− β

√
k log(2m)− log δ

2m
(25)

Following [8], from these two lemmas, we can obtain the following theorem:

Theorem B.1. Let H be a hypothesis space of VC-dimension k. Let US and
UT be unlabeled samples of size m′ each, drawn from DS and DT respectively,

and d̂H�H is the empirical distance between them. Let L = LS

⋃
LT be the

labeled samples of size m generated by drawing (1 − β)m points from DS and

βm points from DT , labeling them according to fS and fT respectively. If ĥ ∈ H
is the empirical minimizer of ε̂θ(h) on L, h∗

T = minh∈H εT (h) is the target
risk minimizer, and γ = minh∈H εS(h) + εT (h), then with probability of at least
1− δ(over the choice of the samples)[8]

εT (ĥ) ≤ εT (h
∗
T ) + 2

√
θ2

β
+ (1−θ)2

1−β

√
k log(2m)−log δ

2m

+ 2(1− θ)
(

1
2 d̂H�H(US ,UT ) + 4

√
2k log(2m′)+log( 4

δ )
m′ + γ

) (26)

Following [27], we can use the following theorem to bound the target risk
εT (h).

Theorem B.2. Let LT be the labeled samples of size βm generated from DT ,
labeling them according to fT , and e be the natural logarithm. For each ranking
function h : X → R with zero training error, then with probability 1− δ

εT (h) ≤
2

βm− 1

(
k log

(
8e(βm− 1)

k

)
log

(
32(βm− 1)

)
+ log

(
8(βm− 1)

δ

))
By plugging theorem B.2 into theorem B.1, we can obtain the generalization

bound for our HCD Ranking problem as show in Theorem 3.1.
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