
A Unified Approach to Matching Semantic Data on the Web

Zhichun Wanga,b,∗, Juanzi Lia, Yue Zhaoc, Rossi Setchid, Jie Tanga

aDepartment of Computer Science and Technology, Tsinghua University, Beijing, China
bCollege of Information Science and Technology, Beijing Normal University, Beijing, China

cDepartment of Computer Science, Columbia University, USA
dSchool of Engineering, Cardiff University, Cardiff, Wales, UK

Abstract

In recent years, the Web has evolved from a global information space of linked documents to a
space where data are linked as well. The Linking Open Data (LOD) project has enabled a large
number of semantic datasets to be published on the Web. Due to the open and distributed nature
of the Web, both the schema (ontology classes and properties) and instances of the published
datasets may have heterogeneity problems. In this context, the matching of entities from differ-
ent datasets is important for the integration of information from different data sources. Recently,
much work has been conducted on ontology matching to resolve the schema heterogeneity prob-
lem in the semantic datasets. However, there is no unified framework for matching both schema
entities and instances. This paper presents a unified matching approach to finding equivalent en-
tities in ontologies and LOD datasets on the Web. The approach first combines multiple lexical
matching strategies using a novel voting-based aggregation method; then it utilizes the structural
information and the already found correspondences to discover additional ones. We evaluated
our approach using datasets from both OAEI and LOD. The results show that the voting-based
aggregation method provides highly accurate matching results, and that the structural propaga-
tion procedure effectively improves the recall of the results.

Keywords: semantic web, linked data, ontology matching, instance matching.

1. Introduction

In recent years, the Web has evolved from a global information space of linked documents
to a space where data are linked as well. Many Linking Open Data (LOD) datasets have been
published on the Web, leading to the creation of the Web of Data, a global data space containing
billions of assertions [1]. Linked data on the Web are machine-readable, and their meaning is
explicitly defined by using ontology classes and properties. Datasets are linked to other external
datasets and can in turn be linked by external datasets. Although several rules guide the pub-
lication of LOD data, two important issues still require further investigation. The first issue is
the schema heterogeneity problem. Although the use of common vocabularies/ontologies such

∗Corresponding author. Tel.: +86 010 62773618; fax: +86 010 62781461
Email addresses: zcwang@bnu.edu.cn (Zhichun Wang), ljz@keg.cs.tsinghua.edu.cn (Juanzi Li),

zhaoy1030@gmail.com (Yue Zhao), setchi@cardiff.ac.uk (Rossi Setchi), jietang@tsinghua.edu.cn (Jie
Tang)
Preprint submitted to Knowledge-Based Systems September 29, 2012

as FOAF1, SIOC2 and SKOS3 is encouraged to simplify the processing of LOD data by client
applications [2], existing datasets often employ their own schemas, which can be quite different
because they are often defined by different organizations. Schema heterogeneity hinders data
sharing and data integration. Second, there are fewer established RDF links that connect data
than real links between those data. For example, the DBLP and ACM libraries are two datasets
in the LOD that contain information about scientific publications. Both datasets contain many
duplicate authors and papers, most of which are not linked to each other. RDF links allow client
applications to navigate between data sources, discover additional data and combine data on
the same individuals that are stored in different locations. Although tools, such as D2RQ4 and
Openlink Virtuoso5 have been developed to publish LOD data, they do not provide functions for
discovering the links between different data sources [3]. Few tools can build semantic correspon-
dences between entities of different datasets at both the schema and instance level. Therefore,
the LOD provides a new environment for investigating ontology matching techniques and also
raises some challenges for ontology matching.

The problem of ontology matching has been extensively studied in the last decade [4, 5, 6].
Most matching strategies calculate the semantic similarity between any two ontology entities
and find the correspondences between them. Different information can be exploited to assess
the similarity between ontology entities, e.g., entity name, entity description, taxonomy structure
and instance. To perform well, most matching systems, such as RiMOM [7], Falcon-AO [8]
and ASMOV [9], combine multiple strategies based on different ontology information. Recently,
ontology instance matching has attracted much research interest because many LOD datasets are
published on the Web. Instance matching attempts to evaluate the degree of similarity between
different descriptions of real objects across heterogeneous data sources and determine whether
two object descriptions refer to the same real object in a given domain. Existing systems for
instance matching, such as Silk [10] and KonFuss [11] also use multiple strategies to build links
between instances.

An important problem in ontology matching is how to combine the results of the multi-
ple matching strategies that are used. Although combining multiple strategies can improve the
overall matching results in a set of matching tasks, it cannot guarantee better results in every
matching task. Multi-strategy approaches do not outperform their single-strategy alternatives
in certain circumstances. Peukert et al. [12] evaluated several similarity combination methods
and found that no single strategy returns the best results in all test cases. A good matching
result depends on choosing the most appropriate matching and combination method. Further-
more, combination strategies that perform well in ontology schema matching may fail to achieve
good results in instance matching because more fields are compared when matching instances.
Therefore, an aggregation strategy that performs well in both ontology schema matching and
instance matching tasks is needed. Another important issue is how to combine both lexical and
structural information to accurately predict the matching results. Some existing approaches use
a Vector Space Model to represent merged lexical information on entities and their neighbors
and then compute the cosine similarity between the vectors of entities. Other approaches utilize
the structural information to propagate the similarities between entities. However, combining the

1http://xmlns.com/foaf/spec/
2http://rdfs.org/sioc/spec/
3http://www.w3.org/TR/skos-reference
4http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
5http://virtuoso.openlinksw.com/

2

information on neighbors or propagating similarity cannot always improve the quality of match-
ing results because this technique may degrade the performance of matching algorithms. Certain
methods should be used to control the use of structural information. For instance, RiMOM [7]
defines two factors to determine whether to use structural information in a certain matching task,
while Duan et al. [13] proposed a supervised learning approach to determine the degree to which
the similarity should be propagated through the structural information.

In this paper, we propose a unified approach for discovering matching correspondences of
both schema entities and instances. Given two sets of ontology entities, our approach uses lexical
and structural information separately, in two steps, to identify matches between the entities. In
the first step, a set of initial matching correspondences are identified using strategies based on
the lexical information on the entities; different strategies are combined using a voting-based
method to obtain a set of accurate matching results. Additional semantic correspondences are
then identified by utilizing the initial matching results and the internal links between the entities.
This paper advances the state-of-the-art in this area by making the following contributions:

(1) Development of a novel voting-based aggregation method to combine the matching re-
sults of multiple strategies. Instead of extracting matching correspondences after aggregating
similarity values, we generate matching results for each individual strategy and then merge them
to produce the final result. A voting scheme is used to refine the results by eliminating less pos-
sible correspondences. The method generates a set of matching results with very high precision.

(2) Development of a structural matching strategy that only utilizes confirmed matching re-
sults. Our approach uses the lexical and structural information separately in two steps. In the
first step, a set of initial matching results is identified based on lexical information, and a struc-
tural strategy is then used to match entities by comparing the entities that were already matched
in their neighborhood. This two-step approach operates effectively and efficiently to identify
matching correspondences. The lexical matching strategies produce high-accuracy results, and
the structural matching strategy improves the recall of the results.

The rest of this paper is organized as follows. Section 2 presents the background of our
work. Section 3 describes our new combination approach and the structure propagation method.
Section 4 presents an analysis of the experimental results, and Section 5 discusses some related
work. The conclusion is provided in section 6.

2. Background

2.1. RDF and Linked Data
The Resource Description Framework (RDF)6 is a family of W3C7 specifications that has

been widely used as a general method for the conceptual description or modeling of information
in Web resources. The RDF describes resources in the form of subject-predicate-object expres-
sions. These expressions are called triples in RDF terminology. The subject denotes the resource,
and the predicate denotes traits or aspects of the resource and expresses a relationship between
the subject and object.

The RDF Vocabulary Definition Language (RDFS) and the Web Ontology Language (OWL)
provide a basis for the creation of vocabularies that can be used to describe entities and their rela-
tionships [14]. Vocabularies are collections of classes and properties. Vocabularies are expressed

6http://www.w3.org/RDF/
7http://www.w3.org/

3

in the RDF using terms from RDFS and OWL that provide varying degrees of expressivity in
modeling domains of interest. Anyone can publish vocabularies in the Web of Data, which in
turn can be connected by RDF triples that link classes and properties in one vocabulary to those
in another, thereby defining mappings between related vocabularies [1].

The term ”Linked Data” refers to a set of best practices for publishing and connecting struc-
tured data on the Web [1]. Berners-Lee [15] outlined four basic rules for publishing LOD data
on the Web. Figure 1 shows an example of LOD data in the form of a graph that represents three
RDF links taken from Tim Berners-Lees FOAF profile. The terms con:assistant, con:phone,
rdf:label and foaf:Person are schema information in the graph; they are entities from the Con-
tact8, RDF9 and FOAF namespaces, respectively, which specify the meaning of the links. The
two URIs in Figure 1 represent two person instances, namely Tim Berners-Lee and his assistant.
Therefore, publishing LOD data can simply be considered as the use of certain ontologies to
create typed links between things that are represented by URIs.

<Http://www.w3.org/People/Berners-Lee/card#i>

<Http://www.w3.org/People/Berners-Lee/card#amy>

tel: +1-617-253-5702

foaf:Person

con:assistant

con:phone

rdf:type

Figure 1: An example of LOD data

2.2. Ontology and Ontology Matching

In computer science, an ontology is a formal, explicit specification of a shared conceptual-
ization [16, 17]. Ontologies can be expressed in several standard languages, including the Web
Ontology Language (OWL) [18]. OWL is an ontology language that is recommended by the
W3C and provides vocabularies used to define the formal semantics of ontology. Here, we refer
to entities in an ontology as classes, properties and instances (or individuals) and define them
based on OWL. A class defines a group of entities having common characteristics. Instances are
elements of the set of entities modeled by a class. Properties can be divided into object properties
and datatype properties; object properties specify relations between two instances while datatype
properties specify relations between an instance and RDF literals or XML Schema datatypes.
Formally, an ontology is represented as a 6-tuple:

O = (C, P,6C ,6P, I, AO) (1)

where C and P denote classes and properties, respectively; 6C and 6P are partial orders on
classes and properties, respectively; I is a set of instances and AO is a set of axioms that are

8http://www.w3.org/2000/10/swap/pim/contact
9http://www.w3.org/1999/02/22-rdf-syntax-ns

4

Table 1: Features of ontology entities

Entity Feature Type

Class label String
comments String
properties Set(Property)
superclasses Set(Class)
subclasses Set(Class)
instances Set(Instance)

Property label String
comments String
domain Set(Class)
range Set(Class)
superproperties Set(Property)
subproperties Set(Property)

Instance label String
comments String
data properties String
direct classes Set(Class)
object properties Set(Instance)

used to associate class and property IDs with either partial or complete specifications of their
characteristics and to provide other logical information on classes and properties.

The goal of ontology matching is to identify correspondences between semantically related
entities in different ontologies. Here, we use the term entity to refer to a class, property or
instance in an ontology. Given a source ontology OS , a target ontology OT and an entity ei in
OS , the procedure implemented to identify the semantically equivalent entity e j in OT is called
ontology matching and is denoted as M. Formally, for each entity ei ∈ OS , the ontology matching
M can be represented as [19]:

M(ei,OS ,OT) = e j (2)

The matching tasks are usually resolved by assessing the similarity between entities in ontolo-
gies. Table 1 lists the features used to make the comparison. Here, features of string type are
types of lexical information because they provide descriptions attached to entities; features with
a set of entities are structural because they provide links to other entities. Both lexical and
structural features should be used to accurately estimate the similarity of entities.

3. The Proposed Approach

This section presents the proposed ontology matching approach for both schema and instance
matching tasks. The approach divides ontology information into two types: lexical information
attached to each entity (e.g., labels, comments and the instances data-type properties) and struc-
tural information hidden in the links between the entities, such as the is-a relations between
concepts and properties, and the instances object-type properties. To efficiently benefit from the

5

availability of this information, our approach consists of the following two stages: it first uses
the lexical information to identify highly accurate semantic correspondences and then uses a
structural matching strategy to identify additional matching results based on the structural infor-
mation in the dataset and the previously found correspondences. Our approach achieves good
results with regard to both ontology schema matching and instance matching problems. We
introduce our approach in more detail below.

3.1. Discover Matching Correspondences Based on Lexical Information

The first step of our approach is to find a set of initial matching results based on the lexical
information of the entities.

3.1.1. Similarity Metrics and Matching Strategies
Several lexical similarity metrics can be used to compare entities. Here, we use two similarity

metrics: edit-distance-based similarity and vector-based similarity. These two metrics are both
based on lexical information; the edit-distance-based similarity metric is used for short strings,
while the vector-based similarity metric is preferred for long texts (comprising many words).

Edit-distance-based similarity: The edit distance between two strings is the minimal cost
of operations (insertion, replacement and deletion of characters) that must be applied to one of
the strings to obtain the other string. Given two strings s and t, the edit-distance-based similarity
between them is defined as:

S e(s, t) = 1 −
|{ops}|

max(length(s), length(t))
(3)

where |{ops}| indicates the minimum number of operations required to transform s to t, and
length(s) and length(t) represent the number of characters in s and t, respectively.

Vector-based similarity: The vector-based similarity is calculated between the feature vec-
tors of ontology entities. Before the similarity computation, a virtual document is generated for
each ontology entity by combining different sources of strings (e.g., labels, comments) attached
to the entity. Then the virtual document of each entity is represented as a vector, where the el-
ements in the vector are weights assigned to the words in the virtual document using TF-IDF
method [20]. For a word i in an entity’s virtual document j, the weight of the word is computed
as

ωi j = t f i j · lg
N
d fi

(4)

where t f i j is the number of occurrences of i in j, d fi is the number of virtual documents that
contain i, and N is the total number of virtual documents. The vector-based similarity between
two entities is computed as the cosine value between their virtual documents:

S v(d, k) =

∑M
i=1 ωid · ωik√∑M

i=1 ωid
2 ·

√∑M
k=1 ωik

2
(5)

where M is the total number of distinct words in all of the virtual documents.

Several types of lexical information can be used to assess the similarity between the entities.
In our approach, three matching strategies are used for ontology schema matching, including

6

the Name-based strategy, Metadata-based strategy and Instance-based strategy; a property-based
strategy is used for ontology instance matching.

Name-based strategy:

Mname(e1, e2) = S e(label(e1), label(e2)) (6)

where label(e) is the value of rdfs:label of an entity; if there is no information for rdfs:label,
label(e) corresponds to the last segment of the ontology entity’s URI. If there are more than one
rdfs:label assertions for an entity, we calculate the edit-distances of all possible label pairs and
keep the largest as the similarity of the two entities.

Metadata-based strategy:

Mmeta(e1, e2) = S v(meta(e1),meta(e2)) (7)

where meta(e) is a set of words formed by combining the values of rdfs:label and rdfs:comment
of entity e.

Instance-based strategy:

Minst(e1, e2) = S v(inst(e1), inst(e2)) (8)

If e is a class, inst(e) is the union of the metadata of the instances belonging to class e, i.e.,
inst(e) =

⋃
t j∈I(e) meta(t j), where I(e) denotes the set of instances belonging to class e, meta(t j)

denotes a set of words in the values of rdfs:label and rdfs:comment of the instance t j. If e is a
datatype property, inst(e) is the union of lexical values attached to instances by the property e,
i.e., inst(e) =

⋃
t j

prope(t j), where prope(t j) denotes the set of words attached to instance t j by
property e; if e is an object property, inst(e) = ∅.

Property-based strategy:

Mprop<e,e′>(t1, t2) =

{
S e(prope(t1), prope′ (t2)) if min(|prope(t1)|, |prope′ (t2)|) < 3
S v(prope(e1), prope′ (t2)) if min(|prope(t1)|, |prope′ (t2)|) > 3 (9)

Property-based strategy only uses lexical information attached to instances by datatype proper-
ties. Here, prope(t j) also denotes the set of words attached to instance t j by property e. In the
process of ontology instance matching, property-based matching strategy needs to run multiple
times for different datatype property pairs < e, e

′

> of two ontologies; so multiple similarities
can also be obtained for every instance pair using property-based matching strategy.

3.1.2. Voting-based Strategy Combination
Given two sets of entities E1 and E2, and k matching strategies, Mi (i = 1, 2, ..., k), our

approach first finds a set of matching correspondences by combining the results of the multi-
ple strategies used. Traditional composite ontology matching approaches use several matching
strategies to compute the similarities between entities with different techniques and then aggre-
gate those similarities to produce a combined similarity. The final results are then extracted based
on the aggregated similarities (see Figure 2). Our approach combines multiple strategies in a dif-
ferent way; namely, it first derives a set of matching results from each single matching strategy
and then combines those matching results using a voting method (see Figure 3). This process is
described in more detail below.

(1) Extracting Matching Correspondences from a Single Strategy
7

Figure 2: Strategy combination by similarity aggregation

Figure 3: Strategy combination by the voting method

A matching strategy Mi independently computes the similarity of every entity pair p =<
e, e

′

> (e ∈ E1 , e
′

∈ E2). The result of the similarity computation is an n · m similarity matrix
Mi, where n = |E1| and m = |E2|. The element x jk in the jth row and kth column ofMi denotes
the similarity between the jth entity in E1 and the kth entity in E2.

After the similarity computation, we extract the matching results from the similarity matrix.
We use the Naive Descending Extraction (NDE) algorithm [21] in combination with a threshold
filtering method to select the matching results from the similarity matrix (see Algorithm 1). NDE
is based on the 1-1 matching assumption that each entity in E1 can only matches one entity in
E2. In addition, we only select extracted matching correspondences that have similarity values
greater than a threshold σ; this helps to exclude possible incorrect matching results. Given
two sets of n and m entities, the majority of the computation time is spent in sorting the n × m
similarities in the similarity matrix. In our approach, the Quicksort algorithm [22] is used to
sort all of the similarities in descending order. Therefore, the average time cost of NDE is
O((nm) log(nm)). The cost in the worst case is O((nm)2).

The threshold σ is determined by applying the k-means clustering algorithm to the similarity
values. The algorithm partitions the similarity values into two sets; one set is close to 1 and the
other set is close to 0. The boundary between the two cluster sets is then selected as the threshold
σ.

(2) Combining the Results from Multiple Matching Strategies
Let R = {Ri|i = 1...k} denote a set of matching results obtained by k strategies. We use a

voting-based method to combine the strategies and obtain the final matching result. The votes
that entity pair p =< e, e

′

> (e ∈ E1 , e
′

∈ E2) receives from the k strategies are first counted.
Here, we define the votes of an entity pair as the number of strategies whose results contain the
pair. Thus, the votes of p can be expressed as v(p) = |{Ri|p ∈ Ri, i = 1...k}|. After the votes of all
the entity pairs are counted, we apply the NDE algorithm combined with the threshold filtering
method to the votes to obtain the final results.

8

Traditional methods combine strategies by using different mathematical techniques for simi-
larity aggregation, including the Maximum, Minimum, Average, and Weighted Sum techniques.
Our voting-based approach does not directly operate on similarity values, and no numerical cal-
culations are made based on the similarity values. In our approach, each matching strategy can
be considered as a condition that tests the entity pairs; those pairs that satisfy many conditions
are likely to be true matching results. The voting-based method can be applied to any number of
strategies, and we do not need to tune the weights of each strategy.

Algorithm 1 Naive descending matching extraction
Input:

Two sets of entities E1 and E2;
The n · m similarity matrix ,M;
The threshold of similarity, σ;

Output:
A set of selected matching correspondences, R;

1: S ←Sort all of the similarities inM in descending order;
H ← Sorted similarities’ indexes inM;

2: R← ∅;
3: i← 1;
4: while S (i) ≥ σ;
5: R← R∪ < eH(i)1 , e

′

H(i)2
>, eH(i)1 ∈ E1 and eH(i)2 ∈ E2;

6: Delete the H(i)1th row and the H(i)2th column inM;
Delete the corresponding similarities and indexes in S and H;

7: i = i + 1;
8: end while;
9: return R;

3.2. Identifying Additional Matching Correspondences using Structural Information
After obtaining a set of initial matching results based on the lexical information of the entities,

we find additional matching correspondences using the structural information. Figure 4 shows
the structural links of class, property and instance. Our approach is based on the assumption
that two entities are possible matching correspondences if they are related to some previously
matched entities. Let the initial matching pairs between E1 and E2 be R. The following steps are
necessary to identify additional matching correspondences.

(1) Find the set of entities in E1 that do not occur in the matching pairs in R and denote them
as Ē1; find the set of entities in E2 that do not occur in the matching pairs in R and denote them
as Ē2.

(2) For each entity e ∈ Ē1, construct a feature set F(e) = (E1− Ē1)∩N(e), where N(e) denotes
the entities linked to e; for each entity e

′

∈ Ē2, construct a feature set F(e
′

) = (E2 − Ē2) ∩ N(e
′

),
where N(e

′

) denotes the entities linked to e
′

.
(3) For each candidate matching pair < e, e

′

>, e ∈ Ē1 and e
′

∈ Ē2, compute the similarity
between e and e

′

:

S im(e, e
′

) =

 0 if |F(e)| + |F(e
′

)| = 0
|{< f ,g>|< f ,g>∈R, f∈F(e),g∈F(e

′
)}|

|F(e)|+|F(e′)| if |F(e)| + |F(e
′

)| , 0
(10)

9

Figure 4: Structural links of (a) classes, (b) properties, (c) instances

(4) Select the matching pairs R∗ from the matching candidates using the method in Algorithm
1, and add the new matching results R∗ to R.

After adding the new matching candidates to the initial result, repeat the above steps until no
more matching correspondences can be found or the algorithm reaches a maximum number of
iterations. In contrast to the similarity propagation method, our approach only uses the derived
correspondences to help identify additional correspondences. This approach can effectively avoid
the influence of small similarity values that are also propagated in traditional methods.

4. Evaluation

4.1. Datasets
We evaluate our approach using both the OAEI and LOD datasets. OAEI is an annual ontol-

ogy matching campaign that provides authoritative tests and evaluations of ontology matching
technologies. Here, we use the OAEI Benchmark dataset for the ontology schema matching
evaluation and OAEI IIMB (including IIMB SMALL and IIMB LARGE) for the ontology in-
stance matching evaluation. Test cases in OAEI are artificially generated, so we also use real
datasets in the LOD to evaluate our approach. For ontology schema matching, our approach is
evaluated using eight popular ontology schemas to determine matching correspondences among
them; for instance matching, our approach interlinks the DBpedia and LinkedMDB datasets.
Detailed information about these datasets is provided below.

4.1.1. Benchmark Datasets in OAEI 2010
The benchmark test library of OAEI 2010 contains 111 ontologies in the bibliography do-

main. Of these ontologies, one is a reference ontology and the rest are ontologies that are sys-
tematically generated from the reference ontology. The reference ontology includes 33 named
classes, 24 object properties, 40 data properties, 56 named individuals and 20 anonymous indi-
viduals. The test data are generated by discarding some of the information to evaluate how the
algorithm performs when this information is absent [23].

10

4.1.2. Matching LOD Vocabularies
Jain et al. [24] selected eight popular ontologies from the LOD (see Table 2) and built

reference matching correspondences for Music-BBC, Music-DBpedia, GEO-DBpedia, SWC-
AKT, and SWC-DBpedia, FOAF-SIOC and FOAF-DBpedia matching tasks. In this paper, we
use these datasets and the reference matching results established by Jain et al. to evaluate the
proposed approach.

Table 2: LOD ontologies (#C denotes the number of concepts)

Ontology LOD Datasets #C

DBpedia (D) DBpedia 204
Geonames (G) Geonames,

Geospecies
11

Music Ontology (M) Jamendo, Music,
Brainz, DBTunes

136

BBC Program (B) BBC Programs, BBC
Music

100

FOAF (F) FOAF, Music, Brainz 16
SIOC (S) DBpedia, Linked-

MDB
14

AKT Reference Ontology
(A)

ACM, DBLP 17

Semantic Web Coreference
Ontology (W)

SW Conference Cor-
pus

177

4.1.3. IIMB Datasets in OAEI 2010
IIMB is composed of a set of test cases. Each case represents a set of instances built from

an initial dataset of real LOD data extracted from the web. The test cases are generated by
transforming the individual descriptions in the reference dataset. This includes: (i) data value
transformation, which simulates the fact that data expressing the same real object in different
data sources may be different because of data errors or the usage of different conventional pat-
terns for data representation; (ii) data structure transformation, which simulates the fact that the
same real object may be described using different properties/attributes in different data sources;
and (iii) data semantic transformation, which simulates the fact that the same real object may
be classified differently in different data sources. IIMB is a collection of OWL ontologies con-
sisting of 29 concepts, 20 object properties, 12 data properties and thousands of individuals that
are divided into 80 test cases. The 80 test cases are divided into four sets of 20 test cases each.
The first three sets are different implementations of the data value, data structure and data se-
mantic transformations, while the fourth set is obtained by combining the other three types of
transformations. IIMB is created by extracting data from Freebase, an open knowledge base that
contains information approximately 11 million real objects, including movies, books, TV shows,
celebrities, locations, and companies.

11

4.1.4. Interlinking LinkedMDB and DBpedia
In addition to the OAEI datasets, two datasets from the LOD10, namely DBpedia and Linked-

MDB, are chosen to evaluate the proposed approach.
DBpedia11 is built by extracting structured content from the information contained in the

Wikipedia project. The DBpedia knowledge base currently describes more than 3.5 million
things, 1.67 million out of which are classified in a consistent ontology, including 364,000 peo-
ple, 462,000 places, 99,000 music albums, 54,000 films, 17,000 video games, 148,000 organiza-
tions, 169,000 species and 5,200 diseases. The DBpedia knowledge base altogether consists of
over 672 million pieces of information (RDF triples); of these, 286 million were extracted from
the English edition of Wikipedia, and 386 million were extracted from other language editions.

The LinkedMDB12 is a semantic web database of movies and includes a large number of
interlinks to several datasets on the open data cloud and references to related webpages. Linked-
MDB is one of the densest examples of interlinking datasets in the Linking Open Data cloud and
has as many interlinks and page references as entities. There are more than six million triples in
the LinkedMDB dataset, including 85,000 films, 50,000 actors, 17,000 directors, 17,000 writers,
and 14,000 producers. There are currently more than 30,000 links between LinkedMDB and
DBpedia.

4.2. Performance Metrics

We use precision, recall, and F1-Measure to measure the performance of the proposed ap-
proach. These measures are defined as follows:

Precision (p) is the percentage of correctly discovered matching results among all of the
discovered matching results.

p =
|A ∩ T |
|A|

(11)

Recall (r) is the percentage of correctly discovered matching results among all of the correct
matching results.

r =
|A ∩ T |
|T |

(12)

F1-Measure (F1) considers the overall results of precision and recall.

F1 =
2pr
p + r

(13)

4.3. Evaluation on the OAEI Benchmark

We first investigate the effect of the voting-based strategy combination method and then test
whether the structural matching strategy can effectively find additional matching results.

10http://linkeddata.org/
11http://dbpedia.org/About
12http://www.linkedmdb.org/

12

!"#$% #$&"% '!(&% #")% #'!% "*+% ('+% *,&$%

-./012134% 5677%% 5678%% 5679%% 567:%% 5677%% 56:8%% 56;;%% 5677%%

</0=>>% 568:%% 56?:%% 56@A%% 56;9%% 569?%% 56;9%% 56;9%% 56;9%%

BCD#/=2E./% 56;@%% 56AA%% 5685%% 56:8%% 56;9%% 56:5%% 56;9%% 56:9%%

5655%%

56C5%%

56?5%%

56@5%%

56A5%%

5685%%

5695%%

56;5%%

56:5%%

5675%%

C655%%

-./012134% </0=>>% BCD#/=2E./%

Figure 5: Results of different combination methods in the Benchmark test

4.3.1. Effect of the Strategy Combination Method
To validate the effect of the voting-based combination method, we compare it with four other

commonly used methods. These four counterparts are based on similarity aggregation, in which
the similarity values returned by the different strategies are first aggregated and then matching
results are selected based on the combined similarities. The other methods are described as
follows:

MAX aggregates the similarities by selecting the maximum similarity value of any matching
strategy;

MIN aggregates the similarities by selecting the minimum similarity value of any matching
strategy;

AVG aggregates the similarities by computing the average similarity value of all matching
strategies;

SIGMOID(SIG) aggregates the similarities by computing the average similarity values trans-
formed by a sigmoid function.

For each test in the Benchmark, we first compute three similarity matrixes based on three
individual matching strategies (i.e., Name-based strategy, Metadata-based strategy and Instance-
based strategy). We then use MAX, MIN, AVG, and SIGMOID to aggregate the individual
similarity matrixes and compute four combined similarity matrixes. Based on these similarity
matrixes, we apply the method in Algorithm 1 to select matching results for the individual and
combined strategies. For each of the four combined strategies, we test threshold values ranging
from 0.1 to 0.9 and keep the results with the highest F1-Measure.

Figure 5 shows the results of the different combination methods. The results of the individual
matching strategies all result in high precisions that are greater than 95%, but their recall results
are lower. The recall is significantly improved when multiple matching strategies are combined.
Among the five combined approaches that were compared, MIN and VOTE yield the highest
precision, but the recall of MIN is low. MAX, AVG, SIG and VOTE achieve similar recall
results. In general, VOTE outperforms all of the other methods; it yields the highest precision,
recall and F1-measure, which are 99, 76 and 86%, respectively.

13

4.3.2. Effect of the Structural Matching Strategy
We can obtain a set of accurate matching correspondences by combining multiple lexical

matching strategies. The goal of the structural matching strategy is to find additional correspon-
dences based on existing correspondences. Here, we compare the results of our approach before
and after using the structural strategy.

Table 3 shows the results of the two stages separately. 1XX, 2XX, and 3XX denote three
groups of matching tasks in the Benchmark test, while H-mean represents the overall perfor-
mance. For the tests in the 1XX group, we can already obtain perfect precision and recall using
only lexical strategies, so no improvements are gained by using the structural strategy. For the
tests in the 2XX group, the precisions in both stages are the same, but the recall increases by
8%. In the 3XX group, both the precision and recall have improved; the precision increases from
92% to 94% and the recall increases from 73% to 76%. The results of both stages demonstrate
that the structural strategy can effectively improve the recall while maintaining the same preci-
sion. For other tasks, the use of the structural strategy does not degrade the quality of the results,
regardless of whether the structural information yields improvements.

Table 3: The results of two steps in the proposed approach on the Benchmark dataset

Process Lexical Lexical+Structural

Test Pre. Rec. F1. Pre. Rec. F1.

1XX 1.00 1.00 1.00 1.00 1.00 1.00
2XX 0.99 0.75 0.85 0.99 0.83 0.90
3XX 0.92 0.73 0.81 0.94 0.76 0.84

H-mean 0.99 0.76 0.86 0.99 0.84 0.91

4.3.3. Comparison with Other Matching Systems
Here, we compare our approach with the participants in OAEI 2010. Table 4 displays the

results of all the participants. Our approach achieves results similar to that of ASMOV, which
won the OAEI 2010 competition. Our approach yielded higher precision than ASMOV, although
ASMOV achieved better recall.

4.4. Evaluation on the LOD Ontologies

In this section, we evaluate our approach by matching seven ontologies in the LOD. The ref-
erence matching results provided by [24] specify subclass and equivalence relationships between
classes in different ontologies. We use our approach to find only equivalence relations between
classes. We have found that many subclass relations in the reference matching correspondences
can be inferred from the equivalence classes. Therefore, we use the following rule to generate a
set of subclass relations based on the equivalence classes found by our approach:

M(ei,OS ,OT) = e j =⇒

ep � eq ep ∈ super(ei), eq ∈ sub(e j)
ep ≺ eq ep ∈ sub(ei), eq ∈ super(e j)

(14)

where A � B means that B is a subclass of A and super(e) and sub(e) denote all of the super and
sub classes of entity e (including both explicit and implied relations), respectively.

14

Table 4: Results of participants in the OAEI 2010 Benchmark test

System 1xx 2xx 3xx H-mean

AgrMaker Prec. 0.98 0.95 0.88 0.95
Rec. 1.00 0.84 0.58 0.84

AROMA Prec. 1.00 0.94 0.83 0.94
Rec. 0.97 0.46 0.58 0.48

ASMOV Prec. 1.00 0.99 0.88 0.98
Rec. 1.00 0.89 0.84 0.89

CODI Prec. 1.00 0.83 0.95 0.84
Rec. 1.00 0.42 0.45 0.44

Ef2Match Prec. 1.00 0.98 0.92 0.98
Rec. 1.00 0.63 0.75 0.65

Falcon Prec. 1.00 0.81 0.89 0.82
Rec. 1.00 0.63 0.76 0.65

GeRMeSMB Prec. 1.00 0.96 0.90 0.96
Rec. 1.00 0.66 0.42 0.67

MapPSO Prec. 1.00 0.67 0.72 0.68
Rec. 1.00 0.59 0.39 0.60

SOBOM Prec. 1.00 0.97 0.79 0.97
Rec. 1.00 0.74 0.75 0.75

TaxoMap Prec. 1.00 0.86 0.71 0.86
Rec. 0.34 0.29 0.32 0.29

Proposed Prec. 1.00 0.99 0.94 0.99
Rec. 1.00 0.83 0.76 0.84

Table 5: Results of matching LOD ontologies.
S-Match AROMA BLOOMS Proposed

Test Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre Rec F1.
M-B 0.04 0.28 0.07 0.00 0.00 0.00 0.63 0.78 0.70 1.00 0.29 0.45
M-D 0.08 0.30 0.13 0.45 0.01 0.02 0.39 0.62 0.48 0.96 0.08 0.15
F-D 0.11 0.40 0.17 0.33 0.04 0.07 0.67 0.73 0.70 0.98 0.52 0.68
G-D 0.23 1.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.69 0.82
S-F 0.52 0.11 0.18 0.30 0.20 0.24 0.55 0.64 0.59 1.00 0.35 0.52

W-A 0.06 0.40 0.10 0.38 0.03 0.06 0.42 0.59 0.49 1.00 0.01 0.02
W-D 0.15 0.50 0.23 0.27 0.01 0.02 0.70 0.40 0.51 0.89 0.19 0.31
Avg. 0.17 0.43 0.18 0.25 0.04 0.06 0.48 0.54 0.50 0.98 0.30 0.42

15

Table 5 presents the results of S-Match, AROMA, BLOOMs and our approach for these seven
matching tasks. The results of the former three systems are obtained from [24]. The results show
that our approach yields matching results with high precision. The recalls are low because we
only consider the equivalence relations and some inferred subclass relations.

4.5. Evaluation on OAEI IIMB

IIMB includes a set of tests for evaluating instance matching techniques. We test the effect
of the strategy combination method and the structural matching strategy on instance matching
tasks and then compare our approach with the participants in the OAEI IIMB task.

!"#$!%&$ "'($)%($ '*+,$

-./012134$ 5678$$ 5689$$ 56:5$$ 568;$$ 56<<$$

=/0>??$ 5678$$ 565;$$ 568;$$ 568@$$ 569:$$

A7B!/>2C./$ 5678$$ 565:$$ 5688$$ 568@$$ 56:7$$

5655$$

5675$$

56D5$$

56E5$$

56;5$$

56@5$$

5695$$

5685$$

56:5$$

56<5$$

7655$$

-./012134$ =/0>??$ A7B!/>2C./$

Figure 6: Results of different combination methods on IIMB-SMALL

!"#$!%&$ "'($)%($ '*+,$

-./012134$ 5678$$ 569:$$ 56;8$$ 56:<$$ 56<9$$

=/0>??$ 5678$$ 565:$$ 56;7$$ 56;@$$ 56:5$$

A7B!/>2C./$ 5678$$ 567D$$ 56;@$$ 56;7$$ 56;8$$

5655$$

5675$$

56D5$$

56@5$$

5685$$

56E5$$

56:5$$

56;5$$

5695$$

56<5$$

7655$$

-./012134$ =/0>??$ A7B!/>2C./$

Figure 7: Results of different combination methods on IIMB-LARGE

16

4.5.1. Effect of the Strategy Combination Method
Figure 6 and Figure 7 present the results of the different combination methods on the IIMB SMALL

dataset and IIMB LARGE dataset, respectively. The results of the methods obtained using these
two datasets are similar. The MAX strategy achieves low precision and recall, and the MIN
strategy can achieve high precision but low recall. AVG and SIG yield similar results with good
precision and recall. The VOTE strategy achieves the highest precision with acceptable recall.
In the case of IIMB SMALL, the precision is 0.99 and the recall is 0.68; for IIMB LARGE, the
precision is 0.98 and the recall is 0.60. Therefore, our voting-based combination method also
works well for instance matching tasks.

4.5.2. Effect of the Structural Matching Strategy
Table 6 compares the results of the two stages of our approach. Using the structural strategy,

the recall in the IIMB SMALL dataset increased by 0.14 with a decrease in precision of 0.04; in
the IIMB LARGE dataset, the recall increased by 0.20 with a 0.07 decrease in precision.

Table 6: The results of the two steps in the proposed approach on IIMB dataset
Test Lexical Structural+Lexical

Pre Rec F1 Pre Rec F1
IIMB SMALL 0.99 0.68 0.81 0.95 0.82 0.88
IIMB LARGE 0.98 0.60 0.74 0.91 0.80 0.85

4.5.3. Comparison with Other Matching Systems
Table 7 shows the results of the participants in the OAEI IIMB task. Our approach achieves

better results than ASMOV. The results derived on IIMB SMALL are similar to those obtained
using CODI; however, although CODI and our approach yield the same recall for the IIMB LARGE
dataset, CODI provides higher precision.

Table 7: Results of the OAEI IIMB participants in OAEI 2010

Test IIMB SMALL IIMB LARGE

Algorithm Pre. Rec. F1. Pre. Rec. F1.

ASMOV 0.86 0.82 0.84 0.85 0.80 0.82
CODI 0.96 0.83 0.89 0.96 0.80 0.87

Proposed 0.95 0.82 0.88 0.91 0.80 0.85

4.6. Evaluation on Interlinking DBpedia and LinkedMDB
To evaluate our approach using real LOD datasets, we use our approach to interlink instances

in DBpedia and LinkedMDB. We only link films in DBpedia and LinkedMDB. Currently, there
are 18,000 established sameAs links between film instances. We randomly selected 500 sameAs
links between films and manually verified that they were correct. These 500 verified sameAs
links are used as the ground truth for the evaluation.

Here, we compare our approach with that of Silk [10], a link discovery engine that automati-
cally finds RDF links between datasets. We let Silk compute the Jaro distance between the names

17

of films, the Jaro distance between the names of directors, and the number similarity between
the published times of the films. The similarities are aggregated by the Average method in Silk.
Table 8 shows the results of the two approaches. Our approach results in high precision and
recall in linking real LOD datasets, and it outperforms Silk in both precision and recall.

Table 8: Results on Interlinking DBpedia and LinkedMDB

Approach Pre. Rec. F1.

Silk 0.93 0.91 0.92
Proposed 0.98 0.94 0.96

4.7. Summary

Our experiments demonstrate that our approach can effectively identify matching correspon-
dences in semantic data at both the schema and instance level. Using the OAEI tests, we validate
the effect of the voting-based combination method and the structural matching strategy. The
results show that the voting-based method achieves high precision, which averages 0.98 in the
OAEI tests. The average improvement of recall using the structural matching strategy is +0.12
for schema matching and +0.17 for instance matching. In tests using the LOD datasets, our
approach also achieves high precision in both schema matching and instance matching tasks.
The recall of schema matching using the LOD datasets is low because our approach can only
find equivalent relations among the entities, and the reference results contain many subsumption
relations.

5. Related Work

5.1. Ontology Matching

Many ontology matching methods have been proposed over the last decade, including heuris-
tic methods [7, 25, 8], graph based methods [26, 27], learning-based methods[28, 29], probabilis-
tic methods [30, 31], and reasoning-based methods [32, 33]. Here, we refer only to the work most
closely related to our study.

COMA [34] is a schema matching tool that supports multiple schema types. It provides
a library of matching algorithms and allows the use of different algorithms and combination
strategies, such as MAX, MIN, AVG and SIG, but users should select the strategies and combi-
nation methods according to the matching problem. In our approach, we use the voting-based
combination method to aggregate the results of the multiple matching strategies. We compare
the performances of the different combination methods; the results show that our voting-based
method outperforms the other algorithms in various tasks.

ASMOV [9] is an automated ontology matching system that combines a comprehensive set
of element- and structure-level measures of similarity with a technique that uses formal seman-
tics to verify whether computed correspondences comply with desired characteristics. ASMOV
computes four types of similarities, including a lexical similarity, two structural similarities and
an external similarity. It combines these similarities using a weighted sum, where the weights
are adjusted based on static rules. In our approach, we use lexical and structural information
separately in two steps instead of combining them based on a weighted sum. After obtaining a

18

set of matching results, the ASMOV algorithm uses a semantic verification process to exclude in-
valid matching pairs. Matching correspondences that cause multiple-entity matching, crisscross
matching, disjointness-equivalence contradiction, subsumption incompleteness, and domain and
range incompleteness are eliminated. Our approach uses the NDE algorithm to extract matching
results and only imposes a 1-1 matching constraint on the matching results.

PRIOR+ [35] is a generic and adaptive ontology mapping approach that is based on propa-
gation theory, information retrieval techniques and artificial intelligence. The approach consists
of three major modules, i.e., the IR-based similarity generator, the adaptive similarity filter, the
weighted similarity aggregator, and the neural network-based constraint satisfaction solver. The
approach first measures both the linguistic and structural similarity of the ontologies in a vector
space model and then aggregates them using an adaptive method based on their harmonies, which
is defined as an estimator of performance of the similarity assessment. The structural similarity
between the entities is determined based on the number of different types of neighbors, while our
structural matching strategy compares matched entities in the neighborhood of two entities.

RiMOM [7] is a dynamic multistage ontology matching framework that uses both lexical and
structural information of ontologies to compute the similarity between entities. To adaptively
combine multiple matching strategies, RiMOM estimates the similarity characteristics of each
matching task by computing two factors: the label similarity factor and the structural similarity
factor. Our approach does not need to determine whether structural information should be used
because our structural matching strategy will not find additional matching results if the structural
information is not important.

UFOme [25] is an ontology matching software framework that has been designed to aid ex-
pert and non-expert users in designing matching systems. UFOme provides a library of matchers
and a strategy prediction module that suggests individual matchers that should be used in a spe-
cific task. The strategy prediction module computes three coefficients of two ontologies: the
lexical affinity coefficient, the structural affinity coefficient, and the exploiting affinity coeffi-
cient. Based on these coefficients, UFOme suggests the optimal weights for different matchers.
The strategy prediction in UFOme is similar to RiMOMs weighting strategy. In our approach,
the results of different matchers are combined by the voting-based combination method instead
of the weighting method. Lexical and structural information is used in two steps in our approach;
therefore, different types of information are combined in a more natural way.

Falcon-AO [8][36] is a similarity-based ontology matching system. It employs three match-
ing strategies: V-Doc, I-Sub and GMO. V-Doc builds a virtual document for each entity and
then measures their similarity in a vector space model. I-Sub computes the similarities between
strings attached to different entities. GMO explores the structural similarity based on a bipartite
graph. Falcon-AO also uses a PBM ontology partitioner that accelerates the matching process.
Falcon-AO combines lexical and structural information and uses three heuristic rules to integrate
the results of three matching strategies. Both V-Doc and GMO use structural information. In
contrast to Falcon-AO, our approach uses lexical and structural information in two separate steps
and employs the voting-based combination method to aggregate the results.

FOMA [37] achieves high-quality results by using a matching learning method to draw clas-
sification rules for combining the results of different similarity metrics. Duan et al. [13] proposed
an iterative supervised-learning approach to determine the weights of each matching strategy and
the degree to which the information should be propagated to their neighbors. Our approach is un-
supervised; therefore, it does not require training examples. Nevertheless, it still achieves good
performance in various matching tasks.

IF-Map [38] identifies mappings automatically based on the theory of information flow. It
19

exploits both schema and instance information to match two ontologies. It first examines their
instances to determine whether they can be assigned to concepts in a reference ontology and then
uses formal concept analysis to derive an alignment. Our approach uses schema and instance
information in a different way. It first finds matching correspondences between ontologies based
on different lexical information and then propagates the equivalent relationships among class,
property and instance pairs.

5.2. Instance Matching
Silk [10] is a link discovery engine that automatically finds RDF links between datasets.

Users must specify which type of RDF links should be discovered between the data sources, as
well as which conditions the data items must fulfill to be interlinked. These link conditions can
apply different similarity metrics to multiple properties of an entity or related entities that are
addressed using a path-based selector language. The resulting similarity scores can be weighted
and combined using various similarity aggregation functions. Silk accesses data sources via the
SPARQL protocol and can thus be used to discover links between local or remote data sources.
Silk provides a library of similarity metrics for comparing different types of information between
entities. It also has several similarity combination methods, such as Average, Max, Min and
Product. Users should select proper similarity metrics and combination strategies before running
Silk. Our approach requires a relatively simple configuration to obtain good results; users only
need to specify the property pairs within which comparisons should be made. The voting-based
combination method and structural matching strategy can ensure high-quality results.

idMesh [39] is a graph-based algorithm for online entity disambiguation based on a prob-
abilistic graph analysis of declarative links that relate pairs of entities. idMesh derives a fac-
tor graph from the entities and the source graphs to retrieve equivalent entities. It first defines
a constraint satisfaction factor graph by taking advantage of symmetry and the transitivity of
the equivalence relations. It then defines a reputation-based trust management factor graph to
maintain the probabilistic trust variables attached to the different sources. Finally, idMesh con-
nects the trust factor graphs to the constraint satisfaction factor graph to create an autocatalytic
reinforcement process where constraint-satisfaction aids in the identification of untrustworthy
sources and where trust management delivers more reasonable prior values for the link variables.
idMesh works based on a given set of matching correspondences and then finds others, while
our approach first uses lexical information to find an initial set of matching correspondences and
then uses structural information to find additional matches. Therefore, our approach is suitable
for more tasks than idMesh.

Raimond et al. [40] proposed an interlinking algorithm for automatically linking music-
related datasets on the web by considering the similarities of the web resources and of their
neighbors. Their algorithm provides an online linking function based on accessing data through
a SPARQL end-point. Jaffri et al. [41] investigated DBLP and DBpedia and found that a large
percentage of entities were either conflated or incorrectly linked. They presented several possible
solutions for addressing the issue of co-referencing on the Semantic Web, such as the ReSIST
and Okkam projects. Rowe et al. [42] presented a methodology for generating this background
knowledge by exporting data from multiple Web 2.0 platforms as RDF data models and combin-
ing these models for use as seed data. They described two disambiguation techniques: the first
uses a semi-supervised machine learning technique known as Self-training, and the second uses
a graph-based technique known as Random Walks. They also explained how the semantics of
data support the intrinsic functionalities of these techniques. Nikolov et al. [11] presented a data
integration architecture called KnoFuss and proposed a component-based approach that allows

20

flexible selection and tuning of the methods and takes the ontological schemata into account to
improve the reusability of the methods.

5.3. Summary

Existing approaches focus on either ontology schema matching or instance matching, and
there lacks an approach that performs well on both problems. Systems discussed in Section
5.1 mainly focus on matching schema entities while approaches mentioned in Section 5.2 are
proposed specifically to matching instances. Most of the matching strategies and aggregation
methods in these approaches are designed for one type of matching task. Some aggregation
methods such as AVG, MAX and MIN are used in both ontology schema matching and instance
matching approaches (e.g. COMA, SILK), but they are too primitive to guarantee good results,
as shown in the experimental analysis in Section 4. In our approach, the matching strategies for
both schema entities and instances are all defined on the same similarity metrics; the voting-based
aggregation method works well on both ontology schema matching and instance matching prob-
lems. Compared to the existing work, our approach provides a unified and effective framework
for matching both schema entities and instances.

6. Conclusion

In this paper, we propose a unified approach for ontology schema matching and instance
matching. Our approach first identifies an initial set of matching correspondences by combining
multiple lexical matching strategies using a novel voting-based combination method. Instead of
aggregating different similarities, the voting-based combination method merges matching results
that are independently extracted from individual matching strategies, which ensures accurate
matching results. Then, our approach uses a structural matching strategy to iteratively find addi-
tional matching correspondences based on previously discovered ones. The experimental results
show that the voting-based strategy combination method achieves high precision and outper-
forms the four baseline methods (MAX, MIN, AVG and SIG) in terms of F1-Measure; it is also
observed in the experiments that the structural matching strategy can effectively improve the
recall of the matching results while maintain high precision. The evaluation on the OAEI and
LOD datasets validates the effectiveness of our approach in both ontology schema matching and
instance matching problems.

7. Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 661035004,
61202246, 60973102), the National Basic Research Program of China (No. 2007CB310803),
and the THU-NUS Next Research Center.

References

[1] C. Bizer, T. Heath, T. Berners-Lee, Linked data - the story so far, International Journal on Semantic Web and
Information Systems 5 (2009) 1–22.

[2] B. Aleman-Meza, U. Bojars, H. Boley, J. Breslin, M. Mochol, L. Nixon, A. Polleres, A. Zhdanova, Combining
rdf vocabularies for expert finding, in: Proceedings of the 4th European conference on The Semantic Web (ESWC
’07), volume 4519, pp. 235–250.

21

[3] O. Hassanzadeh, L. Lim, A. Kementsietsidis, M. Wang, A declarative framework for semantic link discovery
over relational data, in: Proceedings of the 18th international conference on World wide web(WWW ’09), pp.
1101–1102.

[4] Y. Kalfoglou, M. Schorlemmer, Ontology mapping: the state of the art, The Knowledge Engineering Review 18
(2003) 1–31.

[5] N. Choi, I.-Y. Song, H. Han, A survey on ontology mapping, ACM SIGMOD Record 35 (2006) 34–41.
[6] S. Pavel, J. Euzenat, Ontology matching: State of the art and future challenges, IEEE Transactions on Knowledge

and Data Engineering PP (2011).
[7] J. Li, J. Tang, Y. Li, Q. Luo, Rimom: A dynamic multistrategy ontology alignment framework, IEEE Transactions

on Knowledge and Data Engineering 21 (2009) 1218–1232.
[8] W. Hu, Y. Qu, Falcon-ao: A practical ontology matching system, Web Semantics: Science, Services and Agents

on the World Wide Web 6 (2008) 237 – 239.
[9] Y. R. Jean-Mary, E. P. Shironoshita, M. R. Kabuka, Ontology matching with semantic verification, Web Semantics:

Science, Services and Agents on the World Wide Web 7 (2009) 235 – 251.
[10] J. Volz, C. Bizer, M. Gaedke, G. Kobilarov, Discovering and maintaining links on the web of data, in: Proceedings

of the 8th International Semantic Web Conference (ISWC ’09), pp. 650–665.
[11] A. Nikolov, V. S. Uren, E. Motta, A. N. D. Roeck, Handling instance coreferencing in the knofuss architecture, in:

Proceedings of CEUR Workshop, volume 422.
[12] E. Peukert, S. Maßmann, K. König, Comparing similarity combination methods for schema matching, in: Pro-

ceedings of Information Integration in Service Architectures Workshop.
[13] S. Duan, A. Fokoue, K. Srinivas, One size does not fit all: Customizing ontology alignment using user feedback, in:

Proceedings of the 9th international semantic web conference on The semantic web (ISWC’2010), volume 6496,
pp. 177–192.

[14] V. Nebot, R. Berlanga, Finding association rules in semantic web data, Knowledge-Based Systems 25 (2012) 51 –
62.

[15] T. Berners-Lee, Linked data - design issues, http://www.w3.org/DesignIssues/LinkedData.html, 2006.
[16] R. Studer, V. Benjamins, D. Fensel, Knowledge engineering: Principles and methods, Data & Knowledge Engi-

neering 25 (1998) 161 – 197.
[17] N. Guarino, D. Oberle, S. Staab, What is an ontology?, in: Handbook on Ontologies, Springer Berlin Heidelberg,

2009, pp. 1–17.
[18] Owl web ontology language, http://www.w3.org/TR/owl-features/ (2004).
[19] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, K. Wang, Using bayesian decision for ontology mapping, Web Semantics:

Science, Services and Agents on the World Wide Web 4 (2006) 243–262.
[20] G. Salton, C.-S. Yang, On the specification of term values in automatic indexing, Journal of Documentation 29

(1973) 351–372.
[21] C. Meilicke, H. Stuckenschmidt, Analyzing mapping extraction approaches, in: Proceedings of the ISWC 2007

Workshop on Ontology Matching.
[22] C. A. R. Hoare, Quicksort, The Computer Journal 5 (1962) 10–16.
[23] Oaei 2010, in: http://oaei.ontologymatching.org/2010/benchmarks/.
[24] A. P. S. K. V. Prateek Jain, Pascal Hitzler, P. Z. Yeh, Ontology alignment for linked open data, in: Proceedings of

the 8th International Semantic Web Conference (ISWC ’10).
[25] P. Giuseppe, D. Talia, Ufome: An ontology mapping system with strategy prediction capabilities, Data & Knowl-

edge Engineering 69 (2010) 444–471.
[26] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its applica-

tion to schema matching, in: Proceedings of 18th International Conference on Data Engineering (ICDE’02), pp.
117 –128.

[27] W. Hu, N. Jian, Y. Qu, Y. Wang, Gmo: A graph matching for ontologies, in: K-Cap 2005 Workshop on Integrating
Ontologies 2005, pp. 43–50.

[28] M. Ehrig, S. Staab, Y. Sure, Bootstrapping ontology alignment methods with apfel, in: Proceedings of WWW
’05 Special interest tracks and posters of the 14th international conference on World Wide Web, volume 3729, pp.
186–200.

[29] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, A. Halevy, Learning to match ontologies on the semantic
web, The VLDB Journal 12 (2003) 303–319.

[30] P. Mitra, N. Noy, A. Jaiswal, Omen: A probabilistic ontology mapping tool, in: Proceedings of the 4th international
conference on The Semantic Web (ISWC’05), volume 3729, pp. 537–547.

[31] S. Albagli, R. Ben-Eliyahu-Zohary, S. E. Shimony, Markov network based ontology matching, Journal of Computer
and System Sciences 78 (2012) 105 – 118.

[32] M. Niepert, C. Meilicke, H. Stuckenschmidt, A probabilistic-logical framework for ontology matching, in: Pro-
ceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10), pp. 1413–1418.

22

[33] E. Jiménez-Ruiz, B. C. Grau, Logmap: Logic-based and scalable ontology matching, in: Proceedings of the 10th
international conference on The semantic web (ISWC’11), volume Part I, pp. 273–288.

[34] H.-H. Do, E. Rahm, Coma: a system for flexible combination of schema matching approaches, in: Proceedings of
the 28th international conference on Very Large Data Bases (VLDB ’02), pp. 610–621.

[35] M. Mao, Y. Peng, M. Spring, An adaptive ontology mapping approach with neural network based constraint
satisfaction, Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 14 – 25.

[36] W. Hu, Y. Qu, G. Cheng, Matching large ontologies: A divide-and-conquer approach, Data & Knowledge Engi-
neering 67 (2008) 140–160.

[37] M. Ehrig, Foam - framework for ontology alignment and mapping; results of the ontology alignment initiative, in:
Proceedings of Integrating Ontologies Workshop.

[38] Y. Kalfoglou, M. Schorlemmer, If-map: An ontology-mapping method based on information-flow theory, in:
Journal on Data Semantics I, volume 2800, Springer Berlin / Heidelberg, 2003, pp. 98–127.

[39] P. Cudre-Mauroux, P. Haghani, M. Jost, K. Aberer, H. De Meer, idmesh: graph-based disambiguation of linked
data, in: Proceedings of the 18th international conference on World wide web (WWW’09), pp. 591–600.

[40] Y. Raimond, C. Sutton, M. S, Automatic interlinking of music datasets on the semantic web, in: Proceedings of
Linked Data on the Web workshop (LDOW2008).

[41] I. M. Afraz Jaffri, Hugh Glaser, Uri disambiguation in the context of linked data, in: Proceedings of Linked Data
on the Web workshop (LDOW2008).

[42] F. C. Matthew Rowe, Disambiguating identity web references using web 2.0 data and semantics, Web Semantics:
Science, Services and Agents on the World Wide Web 8 (2010) 125 – 142.

23

