

Confluence: Conformity Influence in Large Social Networks

Jie Tang^{*}, Sen Wu^{*}, and Jimeng Sun⁺ ^{*}Tsinghua University ⁺IBM TJ Watson Research Center

Conformity

- Conformity is the act of matching attitudes, opinions, and behaviors to group norms.^[1]
- Kelman identified three major types of conformity^[2]
 - Compliance is public conformity, while possibly keeping one's own original beliefs for yourself.
 - Identification is conforming to someone who is liked and respected, such as a celebrity or a favorite uncle.
 - Internalization is accepting the belief or behavior, if the source is credible. It is the deepest influence on people and it will affect them for a long time.

[1] R.B. Cialdini, & N.J. Goldstein. Social influence: Compliance and conformity. Annual Review of Psych., 2004, 55, 591–621.

[2] H.C. Kelman. Compliance, Identification, and Internalization: Three Processes of Attitude Change. Journal of Conflict Resolution, 1958, 2 (1): 51–60.

"Love Obama"

Conformity Influence Analysis

Related Work—Conformity

- Conformity theory
 - Compliance, identification, and internalization [Kelman 1958]
 - A theory of conformity based on game theory [Bernheim 1994]
- Influence and conformity
 - Conformity-aware influence analysis [Li-Bhowmick-Sun 2011]
- Applications
 - Social influence in social advertising [Bakshy-el-al 2012]

Related Work—social influence

- Influence test and quantification
 - Influence and correlation [Anagnostopoulos-et-al 2008]
 Distinguish influence and homophily [Aral-et-al 2009, La Fond-Nevill 2010]
 - Topic-based influence measure [Tang-Sun-Wang-Yang 2009, Liu-et-al 2012] Learning influence probability [Goyal-Bonchi-Lakshmanan 2010]
- Influence diffusion model
 - Linear threshold and cascaded model [Kempe-Kleinberg-Tardos 2003]
 - Efficient algorithm [Chen-Wang-Yang 2009]

Challenges

- How to formally define and differentiate different types of conformities?
- How to construct a computational model to learn the different conformity factors?

 How to validate the proposed model in real large networks?

Problem Formulation and Methodologies

Four Datasets

Network	#Nodes	#Edges	Behavior	#Actions
Weibo	1,776,950	308,489,739	Tweet on popular topics	6,761,186
Flickr	1,991,509	208,118,719	Comment on a popular photo	3,531,801
Gowalla	196,591	950,327	Check-in some location	6,442,890
ArnetMiner	737,690	2,416,472	Publish in a specific domain	1,974,466

All the datasets are publicly available for research.

A concrete example in Gowalla

Notations

$$G = (V, E, C, X)$$

 $\mathbf{A} = \{(a, v_i, t)\}_{a, i, t}$

— each (a, v_i, t) represents user v_i performed action a at time t

Conformity Definition

- Three levels of conformities
 - Individual conformity
 - Peer conformity
 - Group conformity

Individual Conformity

• The individual conformity represents how easily user *v*'s behavior conforms to her friends

Peer Conformity

• The peer conformity represents how likely the user v's behavior is influenced by one particular friend v'

Group Conformity

• The group conformity represents the conformity of user *v*'s behavior to groups that the user belongs to.

τ-group action: an action performed by more than a percentage *τ* of all users in the group C_k

All τ -group actions performed by users in the group C_k

For an example

Conformity in the Co-Author Network

Now our problem becomes

 How to incorporate the different types of conformities into a unified model?

Input:

$$G=(V, E, C, X), A$$

G=(V, E, C, X), A

G=(V, E, C, X),

Model Instantiation

General Social Features

- Opinion leader^[1]
 - Whether the user is an opinion leader or not
- Structural hole^[2]
 - Whether the user is a structural hole spanner
- Social ties^[3]
 - Whether a tie between two users is a strong or weak tie
- Social balance^[4]
 - People in a social network tend to form balanced (triad) structures (like "my friend's friend is also my friend").

X. Song, Y. Chi, K. Hino, and B. L. Tseng. Identifying opinion leaders in the blogosphere. In **CIKM'06**, pages 971–974, 2007.
 T. Lou and J Tang. Mining Structural Hole Spanners Through Information Diffusion in Social Networks. In **WWW'13**. pp. 837-848.

[3] M. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):1360–1380, 1973.

[4] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.

Distributed Model Learning

Input : network G, action history A, and learning rate η ; Output : learned parameters $\theta = (\{\alpha\}, \{\beta\}, \{\gamma\}, \{\mu\}); \leqslant$	Unknown parameters
Initialize $\alpha, \beta, \gamma, \mu$; Construct the graphical structure G in the Confluence model; Partition the graph G into M subgraphs $[G_1, \dots, G_M]$;	to estimate
%Distribute the parameter to calculate local belief; Master broadcasts θ to all Slaves;	(1) Master
for $l = 1$ to M do Each Slave calculates local belief for each marginal probability according to Eqs. 6 and 7 on subgraph G_l ; Slave send back the obtained local belief;	(2) Slave
end %Calculate the marginals and update all parameters ; Master calculates the marginal according to Eq. 8; Master calculates the gradient for each parameter (e.g., by Eq. 5); Master updates all parameters, e.g. for α_j , $\alpha_j^{new} = \alpha_j^{old} + \eta \frac{\mathcal{O}(\theta)}{\alpha_j}$	(3) Master
until convergence;	
Algorithm 1: Distributed model learning.	國注意大

Distributed Learning

Experiments

Data Set and Baselines

Network	#Nodes	#Edges	Behavior	#Actions
Weibo	1,776,950	308,489,739	Post a tweet	6,761,186
Flickr	1,991,509	208,118,719	Add comment	3,531,801
Gowalla	196,591	950,327	Check-in	6,442,890
ArnetMiner	737,690	2,416,472	Publish paper	1,974,466

Baselines

- Support Vector Machine (SVM)
- Logistic Regression (LR)
- Naive Bayes (NB)
- Gaussian Radial Basis Function Neural Network (RBF)
- Conditional Random Field (CRF)
- Evaluation metrics
 - Precision, Recall, F1, and Area Under Curve (AUC)

Prediction Accuracy

Data	Method	Precision	Recall	F1-Measure	AUC
	SVM	0.5921 (±0.0036)	0.5905 (±0.0031)	0.5802 (±0.0012)	0.6473 (±0.0004)
	LR	0.6010 (±0.0052)	0.5900 (±0.0057)	0.5770 (±0.0018)	0.6510 (±0.0008)
	NB	0.6170 (±0.0071)	0.6040 (±0.0083)	0.5920 (±0.0031)	0.6520 (±0.0019)
Flickr	RBF	0.6250 (±0.0039)	0.5960 (±0.0010)	0.5720 (±0.0024)	0.6700 (±0.0010)
	CRF	0.5474 (±0.0030)	0.8002 (±0.0009)	0.6239 (±0.0016)	0.6722 (±0.0010)
	Confluence	0.5472 (±0.0025)	$0.7770(\pm 0.0010)$	0.6342 (±0.0010)	0.7383 (±0.0006)
	SVM	0.9290 (±0.0212)	0.9310 (±0.0121)	0.9295 (±0.0105)	0.9280 (±0.0042)
	LR	0.9320 (±0.0234)	0.9290 (±0.0234)	0.9310 (±0.0155)	0.9500 (±0.0054)
	NB	0.9310 (±0.0197)	0.9290 (±0.0335)	0.9300 (±0.0223)	0.9520 (±0.0030)
Gowalla	RBF	0.9320 (±0.0254)	0.9280 (±0.0284)	0.9300 (±0.0182)	0.9540 (±0.0022)
	CRF	0.9330 (±0.0100)	0.9320 (±0.0291)	0.9330 (±0.0164)	0.9610 (±0.0019)
	Confluence	0.9372 (±0.0097)	0.9333 (±0.0173)	0.9352 (±0.0101)	0.9644 (±0.0140)
	SVM	0.5060 (±0.0381)	0.5060 (±0.0181)	0.5060 (±0.0157)	0.5070 (±0.0053)
	LR	0.5190 (±0.0461)	0.6450 (±0.0104)	0.5750 (±0.0281)	0.5390 (±0.0133)
Weibo	NB	0.5120 (±0.0296)	$0.6700(\pm 0.0085)$	0.5810 (±0.0165)	0.5390 (±0.0132)
	RBF	$0.5240 \ (\pm 0.0248)$	0.5690 (±0.0098)	0.5460 (±0.0159)	0.5450 (±0.0103)
	CRF	0.5150 (±0.0353)	0.6310 (±0.0121)	0.5720 (±0.0209)	0.6320 (±0.0139)
	Confluence	0.5185 (±0.0296)	0.9967 (±0.0085)	0.6816 (±0.0156)	0.7572 (±0.0077)
Co-Author	SVM	0.7672 (±0.0338)	0.8671 (±0.0145)	0.8256 (±0.0129)	0.8562 (±0.0115)
	LR	$0.8700 (\pm 0.0261)$	0.7640 (±0.0346)	0.8140 (±0.0221)	0.8500 (±0.0030)
	NB	$0.7640 (\pm 0.0177)$	0.8510 (±0.0185)	0.8050 (±0.0048)	0.8720 (±0.0074)
	RBF	0.7720 (±0.0182)	0.8830 (±0.0191)	0.8240 (±0.0145)	0.8790 (±0.0031)
	CRF	0.8081 (±0.0252)	0.8771 (±0.0249)	0.8360 (±0.0087)	0.9025 (±0.0025)
	Confluence	0.8818 (±0.0105)	0.9089 (±0.0130)	0.8818 (±0.0084)	0.9579 (±0.0022)

t-test, *p*<<0.01

Effect of Conformity

Confluence_{base} stands for the Confluence method without any social based features **Confluence**_{base}+I stands for the Confluence_{base} method plus only individual conformity features **Confluence**_{base}+P stands for the Confluence_{base} method plus only peer conformity features **Confluence**_{base}+G stands for the Confluence_{base} method plus only group conformity

Scalability performance

Achieve ~ 9×speedup with 16 cores

Table 4:	Running	time of	the	proposed	algorithm	(hour).
----------	---------	---------	-----	----------	-----------	---------

Data Set	Flickr	Gowalla	Weibo	Co-Author
Confluence	1.602	0.245	1.083	0.512
Confluence (single)	19.637	2.395	11.229	6.464
CRF	3.864	0.387	2.547	1.823

Conclusion

- Study a novel problem of conformity influence analysis in large social networks
- Formally define three conformity functions to capture the different levels of conformities
- Propose a Confluence model to model users' actions and conformity
- Our experiments on four datasets verify the effectiveness and efficiency of the proposed model

Future work

- Connect the conformity phenomena with other social theories
 - -e.g., social balance, status, and structural hole

Study the interplay between conformity and reactance

• Better model the conformity phenomena with other methodologies (e.g., causality)

Confluence: Conformity Influence in Large Social Networks

Jie Tang^{*}, Sen Wu^{*}, and Jimeng Sun⁺

*Tsinghua University +IBM TJ Watson Research Center

Data and codes are available at: http://arnetminer.org/conformity/

KEG

Qualitative Case Study

