Inferring User Demographics and Social Strategies in Mobile Social Networks

Yuxiao Dong Jie Tang Yang Yang Yang Yang Nitesh V. Chawla Tsinghua University University of Notre Dame Tsinghua University University of Notre Dame University of Notre Dame ydong1@nd.edu yyang.thu@gmail.com jietang@tsinghua.edu.cn yyang1@nd.edu nchawla@nd.edu

Did You Know?

As of 2014, there are 7.3 billion mobile users, larger than the global population. In the U.S., users average 22 calls, 23 messages, and 110 status checks per day. Overall, they made **3** billion mobile phone calls and **6** billion messages each day.

Social Strategy Analysis

Social Strategies on Social Ego

0.06

1. A, B: People tend to communicate with others of both similar

40

50 Age (Male)

ERSITYOF

Tsinghua University

VIEL CEDO NOTRE DAME

have

2x more social friends 4x more opposite-gender circles

than

Summary:

1. Social strategies are used by people in social activities to meet their social needs, i.e., to connect with new people and to strengthen existing relationships.

2. Different people with different demographic profiles (gender/age) make use of different social strategies to fulfill social needs for belonging, love, and affection.

3. The proposed *WhoAmI* method can infer 80% of the users' genders from their mobile phone call behaviors, and 73% of the users' ages from text message behaviors.

Data: A real-world large mobile network:	Network	#nodes	#edges
An anonymous country, two months;	CALL	7,440,123	32,445,941
1,000,000,000 communication records.	SMS	4,505,958	10,913,601

WhoAmI -- Demographic Prediction

	Modeling Interrelations be				
	Gender and Age	4			
es	Modeling Social Strategies				

Modeling Social Strategies on Social Ego

Modeling Social Strategies on Social **Triad** on Social **Tie**

1. Young people are active in broadening their social circles (larger degree), while seniors have the tendency to maintain small but close connections (smaller degree & higher *cc*).

Social Strategies on Social Tie

⊕ 50

40 50 60

gender and age, i.e., homophily.

Age (Female)

1. A vs. B: Young males maintain more frequent and broader social connections than young females. 2. A/B vs. C: Opposite-gender interactions are much more frequent than those between young same-gender users. E/F vs. G: When becoming mature, same-gender interactions are more frequent than those of opposite-gender users.

Double Dependent-Variable Factor Graph (DFG) Inferring gender and age simultaneously

 $P(Y, Z|G, \mathbf{X}) = \prod f(y_i, z_i, \mathbf{x}_i) \times \prod [g(\mathbf{y}_e, \mathbf{z}_e)] \prod [h(\mathbf{y}_c, \mathbf{z}_c)]$ **Joint Distribution**

1. A,B,C,D: People expand both same-gender and opposite-gender social groups during the dating period. 2. F/G vs. E/H: People's attention to opposite-gender groups quickly disappears, and the insistence and social investment on same-gender social groups lasts for a lifetime.

Performance Network		Gender			Age		
		wPre.	wRec.	wF1	wPre.	wRec.	wF1
CALL	LRC	0.732	0.728	0.724	0.635	0.646	0.633
	SVM	0.732	0.728	0.724	0.636	0.646	0.627
	NB	0.722	0.722	0.722	0.624	0.622	0.622
	RF	0.743	0.731	0.741	0.638	0.648	0.638
	BAG	0.764	0.764	0.764	0.660	0.668	0.659
	FGM	0.765	0.766	0.765	0.699	0.698	0.693
	DFG	0.808	0.807	0.806	0.726	0.714	0.713
SMS	LRC	0.676	0.765	0.668	0.670	0.689	0.663
	SVM	0.674	0.675	0.669	0.665	0.688	0.660
	NB	0.623	0.665	0.660	0.656	0.658	0.657
	RF	0.639	0.674	0.675	0.662	0.677	0.659
	BAG	0.690	0.691	0.690	0.690	0.698	0.679
	FGM	0.713	0.713	0.713	0.715	0.715	0.705
	DFG	0.758	0.754	0.750	0.740	0.730	0.733

Factor Contribution

DFG: the proposed model DFG-d: no interrelations between gender / age DFG-df: further ignoring friend features DFG-dc: further ignoring circle features DFG-dcf: ignoring both friend&circle features

Distributed Learning

Message Passing Interface (MPI) 9-10× speedup with 16 cores <2% drop in performance Converge in 100 iterations, each costs 2-5 minutes

20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining August 24-27, 2014 🚺 New York City

References

N. Eagle, A. S. Pentland, D. Lazer. Inferring social network structure using mobile phone data. PNAS, 2009. V. Palchykov, K. Kaski, J. Kertesz, A. –L. Barabasi, R. I. M. Dunbar. Sex differences in intimate relationships. SciRep, 2012. D. Wang, D. Pedreschi, C. Song, F. Giannotti, A.-L. Barabasi. Human mobility, social ties, and link prediction. In KDD'11. J. Leskovec, E. Horvitz. Planetary-scale views on a large instant-messaging network. In WWW'08. Y. Dong, J. Tang, N. V. Chawla. How long will she call me? Distribution, social theory and duration prediction. In ECML/PKDD'13.