\(\begin{array}{ccccc}Yuxiao Dong \& Yang Yang \& Jie Tang \& Yang Yang \& Nitesh V. Chawla
University of Notre Dame \& Tsinghua University \& Tsinghua University \& University of Notre Dame \& University of Notre Dame\end{array}\) ydong1@nd.edu yyang.thu@gmail.com jietang@tsinghua.edu.cn yyang1@nd.edu nchawla@nd.edu

Social Strategy Analysis

Did You Know?

As of 2014, there are 7.3 billion mobile users, larger than the global population.
In the U.S., users average 22 calls, 23 messages, and 110 status checks per day.
Overall, they made 3 billion mobile phone calls and 6 billion messages each day.

Summary:

1. Social strategies are used by people in social activities to meet their social needs, i.e., to connect with new people and to strengthen existing relationships.
2. Different people with different demographic profiles (gender/age) make use of different social strategies to fulfill social needs for belonging, love, and affection.
3. The proposed WhoAml method can infer 80% of the users' genders from their mobile phone call behaviors, and 73% of the users' ages from text message behaviors.
Data:
A real-world large mobile network;
An anonymous country, two months;
1,000,000,000 communication records.

Network	\#nodes	\#edges
CALL	$7,440,123$	$32,445,941$
SMS	$4,505,958$	$10,913,601$

1. Young people are active in broadening their social circles (larger degree), while seniors have the tendency to maintain small but close connections (smaller degree \& higher cc).

2. A B. People tend to communicate with others of both simila gender and age, i.e., homophily

lar

Social Strategies on Social Tie

1. A vs. B: Young males maintain more frequent and broader social connections than young females.
2. A/B vs. C: Opposite-gender interactions are much more frequent than those between young same-gender users.

E/F vs. G: When becoming mature, same-gender interactions are more frequent than those of opposite-gender users.

Double Dependent-Variable Factor Graph (DFG) Inferring gender and age simultaneously

Objective Function $\mathcal{O}(\alpha, \beta, \gamma)=\sum_{v_{i} \in V} \alpha_{y_{i} z_{i}} \mathbf{x}_{i}+\sum_{e_{i j} \in E} \sum_{p=1}^{6} \beta_{p} g_{p}^{\prime}(\cdot)+\sum_{c_{i j k} \in G} \sum_{q=1}^{20} \gamma_{q} h_{q}^{\prime}(\cdot)-\log W$

Social Strategies on Social Triad

 Min Age of FMM

1. $A, B, C, D:$ People expand both same-gender and opposite-gender social groups during the dating period.
2. F/G vs. E/H: People's attention to opposite-gender groups quickly disappears, and the insistence and social investment on same-gender social groups lasts for a lifetime.

Performance Network		Gender			Age		
		wPre.	wRec.	wF1	wPre.	wRec.	wF1
CALL	LRC	0.732	0.728	0.724	0.635	0.646	0.633
	SVM	0.732	0.728	0.724	0.636	0.646	0.627
	NB	0.722	0.722	0.722	0.624	0.622	0.622
	RF	0.743	0.731	0.741	0.638	0.648	0.638
	BAG	0.764	0.764	0.764	0.660	0.668	0.659
	FGM	0.765	0.766	0.765	0.699	0.698	0.693
	DFG	0.808	0.807	0.806	0.726	0.714	0.713
SMS	LRC	0.676	0.765	0.668	0.670	0.689	0.663
	SVM	0.674	0.675	0.669	0.665	0.688	0.660
	NB	0.623	0.665	0.660	0.656	0.658	0.657
	RF	0.639	0.674	0.675	0.662	0.677	0.659
	BAG	0.690	0.691	0.690	0.690	0.698	0.679
	FGM	0.713	0.713	0.713	0.715	0.715	0.705
	DFG	0.758	0.754	0.750	0.740	0.730	0.733

DFG: the proposed model
DFG-d: no interrelations between gender / age DFG-df: further ignoring friend features
DFG-dc: further ignoring circle features
DFG-dcf: ignoring both friend\&circle features
Distributed Learning
Message Passing Interface (MPI)
$9-10 \times$ speedup with 16 cores
<2\% drop in performance
Converge in 100 iterations, each costs 2-5 minutes

Paper ID

N. Eagle, A. S. Pentland, D. L Lazer. I Ifering social networkstructurue using mobile phone data. PNAS, 2009.

 4. J. Lestovec, E. Hovit.2 Planetary.s.sale views on a large instant.messaging network. In wwwor.

