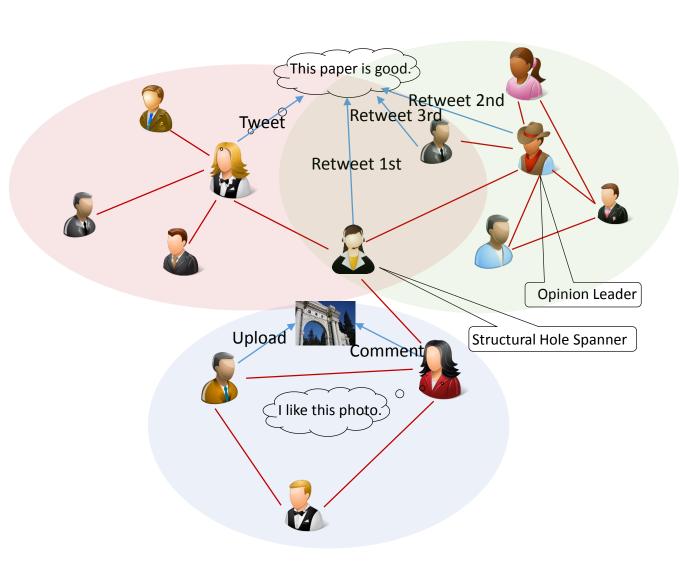


# Probabilistic Community and Role Model for Social Networks




Yu Han<sup>1</sup> and Jie Tang<sup>1,2,3</sup>

<sup>1</sup>Department of Computer Science and Technology, Tsinghua University <sup>2</sup>Tsinghua National Laboratory for Information Science and Technology (TNList) <sup>3</sup>Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, China yuhanthu@126.com, jietang@tsinghua.edu.cn

### **Motivation**

## Example



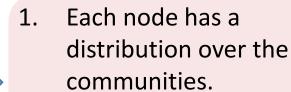
There are visible(users, links, actions) and  $(\cdot)$ invisible(communities, roles) elements in social networks. • Visible and invisible elements interact and affect each  $(\cdot)$ 

# Challenges

- How should we model a complex social network so that the model can capture the intrinsic relations between all these elements, such as conformity influence, individual attributes, and actions?
- How do we use a social network model to handle issues such as community detection and behavior prediction without changing model itself?

### Intuitions

#### Links:


- Locally inhomogeneous.
- Each node may belong to several communities.

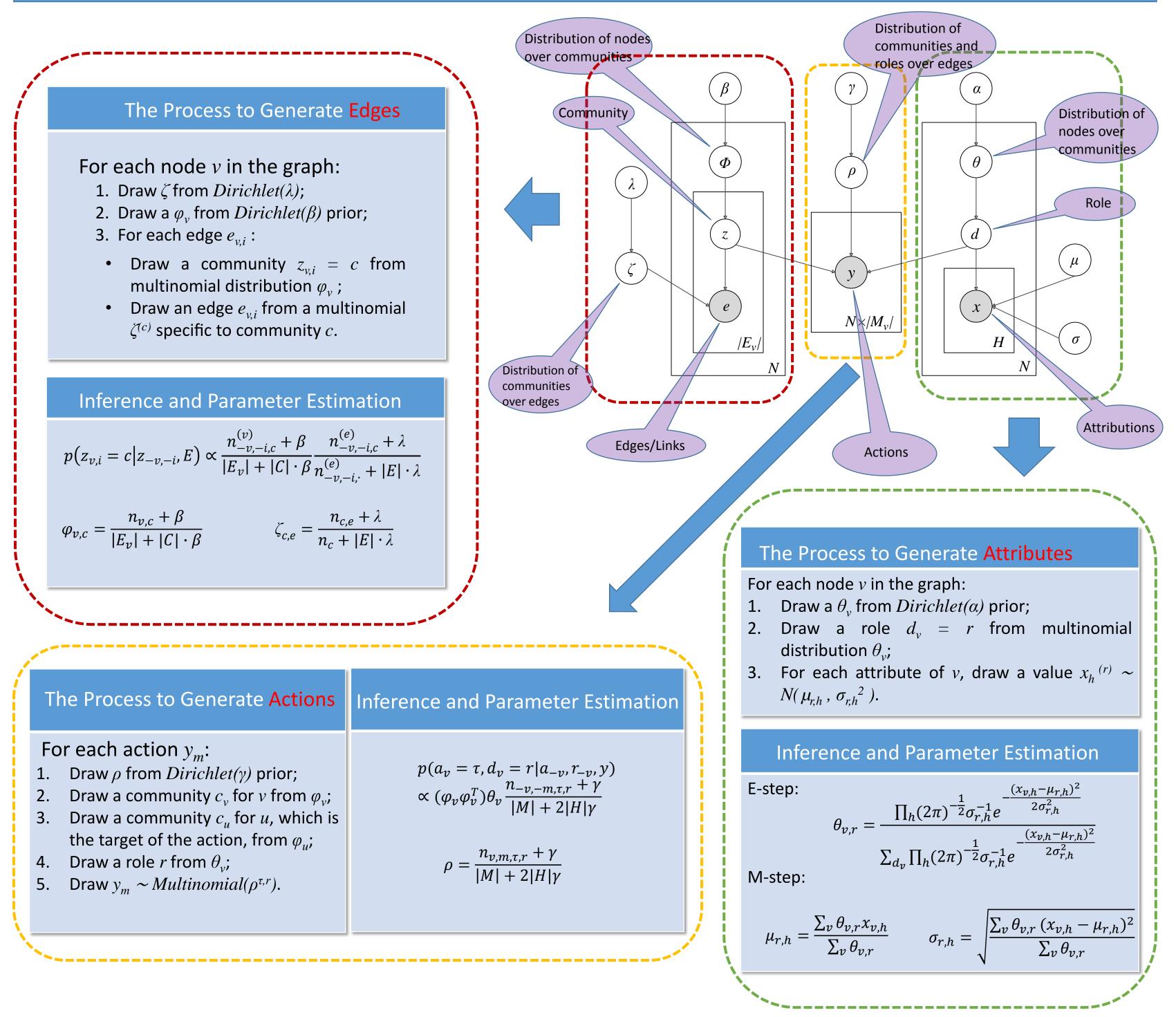
#### **Attributions:**

- Each node has many attributes.
- Based on these attributes, we can classify the nodes into clusters.
- Each cluster can be regarded as a role that • nodes play.

#### **Actions:**

- Whether a node takes a specific action partly depends on the community it belongs to.




Each community has a 2. distribution over the links.

Assumptions

- The attributes of each role 3. satisfy a specific distribution—such as a Gaussian distribution.
- Each node has a 4. distribution over roles according to its attributes.
- Community and role have 5. a distribution over actions.

Whether a node takes an action may also depend on the role it plays.

### Our approach : CRM model

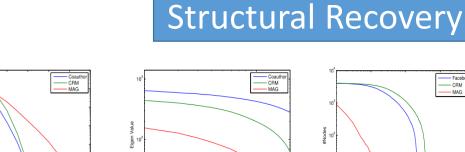


### Experiments

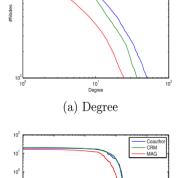
We first use a real dataset to learn the parameters of CRM. Then we use the parameters to generate a synthetic social network. Then we evaluate CRM by three tasks:

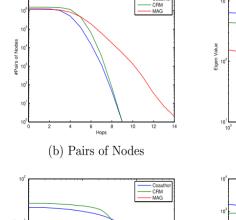
- Structural Recovery. Baseline: MAG(UAI'11)
- Behavior Pediction. By parameter  $\rho$ .
- Community Detection. By parameter  $\zeta$ .

The datasets we used include Coauthor(1,765 nodes, 13,415 links), Facebook(4,039 nodes, 88,234 links), Weibo(1,776,950 nodes, 308,489,739 links).



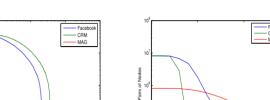

| Date set | Method | Precision      | Recall         | F1-measure     | AUC            |
|----------|--------|----------------|----------------|----------------|----------------|
|          | SVM    | 0.8838(0.1725) | 0.5562(0.3183) | 0.6827(0.2054) | 0.7360(0.1111) |
|          | SMO    | 0.8647(0.1218) | 0.8142(0.1260) | 0.8387(0.1138) | 0.9218(0.0366) |
|          | LR     | 0.8668(0.1242) | 0.8292(0.1022) | 0.8476(0.1016) | 0.9642(0.0196) |
| Coauthor | NB     | 0.8183(0.1830) | 0.8115(0.1444) | 0.8149(0.1549) | 0.9417(0.0335) |
|          | RBF    | 0.8552(0.1058) | 0.8353(0.1165) | 0.8451(0.1081) | 0.9477(0.0271) |
|          | C4.5   | 0.8328(0.0518) | 0.8015(0.1286) | 0.8169(0.1478) | 0.9065(0.1165) |
|          | CRM    | 0.8562(0.1490) | 0.8630(0.0598) | 0.8596(0.1013) | 0.9800(0.0199) |
|          | SVM    | 0.5067(0.1405) | 0.5027(0.1185) | 0.5047(0.1150) | 0.6068(0.1113) |
|          | SMO    | 0.5074(0.1464) | 0.5209(0.1099) | 0.5141(0.1271) | 0.6145(0.0363) |
|          | LR     | 0.5199(0.1306) | 0.5469(0.1073) | 0.5331(0.1157) | 0.6330(0.0377) |
| Weibo    | NB     | 0.5112(0.1245) | 0.5692(0.1083) | 0.5386(0.1172) | 0.6397(0.0394) |
|          | RBF    | 0.5225(0.1361) | 0.4679(0.1117) | 0.4937(0.1217) | 0.5945(0.0085) |
|          | C4.5   | 0.5237(0.1367) | 0.5322(0.1114) | 0.5279(0.1211) | 0.6271(0.1083) |
|          | CRM    | 0.7017(0.1300) | 0.7305(0.1079) | 0.7158(0.1149) | 0.8174(0.0233) |


| Data Sets | Precision | Recall | F1-measure | AUC    |
|-----------|-----------|--------|------------|--------|
| Coauthor  | 0.37%     | 13.76% | 7.04%      | 9.45%  |
| Weibo     | 36.22%    | 40.14% | 38.14%     | 32.08% |


#### **Community Detection**

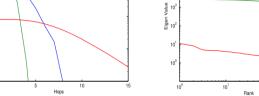

We use a case study on Coauthor dataset to demonstrate its effectiveness in detecting qualitatively. communities




(c) Eigenvalues



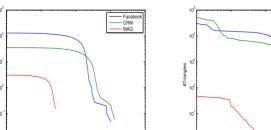





Coautho CRM MAG



(a) Degree


- Facebo - CRM - MAG




(c) Eigenvalues

Facebook
CRM
MAG







