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Social Networks 

☺ There are visible and invisible 
elements in social networks 
Ø  visible elements: users, links, actions 
Ø  invisible elements: communities, roles 

☺ Visible and invisible elements interact 
and affect each other 
Ø  users may have closer relationships within a 

community than across communities 
Ø  users’ actions depend both on the attributes of 

themselves and on the influence of their 
communities 

Ø  … 
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Problems: 
l  How should we model a complex social network so that the model

 can capture the intrinsic relations between all these elements, such
 as conformity influence, individual attributes, and actions? 

l  How do we use a social network model to handle issues such as
 community detection and behavior prediction without changing
 model itself? 

Limitations of existing work: 
l  Utilizing only portions of the available social network information.  
l  Focusing only on a few aspects of social networks, missing the 

global view.  
l  Basing on discriminative methods, ignoring the nature of social 

networks. 
l  Using deterministic method. Can not handle uncertain cases. 
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    To propose a unified probabilistic framework to model a social 
network, which can exactly reflect the intrinsic relationships between 
all visible and invisible elements of a social network, and can be 
used to handle practical issues in a social network. 

Our goal: 
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Assumption 3: The attributes 
of each role satisfy a specific 
distribution—such as a 
Gaussian distribution.   
Assumption 4: Each node 
has a distribution over roles 
according to its attributes. 

Assumption 1: Each node 
has a distribution over the 
communities. 
Assumption 2: Each 
community has a distribution 
over the links. 

☺  Actions.  
ü  Whether a node takes a specific action 

partly depends on the community it 
belongs to.  

ü  Whether a node takes an action may also 
depend on the role it plays.  

☺  Attributions.  
ü  Each node has many attributes, such as 

in-degree, out-degree, etc. 
ü  Based on these attributes, we can 

classify the nodes into clusters.  
ü  Each cluster can be regarded as a role 

that nodes play.  

☺  Links.  
ü  Locally inhomogeneous. 
ü  Each node may belong to several 

communities.  

Intuitions and Assumptions 

Assumption 5: Community 
and role have a distribution 
over actions. 

Intuitions Assumptions 
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CRM 
For each node v in the graph: 

1. Draw ζ from Dirichlet(λ); 

2. Draw a φv from Dirichlet(β) prior; 

3. For each edge ev,i : 

l  Draw a community zv,i = c from 
multinomial distribution φv ; 
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l  Draw an edge ev,i from a multinomial 
distribution ζ(c) specific to community c. 

For each node v in the graph: 
1.  Draw a θv from Dirichlet(α) prior; 
2.  Draw a role dv = r from multinomial distribution 
θv ; 3.  For each attribute of v, draw a value xh 

(r) ∼ N(µr,h , σr,h
2 ). 

For each action ym : 
1.  Draw ρ from Dirichlet(γ) prior; 
2.  Draw a community cv for v from φv ; 
3.  Draw a community cu for u, which is the target of the 
action, from φu ; 
4.  Draw a role r from θv ; 

5.  Draw ym ∼ Multinomial(ρτ,r). 
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Experiments 

•  Structure  recovery.   
We compare the difference of structures between the generated synthetic
 network and the real network by means of six metrics: degree distribution,
 cluster coefficient, etc.    

•  Behavior prediction.  
CRM can predict users’ actions by parameter ρ.  

•  Community detection.  
CRM can mine communities by parameter ζ.  

    We first use a real dataset to learn the parameters of CRM. Then we use 
the parameters to generate a synthetic social network. Then we evaluate 
CRM by the following three tasks: 
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Datasets 

•  Coauthor 
1,765 nodes, 13,415 links. 

•  Facebook 
4,039 nodes, 88,234 links.  

•  Weibo 
      1,776,950 nodes, 308,489,739 links.  
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Structural Recovery 
•   Baseline: MAG (UAI’11) 
•   Datasets:  

•  Coauthor  
•  Facebook  

•   Metrics 
•  Degree is the degree of nodes versus the number of corresponding nodes.  
•  Pairs of Nodes is the cumulative number of pairs of nodes that can be reached in ≤ h hops. 
•  Eigenvalues are eigenvalues of the adjacency matrix representing the given network versus

 their rank. 
•  Eigenvector is the components of the leading eigenvector versus the rank. 
•  Clustering Coefficient is the average local clustering coefficient of nodes versus their degree. 
•  Triangle Participation Ratio is the number of triangles that a node is adjacent to versus the

 number of nodes. 
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Structural Recovery 

 Metric values of the Coauthor network and the two networks generated 
by CRM and MAG. CRM outperforms MAG for every metric. 
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Structural Recovery 

 Metric values of the Facebook network and the two networks generated 
by CRM and MAG. CRM outperforms MAG for every metric. 
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Behavior Prediction 
•   Baseline: SVM, SMO, LR, NB, RBF, C4.5 

•   Datasets:  
•  Coauthor  
•  Weibo 

•   Metrics: Precision, Recall, F1, AUC 
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Community Detection 

•   Datasets:  
•  Coauthor  

•   Result: 
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Future Work 

•  Mining more factors 

•  Integrating nonparametric methords 
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