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Apple Inc. VS Samsung Co.

« A patent infringement suit starts from 2012.
— Lasts 2 years, involves $158+ million and 10 countries.

— [ 1 35546 patents are involved. Apple’s patent

How to find relevant

to a specific product?

Galaxy S I X x* X
Galaxy Tab 2 (10.1) X X* X

Stratosphere x* X x* X* X

SAMSUNG devices accused by APPLE.



Cross-Source Entity Matching

Given an entity in a source domain, we aim to
find its matched entities from target domain

— Product-patent matching;

— Cross-lingual matching;

— Drug-disease matching.
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remind me that it's my. ]
S The gresent invention provides convenient aceess (o items of information that are related to various descriptors input by a user, by means of a unitary interface which is capable of accessing information in a variefy of
dad's birthday % locatins, through a number of different techniques. Using a plurality of heuristic algorithms to operate upon information descriptors input by the user, the present invention locates and displays candidate items o
'mforruion for selection and/or retrieval. Thus, the advantages of a search engine can be exploited, while listing only relevant object candidate items of information. |
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1. A method for locating information in a network using a computer, comprising: receiving by the computer an inputted information descriptor from  user-input device; providing said information descriptor received

m  It's my dad's birthday fmm‘lm uSEFinfUTdeVTC (ST pluTality ST hedFStic THOAUTES, witTeid™ Caci Tieur St nfSdule TorreSFondSTo a FeSpelTiVe 46X of Searci and THipl6YS a AMTercH, préitteried MeuriSTe alfoTith T CorfeSpoifdMg fo saic
tive arca (0 search the area for information that corresponds to the received information deseriptor, and the search arcas include storage media accessible by the computer; searching by the heuristic modulcS,
b on the received nformaton descriptor, the respective areas of search using the heuristic algorith 0 cach respect of search; providing at least one candidate fem of |

infofuation located by the heuristic modules as 2 esult of said searching; and displaying by the computer a representation of sad candidateiten of information on a display device.
Cancel Confirm A
2. Tie method of claim 1, wherein the step of providing the at least one item of located information comprises: ranking each candidate item when a plurality of candidate items are located; and providing the plurblity
of cahdidate items for display based on the ranking of each candidate item.

3. The method ofcaim 2, wherein the step of ranking each candidate item comprises: ranking each candidate item according to a number of the heuristic modules locating the same item. |

Q

4. The method of claim 2, wheren the step of ranking each candidate iem comprise: anking each ofthe heurisc modules; and ranking the candidat s Iocaed by cach heurisc module according 0 the regking
of the conesponding heuristic module.

5. The method of claim 2, wherein the step of ranking each candidate item comprises: ranking each candidate item according to a confidence factor associated with the located candidate item.

Product-Patent matching
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Challenges

Source 1: Siri's Wiki page Source 2: Patents
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Challenges

Source 1: Siri's Wiki page

voice control Apple server

Two domains have less or
no overlapping in content

How to model the topic-
level relevance probability
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Our Approach

Cross-Source Topic Model
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Bridge topic space by

Cross-Sampling | teveraging known

matching relations.
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Inferring Matching Relation

| match or not |
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Cross-Source Topic Model

Input: a dual source corpus C', a matching relation matrix L,
and hyper-parameters « and 3
foreach entity d do
| Generate 6; ~ Dir(a);
end
% cross-sampling-based entity generation
foreach d in each source t do

en

end

% matching relation generation

foreach (d,d") with possible links do
Lﬂﬁenerale lgar ~ p(-|zds zar,7);

e

Latent topics <€ > Matching relations




Model Learning
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Experiments

Task |: Product-patent matching
Task ll: Cross-lingual matching




Task |: Product-Patent Matching

« Given a Wiki article describing a product,
finding all patents relevant to the product.

 Data set:

— 13,085 Wiki articles;
— 15,000 patents from USPTO;
— 1,060 matching relations in total.




Experimental Results

Training: 30% of the matching relations randomly chosen.

Method P@3 P@20 MAP R@3 R#20 MRR

RW+CST | 0667 | 0167 | 0341 | 0200 | 0333 0668 _

Content Similarity based on LDA (CS+LDA): cosine similarity between two entities’ topic
distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate
the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW
+LDA.




Task |I: Cross-lingual Matching

« Given an English Wiki article, we aim to find
a Chinese article reporting the same
content.

e Data set:
— 2,000 English articles from Wikipedia;
— 2,000 Chinese articles from Baidu Baike;

— Each English article corresponds to one
Chinese article.



Experimental Results

Training: 3-fold cross validation

Method Precision Recall F1-Measure F2-Measure

SVM-S 0.957 0.563 0.709 0.613

LFG+LDA 0.652 0.805 0.721 0.769

Title Only: only considers the (translated) title of articles.
SVM-S: famous cross-lingual Wikipedia matching toolkit.
LFGI': mainly considers the structural information of Wiki articles.

LFG+LDA: adds content feature (topic distributions) to LFG by employing LDA.
LFG+CST: adds content feature to LFG by employing CST.

[1] Zhichun Wang, Juanzi Li, Zhigang Wang, and Jie Tang. Cross-lingual Knowledge Linking Across Wiki Knowledge Bases.

WWW'12. pp. 459-468.



Topics Relevant to Apple and Samsung
(Topic titles are hand-labeled)

Top Patent Terms Top Wiki Terms

Touchscreen Recognition, point, digital, touch, | Screen, touch, iPad, os,
sensitivity, i unlock, press




Prototype System

competitor analysis @ http://pminer.org
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Conclusion

« Study the problem of entity matching
across heterogeneous sources.

* Propose the cross-source topic model,
which integrates the topic extraction and
entity matching into a unified framework.

» Conduct two experimental tasks to
demonstrate the effectiveness of CST.
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Apple Inc. VS Samsung Co.

* A patent infringement lawsuit starts from 2012.

— Nexus S, Epic 4G, Galaxy S 4G, and the Samsung
Galaxy Tab, infringed on Apple’s intellectual property:
its patents, trademarks, user interface and style.

— Lasts over 2 years, involves $158+ million.
* How to find patents relevant to a specific product?

= o
e "w‘-.: ‘“

& ] S SIS
i RO
LT P P S
£ A IR s o
P S I e
';'4///9%% !{:7//4//4// TSI



Problem

* Given an entity in a source domain, we aim to
find its matched entities from target domain.

— Given a textural description of a product, finding
related patents in a patent database.

— Given an English Wiki page, finding related Chinese
Wiki pages.

— Given a specific disease, finding all related drugs.




Basic Assumption

* For entities from different sources, their
matching relations and hidden topics are
influenced by each other.

* How to leverage the known matching
relations to help link hidden topic spaces of
two sources?




Cross-Sampling

:d1 and d, are matched ... Topics

Source 2

Source 1

@)

B, =(4,1,0)

0.62
0.38




Cross-Sampling
©

Sample a new term w, for d, Topics

Toss a coin c, if c=0, sample w,’s
topic according to d,

Source 2
Source 1
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Cross-Sampling
©,

Sample a new term w, for d, Topics

Otherwise sample w,’s topic
according to d,
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Parameter Analysis
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Training: 30% of the matching relations randomly chosen.

Method

Experimental Results

P@3
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Content Similarity based on LDA (CS+LDA): cosine similarity between two articles’ topic
distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate
the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW
+LDA.

2

|




Training: 30% of the matching relations randomly chosen.

Method

Experimental Results

P@3

P@20

MAP

R@3

MRR

RW+LDA

RW+CST

0.111

0.667

0.117

0.167

0.123

0.341

0.033

0.200

0.233

0.333

0.429

0.668

Content Similarity based on LDA (CS+LDA): cosine similarity between two articles’ topic
distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate
the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW
+LDA.

3

|




