

Entity Matching across Heterogeneous Sources

Yang Yang*, Yizhou Sun*, Jie Tang*, Bo Ma*, and Juanzi Li*

*Tsinghua University

*Northeastern University

*Carnegie Mellon University

Apple Inc. VS Samsung Co.

- A patent infringement suit starts from 2012.
 - Lasts 2 years, involves \$158+ million and 10 countries.
 - 7 / 35546 patents are involved.

 Apple's patent

SAMSUNG devices accused by APPLE.

Cross-Source Entity Matching

- Given an entity in a source domain, we aim to find its matched entities from target domain.
 - Product-patent matching;
 - Cross-lingual matching;
 - Drug-disease matching.

Problem

 C_2

C₁

Source 1: Siri's Wiki page

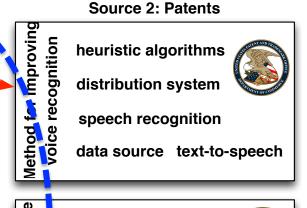
iOS iPhone
iPod iPad
wikiPedia
intelligent personal assistant
Cydia knowledge navigator
voice control Apple server
natural language user interface

Input 1: Dual source corpus

 $\{C_1, C_2\}$, where $C_t=\{d_1, d_2, ..., d_n\}$ is a collection of entities

Input 2: Matching relation matrix

 $L_{ij} = \begin{cases} 1, d_i \text{ and } d_j \text{ are matched} \\ 0, \text{ not matched} \\ ?, \text{ unknown} \end{cases}$

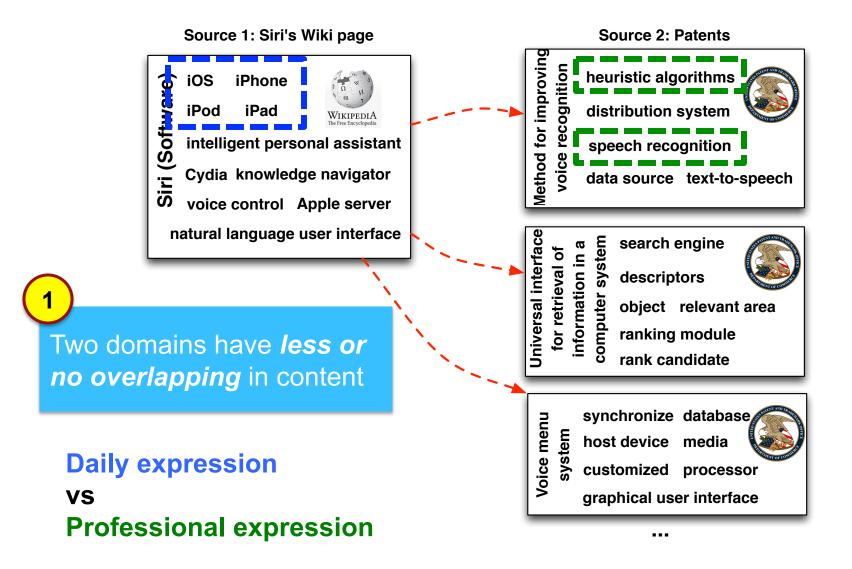


Computer system computer system computer system computer system computer system computer system canking module rank candidate

synchronize database
host device media
customized processor
graphical user interface

•••

Challenges



Challenges

Topic:

voice control

0.83

iOS **iPhone iPod iPad** intelligent personal assistant Cydia knowledge navigator voice control Apple server natural language user interface

Source 2: Patents

Method for improving heuristic algorithms distribution system speech recognition data source text-to-speech

Topic: ????

Topic:???

search engine

descriptors

object relevant area

ranking module

rank candidate

Voice menu

information in a for retrieval of

> synchronize database host device media

customized processor

graphical user interface

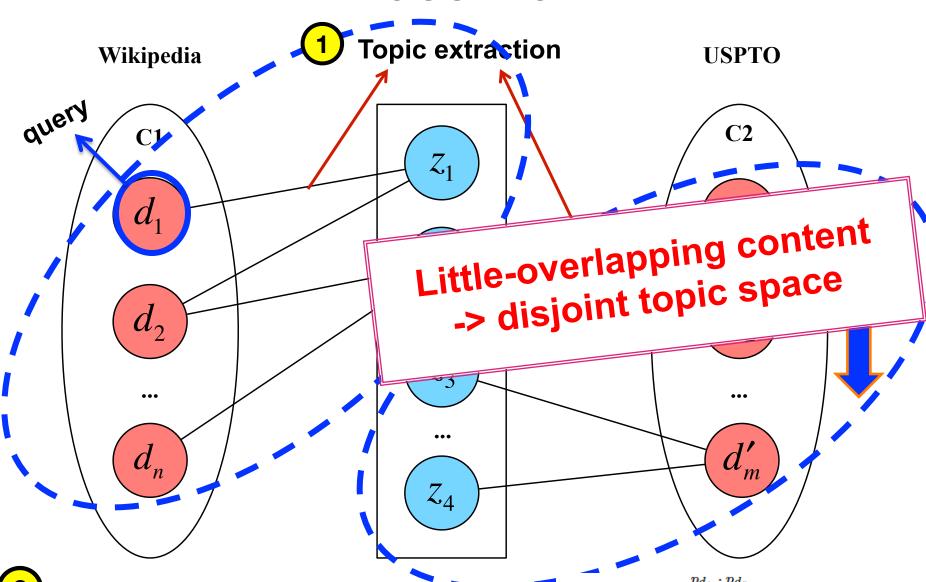
Two domains have *less or* no overlapping in content

How to model the topiclevel relevance probability

Our Approach

Cross-Source Topic Model

Baseline



2

Ranking candidates by topic similarity $Sim(d_1, d_2) = \frac{1}{1}$

 $Sim(d_1, d_2) = \frac{p_{d_1} \cdot p_{d_2}}{||p_{d_1}|| \times ||p_{d_2}||}$

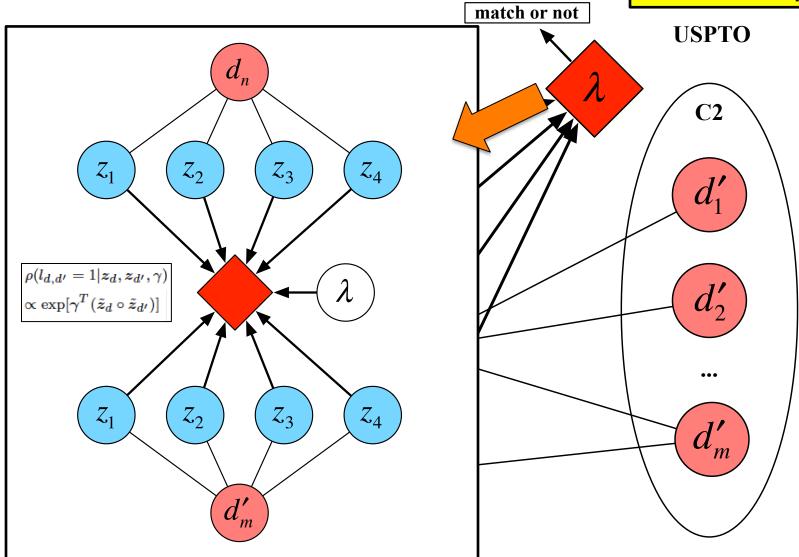
Bridge topic space by leveraging known matching relations.

d_n is matched with d'_m

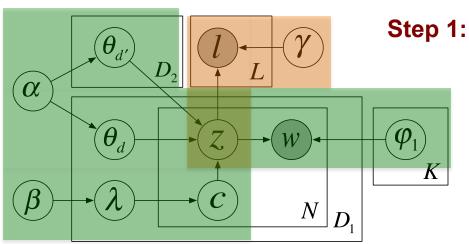
Wikipedia **Topics USPTO** How latent topics influence matching relations? **C1** .. **∪−**υ, sample topics according to the topic distribution of d'_m Z_3 Word Z_4 Toss a coin C

Inferring Matching Relation

Infer matching relations by leveraging extracted topics.



Cross-Source Topic Model



Step 2:

```
Input: a dual source corpus C, a matching relation matrix L,
         and hyper-parameters \alpha and \beta
foreach entity d do
    Generate \theta_d \sim \text{Dir}(\alpha);
end
% cross-sampling-based entity generation
foreach d in each source t do
     Set \beta according to L_d;
     Generate \lambda_d \sim \text{Dir}(\beta);
    for n=1 to N_d do
         Generate c_{d,n} \sim \text{Mult}(\lambda_d), c_{d,n} can be d or the index
         of matched entities with d:
         Draw a topic z_{d,n} \sim \text{Mult}(\theta_{c_{d,n}}) from the topic
         distribution of the entity c;
         Draw a word w_{d,n} \sim \text{Mult}(\varphi_{t,z_{d,n}}) from z_{d,n}-specific
         word distribution:
    end
end
% matching relation generation
foreach (d, d') with possible links do
    Generate l_{d,d'} \sim \rho(\cdot|z_d, z_{d'}, \gamma);
end
```

Latent topics ← → Matching relations

Model Learning

Variational EM

- Model parameters: $\{\varphi, \gamma\}$
- Variational parameters: $\{\vartheta, \tau, \eta, \epsilon\}$
- E-step:

$$\begin{split} \eta_{d,c} &= \beta_{d,c} + N_d \times \epsilon_{d,c} \\ \tau_{d,k} &= \alpha_k + \sum_{n=1}^{N_d} \vartheta_{d,n,k} \\ \epsilon_{d,n,c} &\propto \exp\{\Psi(\eta_{d,c}) - \Psi(\sum_{i \in R(d)} \eta_{d,i})\} \\ \vartheta_{d,n,k} &\propto \sum_{d' \in \{R(d),d\}} (\exp\{\sum_{d'' \neq d'} \frac{\gamma_k \sum_{i=1}^{N_{d''}} \vartheta_{d'',i,k}}{N_{d'}N_{d''}} \\ &+ \Psi(\tau_{d',k}) - \Psi(\sum_{j=1}^K \tau_{d',j})\} \epsilon_{d,n,d'} \times \varphi_{t,k,v}) \end{split}$$

– M-step:

```
\begin{split} \varphi_{t,k,v} & \propto \sum_{d=1}^{D_t} \sum_{n=1}^{N_d} \vartheta_{d,n,k} \mathbf{1}(w_{d,n}^t = v) \\ \gamma_k &= \frac{\sum_{d,d'} 1}{2 \sum_{d,d'} l_{d,d'} [(\Upsilon_d - \Upsilon_{d'}) \circ (\Upsilon_d - \Upsilon_{d'})]_k} \end{split}
```

```
Input: a dual source corpus C, a matching relation matrix L,
        and hyper-parameters \alpha and \beta
Initialize \{\vartheta, \tau, \eta, \epsilon, \varphi, \gamma\} randomly;
repeat
    % E-Step: optimize the ELBO;
    foreach d in each source t do
        for c = 0 to 1 do
            Update \eta_{d,c} according to Eq. 6;
        end
        for k = 1 to K do
           Update \tau_{d,k} according to Eq. 7;
        end
        for n = 1 to N_d do
            for c = 0 to 1 do
               Update \epsilon_{d,n,c} according to Eq. 8;
            end
            for k = 1 to K do
              Update \vartheta_{d,n,k} according to Eq. 9;
            end
        end
    end
    % M-Step: maximize the resulting ELBO;
    foreach topic k in each source t do
        foreach term v do
           Update \varphi according to Eq. 10;
        end
        Update \gamma_k according to Eq. 11;
    end
until Convergence;
```

Experiments

Task I: Product-patent matching

Task II: Cross-lingual matching

Task I: Product-Patent Matching

- Given a Wiki article describing a product, finding all patents relevant to the product.
- Data set:
 - 13,085 Wiki articles;
 - 15,000 patents from USPTO;
 - 1,060 matching relations in total.

Experimental Results

Training: 30% of the matching relations randomly chosen.

Method	P@3	P@20	MAP	R@3	R#20	MRR
CS+LDA	0.111	0.083	0.109	0.011	0.046	0.053
RW+LDA	0.111	0.117	0.123	0.033	0.233	0.429
RTM	0.501	0.233	0.416	0.057	0.141	0.171
RW+CST	0.667	0.167	0.341	0.200	0.333	0.668
CST	0.667	0.250	0.445	0.171	0.457	0.683

Content Similarity based on LDA (CS+LDA): cosine similarity between two entities' topic distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW +LDA.

Task II: Cross-lingual Matching

- Given an English Wiki article, we aim to find a Chinese article reporting the same content.
- Data set:
 - 2,000 English articles from Wikipedia;
 - 2,000 Chinese articles from Baidu Baike;
 - Each English article corresponds to one Chinese article.

Experimental Results

Training: 3-fold cross validation

Method	Precision	Recall	F1-Measure	F2-Measure
Title Only	1.000	0.410	0.581	0.465
SVM-S	0.957	0.563	0.709	0.613
LFG	0.661	0.820	0.732	0.782
LFG+LDA	0.652	0.805	0.721	0.769
LFG+CST	0.682	0.849	0.757	0.809

Title Only: only considers the (translated) title of articles.

SVM-S: famous cross-lingual Wikipedia matching toolkit.

LFG^[1]: mainly considers the structural information of Wiki articles.

LFG+LDA: adds content feature (topic distributions) to LFG by employing LDA.

LFG+CST: adds content feature to LFG by employing CST.

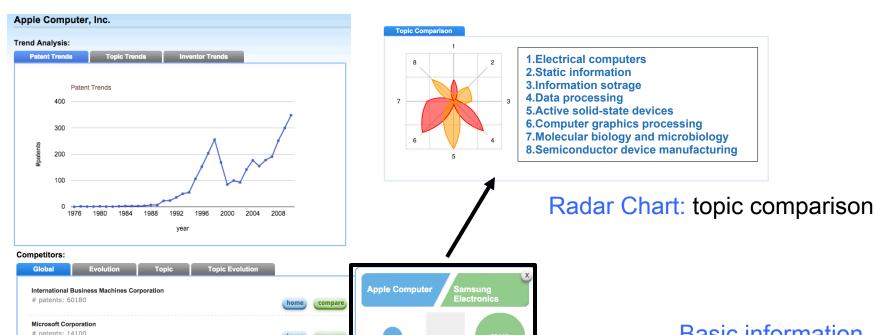
Topics Relevant to Apple and Samsung

(Topic titles are hand-labeled)

Title	Top Patent Terms	Top Wiki Terms	
Gravity Sensing	Rotational, gravity, interface, sharing, frame, layer	Gravity, iPhone, layer, video, version, menu	
Touchscreen	Recognition, point, digital, touch, sensitivity, image	Screen, touch, iPad, os, unlock, press	
Application Icons	Interface, range, drives, icon, industrial, pixel	Icon, player, software, touch, screen, application	

Prototype System

competitor analysis @ http://pminer.org



Patents Worldwide Worldwide Computer hardware Computer software Consumer Consumer Industry Electronics Digital distribution Cupertino, California, U.S. (April 1, 1976 Founded (1976-04-01)) \$75.18 billion (FY US\$ 252.5 billion 2010)[4] (2008)[2] \$47.79 billion (FY US\$ 90.5 billion (2008 Equity 2010)[4]

Basic information comparison:

#patents, business area, industry, founded year, etc.

Conclusion

 Study the problem of entity matching across heterogeneous sources.

 Propose the cross-source topic model, which integrates the topic extraction and entity matching into a unified framework.

 Conduct two experimental tasks to demonstrate the effectiveness of CST.

Thank You!

Entity Matching across Heterogeneous Sources

Yang Yang*, Yizhou Sun*, Jie Tang*, Bo Ma*, and Juanzi Li*

*Tsinghua University

*Northeastern University

*Carnegie Mellon University

Apple Inc. VS Samsung Co.

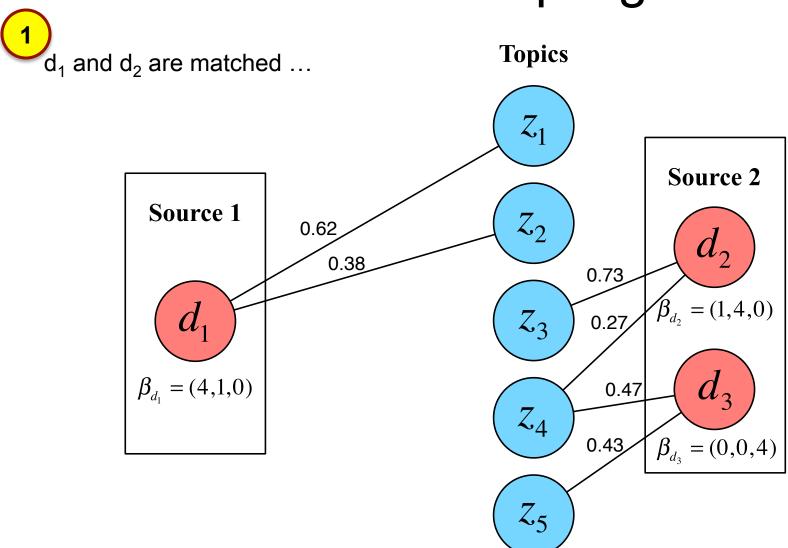
- A patent infringement lawsuit starts from 2012.
 - Nexus S, Epic 4G, Galaxy S 4G, and the Samsung Galaxy Tab, infringed on Apple's intellectual property: its patents, trademarks, user interface and style.
 - Lasts over 2 years, involves \$158+ million.
- How to find patents relevant to a specific product?

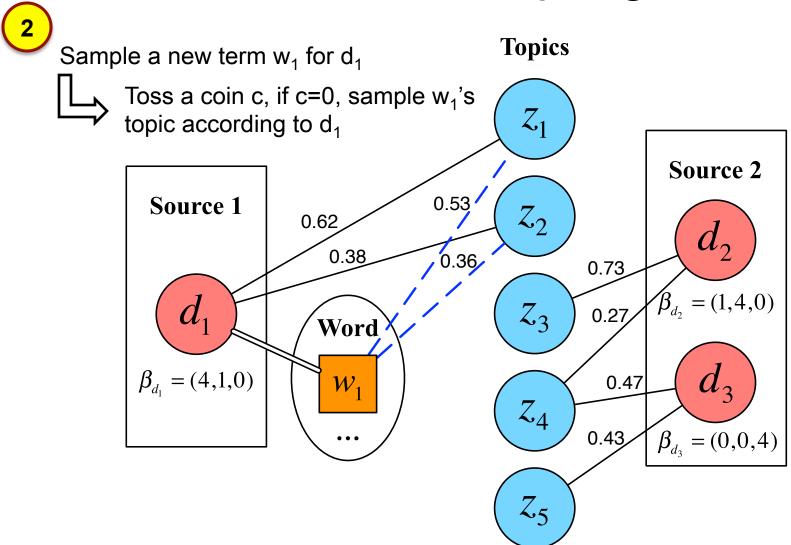
Problem

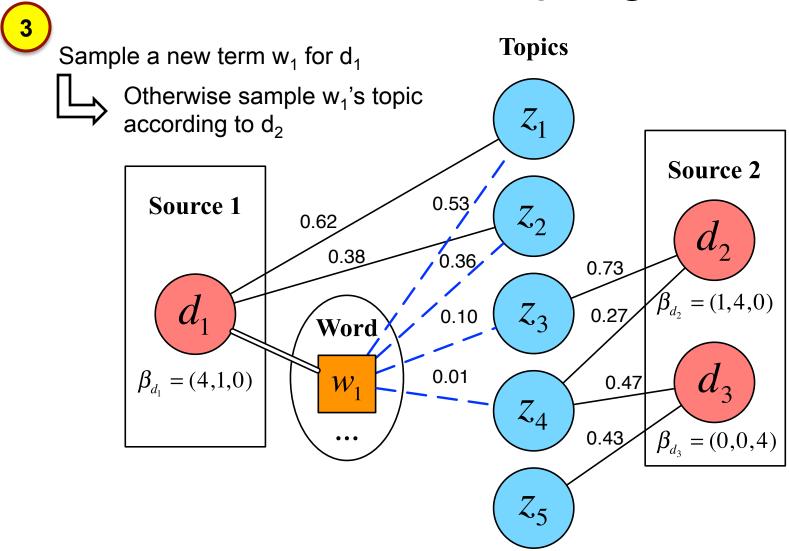
- Given an entity in a source domain, we aim to find its matched entities from target domain.
 - Given a textural description of a product, finding related patents in a patent database.
 - Given an English Wiki page, finding related Chinese
 Wiki pages.
 - Given a specific disease, finding all related drugs.

Basic Assumption

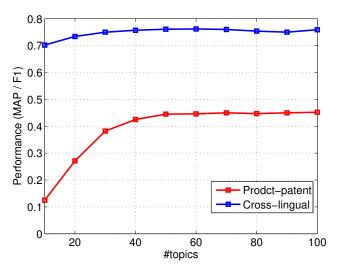
- For entities from different sources, their matching relations and hidden topics are influenced by each other.
- How to leverage the known matching relations to help link hidden topic spaces of two sources?



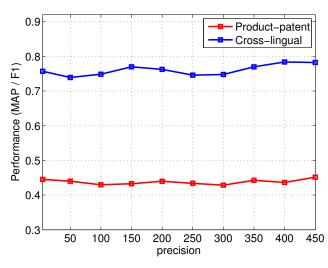




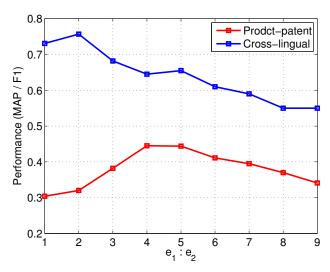
Parameter Analysis



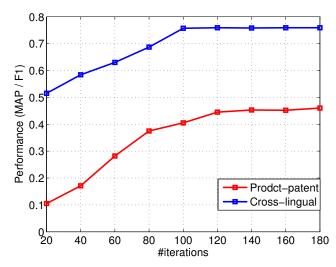
(a) Number of topics K



(c) Precision



(b) Ratio



(d) Convergence analysis

Experimental Results

Training: 30% of the matching relations randomly chosen.

Method	P@3	P@20	MAP	R@3	R#20	MRR
CS+LDA	0.111	0.083	0.109	0.011	0.046	0.053
RW+LDA	0.111	0.117	0.123	0.033	0.233	0.429
RTM	0.501	0.233	0.416	0.057	0.141	0.171
RW+CST	0.667	0.167	0.341	0.200	0.333	0.668
CST	0.667	0.250	0.445	0.171	0.457	0.683

Content Similarity based on LDA (CS+LDA): cosine similarity between two articles' topic distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW +LDA.

Experimental Results

Training: 30% of the matching relations randomly chosen.

Method	P@3	P@20	MAP	R@3	R#20	MRR
CS+LDA	0.111	0.083	0.109	0.011	0.046	0.053
RW+LDA	0.111	0.117	0.123	0.033	0.233	0.429
RTM	0.501	0.233	0.416	0.057	0.141	0.171
RW+CST	0.667	0.167	0.341	0.200	0.333	0.668
CST	0.667	0.250	0.445	0.171	0.457	0.683

Content Similarity based on LDA (CS+LDA): cosine similarity between two articles' topic distribution extracted by LDA.

Random Walk based on LDA (RW+LDA): random walk on a graph where edges indicate the hyperlinks between Wiki articles and citations between patents.

Relational Topic Model (RTM): used to model links between documents.

Random Walk based on CST (RW+CST): uses CST instead of LDA comparing with RW +LDA.