QUINT: On Query-Specific Optimal Networks

Presenter: Liangyue Li

Joint work with

Yuan Yao (NJU)

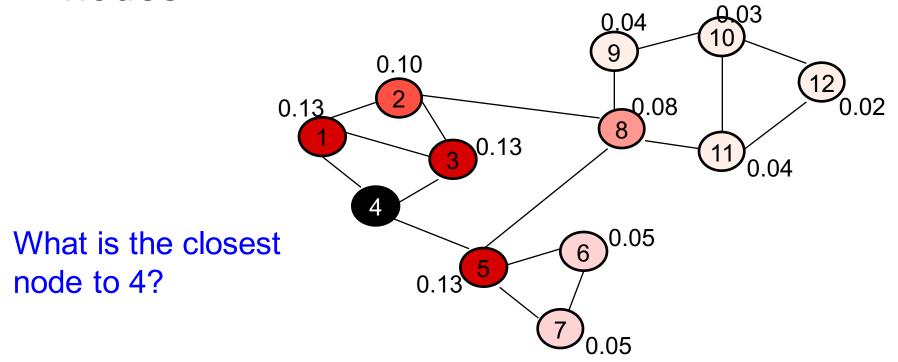
Jie Tang (Tsinghua)

Wei Fan (Baidu)

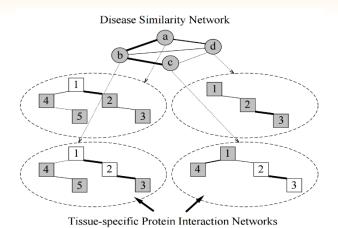
Hanghang Tong (ASU)

Node Proximity: What?

 Node proximity: the closeness (a.k.a., relevance, or similarity) between two nodes



Node Proximity: Why?



Biology [Ni+]

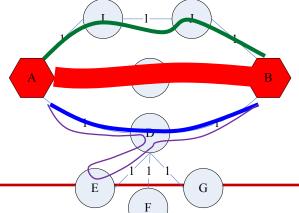
E-commerce [Chen+]

Social Network [Lerman+]

Disaster Mgtm [Zheng+]

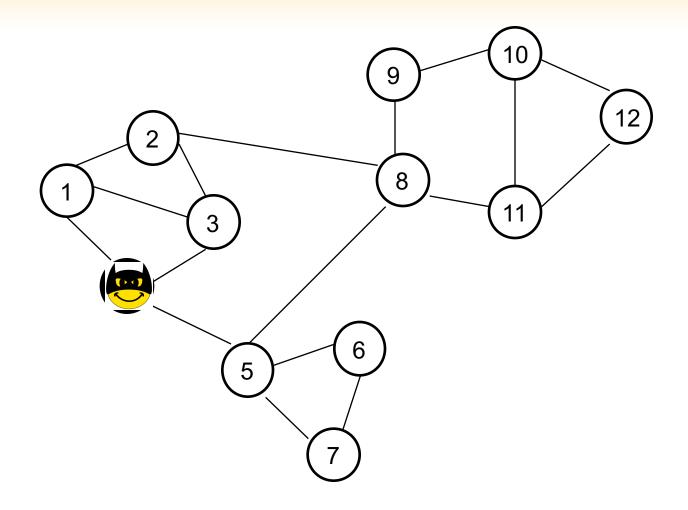
Node Proximity: How?

- Random Walk with Restart (RWR)
 - Idea: summarize multiple weighted relationships btw nodes
 - Variants:
 - Electric networks: SAEC[Faloutsos+]
 - Katz [Katz], [Huang+]
 - Matrix-Forest-based Alg [Chobotarev+]



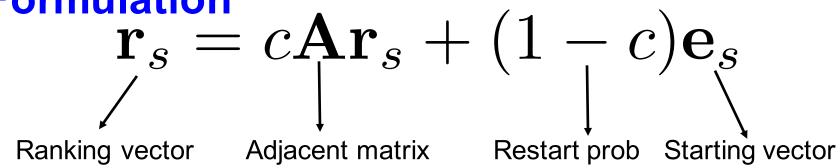
```
Prox (A, B) =
Score (Red Path) +
Score (Green Path) +
Score (Blue Path) +
Score (Purple Path) + ...
```

Node Proximity: RWR



Node Proximity -- RWR

- Detail: a random walker starts from s
 - (a) transmit to one neighbor with $~p \sim c A_{ij}$
 - (b) go back to s with prob (1-c)
- Formulation



- Assumption
 - How to best leverage the fixed input graph ${f A}$

Node Proximity: Learning RWR

- Goal
 - Use side information to learn better graph
 - Side info: user feedback, node attributes
- Key Idea: Infer optimal edge weights

$$\min_{w} \| \underline{w} \|^2 + \lambda \sum_{x \in \mathcal{P}, y \in \mathcal{N}} \underline{h(\mathbf{Q}(y, s) - \mathbf{Q}(x, s))}$$
 Map edge attributes to weights

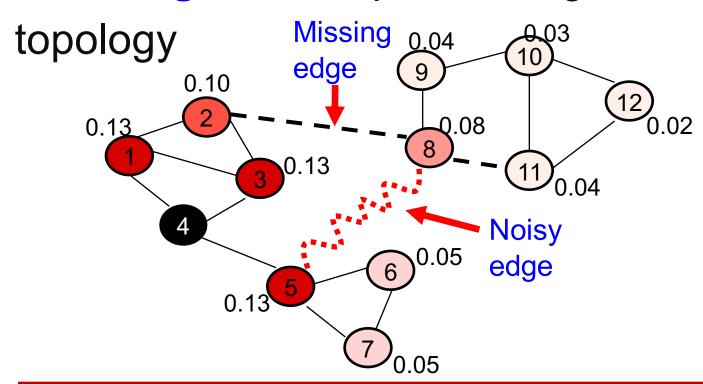
- Limitation: Fixed topology
- J. Tang, T. Lou and J. Kleinberg. Transfer Link Prediction across Heterogeneous Social Networks. TOIS, 2015.
- L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. WSDM, 2011.
- A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank networked entities. KDD, 2006.

Algorithmic Questions

- Q1: optimal weights or optimal topology?
- Q2: one-fits-all or one-fits-one?
- Q3: offline learning or online learning?

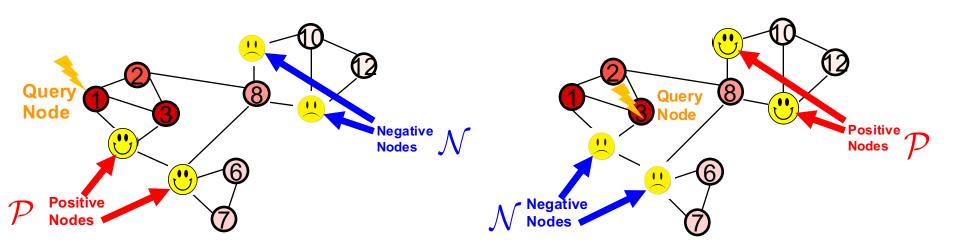
Q1: Optimal Weights or Topology?

- Observation: real network is noisy and incomplete
- Challenge: learn optimal weights and



Q2: One-fits-all, or one-fits-one?

 Observation: optimal network for different queries might be different



- Challenge:
 - How to tailor learning for each query

Q3: Offline or Online Learning

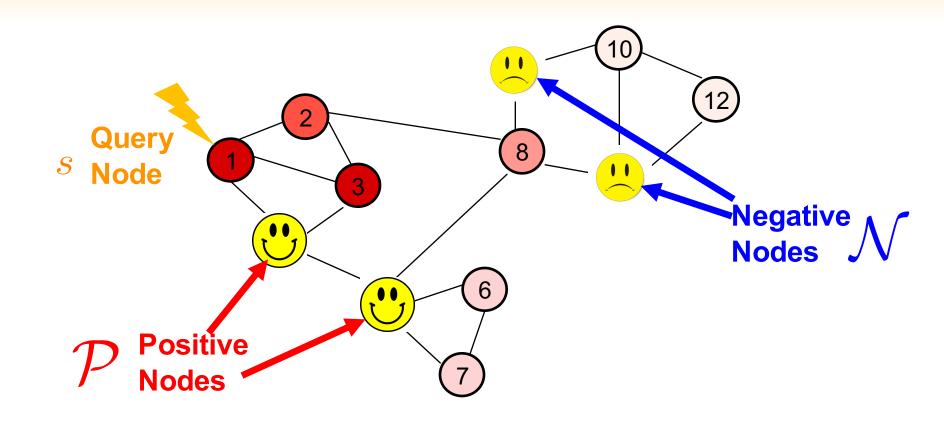
Observation:

- Learning RWR: costly iterative sub-routine to compute a single gradient vector
- Learning topology: parameter space expands to $O(n^2)$
- One-fits-one: one optimal network for each query

Challenge:

– How to perform query-specific online learning?

Query-specific Optimal Network Learning



Given: An input network A, a query node s, positive

nodes ${\mathcal P}$ and negative nodes ${\mathcal N}$

Learn: An optimal network A_s specific to the query

Roadmap

- Motivations
- Proposed Solutions: QUINT
- Empirical Evaluations
- Conclusions

QUINT - Formulations

Optimization Formulation (hard version)

$$\begin{array}{c|c} & \text{Matching Input Network} & \text{Positive} & \text{Negative} \\ & \text{arg min} & \|\mathbf{A}_s - \mathbf{A}\|_F^2 & \text{nodes} \\ & \text{s.t.,} & \mathbf{Q}(x,s) > \mathbf{Q}(y,s), \forall x \in \mathcal{P}, \forall y \in \mathcal{N} \\ & \text{Matching Preference(hard)} \end{array}$$

Remarks

- Larger parameter space $O(n^2)$
- Query-specific Optimal Network
- No exception is allowed in the constraint

QUINT - Formulations

Optimization Formulation (soft version)

$$rg \min_{\mathbf{A}_s} \mathcal{L}(\mathbf{A}_s) = \lambda \|\mathbf{A}_s - \mathbf{A}\|_F^2$$
 Loss function $+\sum_{x \in \mathcal{P}, y \in \mathcal{N}} g(\mathbf{Q}(y, s) - \mathbf{Q}(x, s))$ Penalty to the violation of preferences

Remarks

- Characteristic $\mathbf{Q}(y,s) < \mathbf{Q}(x,s) \Rightarrow g(\cdot) = 0$ $\mathbf{Q}(y,s) > \mathbf{Q}(x,s) \Rightarrow g(\cdot) > 0$

Wilcoxon-Mann-Whitney (WMW) loss

QUINT -- Optimization

- Gradient Descent Based Solution
 - Gradient

$$\frac{\partial \mathcal{L}(\mathbf{A}_s)}{\partial \mathbf{A}_s} = 2\lambda(\mathbf{A}_s - \mathbf{A}) + \sum_{x \in \mathcal{P}, y \in \mathcal{N}} \frac{\partial g(\mathbf{Q}(y, s) - \mathbf{Q}(x, s))}{\partial \mathbf{A}_s} \\
= 2\lambda(\mathbf{A}_s - \mathbf{A}) + \sum_{x,y} \frac{\partial g(d_{yx})}{\partial d_{yx}} \left(\frac{\partial \mathbf{Q}(y, s)}{\partial \mathbf{A}_s} - \frac{\partial \mathbf{Q}(x, s)}{\partial \mathbf{A}_s}\right)$$

Derivative of an Inverse

$$\frac{\partial \mathbf{Q}}{\partial \mathbf{A}_s(i,j)} = -\mathbf{Q} \frac{\partial (\mathbf{I} - c\mathbf{A}_s)}{\partial \mathbf{A}_s(i,j)} \mathbf{Q} = c\mathbf{Q} \mathbf{J}^{ij} \mathbf{Q}$$

Differentiable

$$\frac{\partial \mathbf{Q}(x,s)}{\partial \mathbf{A}_s(i,j)} = c\mathbf{Q}(x,i)\mathbf{Q}(j,s)$$

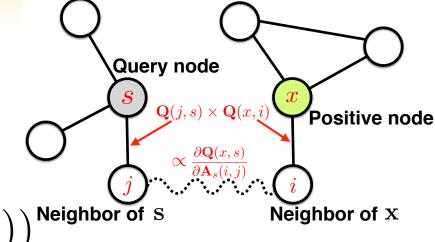
QUINT -- Optimization

Intuition

$$\frac{\partial \mathbf{Q}(x,s)}{\partial \mathbf{A}_s(i,j)} = c\mathbf{Q}(x,i)\mathbf{Q}(j,s)$$

Complexity

$$O(T_1|\mathcal{P}|\cdot|\mathcal{N}|(T_2m+n^2))$$
 Neighbor of ${}^{ ext{s}}$



Observation

- Usually $T_1, T_2, |\mathcal{P}|, |\mathcal{N}| \ll m, n$
- Complexity: quadratic

Q: how to scale up?

QUINT - Scale-up

- Key idea: Optimal network is rank-one perturbation to original network
- Details:

$$\arg\min_{\mathbf{f},\mathbf{g}} \mathcal{L}(\mathbf{f},\mathbf{g}) = \lambda \|\mathbf{f}\mathbf{g}'\|_F^2 + \beta(\|\mathbf{f}\|^2 + \|\mathbf{g}\|^2) + \sum_{x \in \mathcal{P}, y \in \mathcal{N}} g(\mathbf{Q}(y,s) - \mathbf{Q}(x,s))$$

- Optimization: alternating gradient descent
- Complexity: $O(T_1|\mathcal{P}|\cdot|\mathcal{N}|(T_2m+n))$

QUINT – Variant #1

- Key idea: apply Taylor Approximation for Q
- Details:

$$\mathbf{Q} = (\mathbf{I} - c\mathbf{A})^{-1}$$

$$\approx \mathbf{I} + \sum_{i=1}^{k} c^{k} \mathbf{A}^{k}$$

- Complexity: using 1st order Taylor $O(T_1|\mathcal{P}|\cdot|\mathcal{N}|n)$
- **Benefit**: accessing $\mathbf{Q}(i,j)$ faster

QUINT – Variant #2

- Key idea: Only update neighborhood of the query node and the pos/neg nodes (Localized Rank-One Perturbation)
- Complexity

$$O(T_1|\mathcal{P}|\cdot|\mathcal{N}|\max(|\mathbb{N}(s)|,|\mathbb{N}(\mathcal{P},\mathcal{N})|))$$

 $\mathbb{N}(s)$: Neighbors of s

 $\mathbb{N}(\mathcal{P}, \mathcal{N})$: Neighbors of pos/neg nodes $\max(|\mathbb{N}(s)|, |\mathbb{N}(\mathcal{P}, \mathcal{N})|) \ll n$

Benefit: usually sub-linear to n

Roadmap

- Motivations
- Proposed Solutions: QUINT
- Empirical Evaluations
- Conclusions

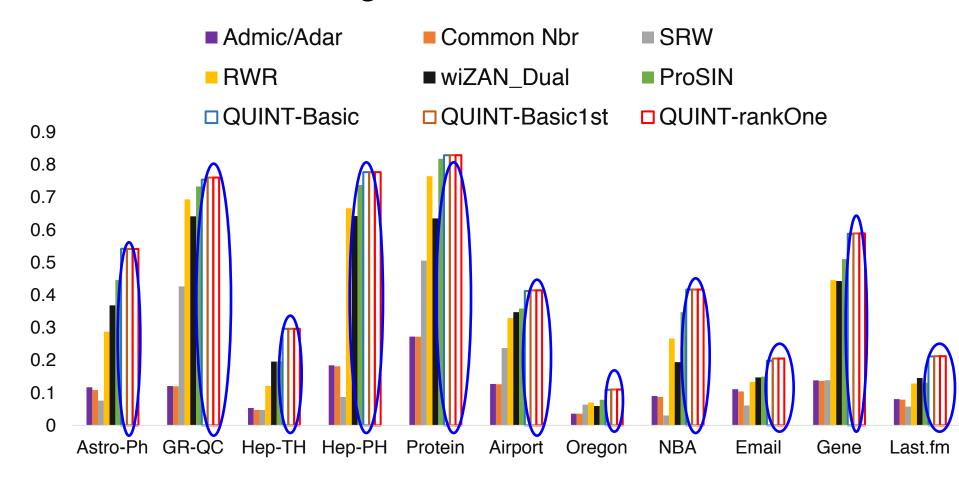
Datasets

10+ diverse networks

Category	Network	# Nodes	# Edges
Collaboration	Astro-Ph	19,144	198,110
	GR-QC	$5,\!242$	14,496
	Hep-TH	10,700	25,997
	Hep-PH	$12,\!527$	118,515
SOCIAL	Email-Enron	36,692	183,831
	Last.fm	$136,\!420$	1,685,524
	LiveJournal	$3,\!017,\!286$	87,037,567
	$\operatorname{LinkedIn}$	$6,\!726,\!011$	19,360,690
	$\operatorname{Twitter}$	$40,\!171,\!624$	$ \ 1,\!468,\!365,\!182\ $
Infrastructure	Oregon	7,352	15,665
	$\operatorname{Airport}$	$2,\!833$	7,602
Sports	NBA	3,924	126,994
Biology	Gene	14,340	43,588
	Protein	2,712	25,979

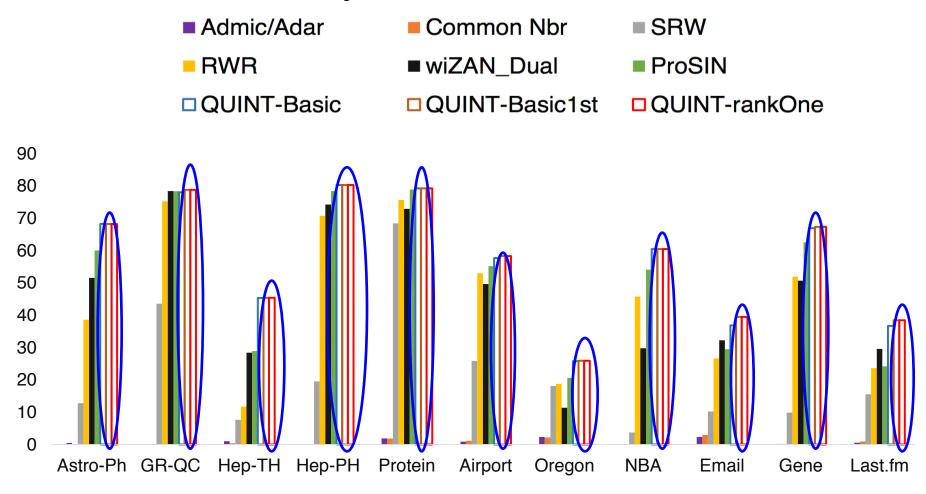
Effectiveness: MAP (Higher is better)

MAP: Mean Average Precision

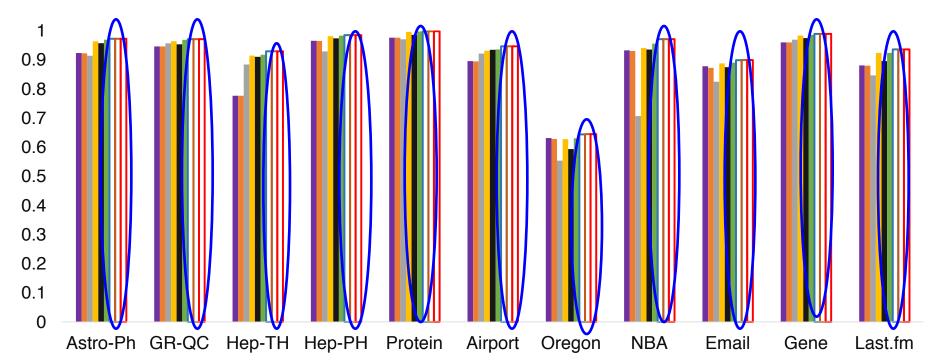


Effectiveness: HLU (Higher is better)

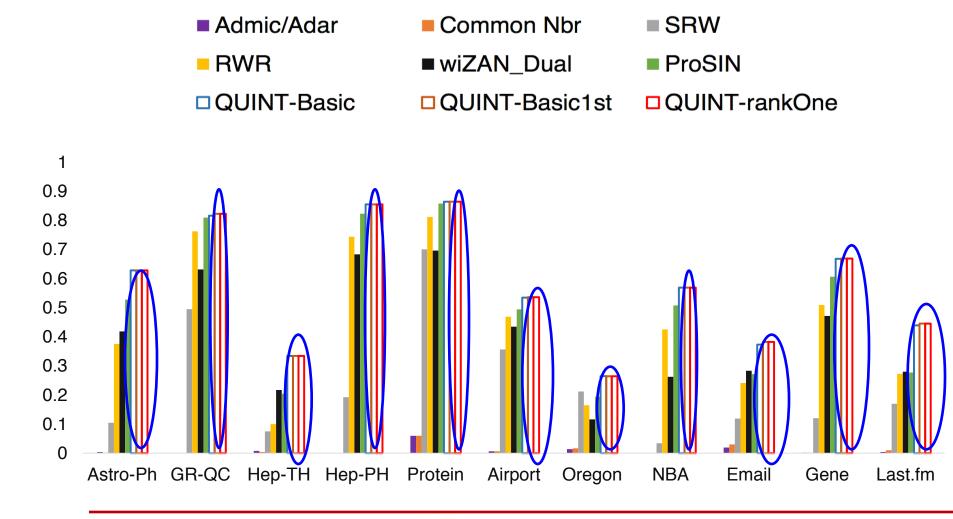
HLU: Half-life Utility



Effectiveness: AUC (Higher is better)



Effectiveness: Precision@20 (Higher is better)

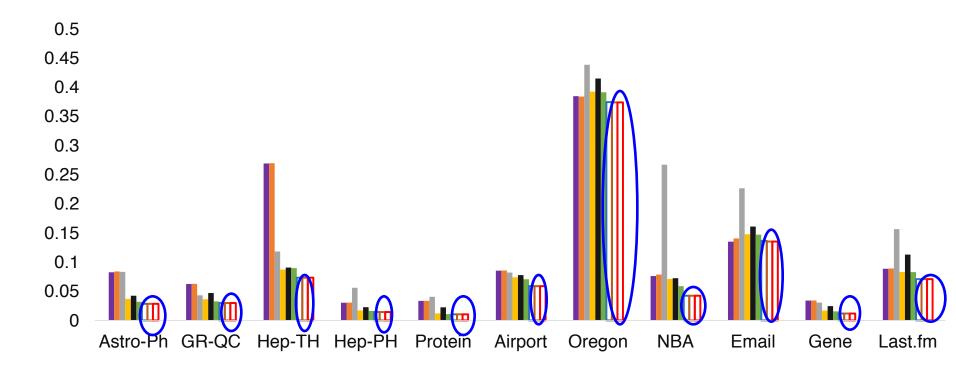


Effectiveness: Recall@5 (Higher is better)

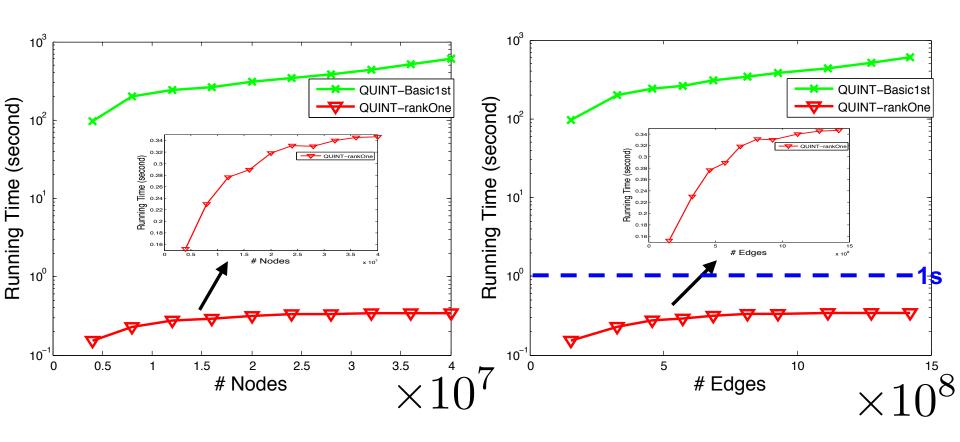


Effectiveness: MPR (Lower is better)

MPR: Mean Percentile Ranking



Efficiency -- Twitter



QUINT-rankOne scales sub-linearly

Roadmap

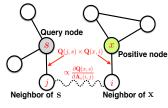
- Motivations
- Proposed Solutions: QUINT
- Empirical Evaluations
- Conclusions

Conclusion: QUINT

Goals: Learn Optimal network (for Node Proximity)

	Q1	Q2	Q 3
Existing	Optimal weights	One-fit-all	offline
QUINT	Optimal topology	One-fit-one	online

- Algorithms: VERY efficient way to compute $\frac{\partial \mathbf{Q}(x,s)}{\partial \mathbf{A}_s(i,j)}$
 - Rank-1 approx + Taylor approx + local search



Results:

- consistently better on 10+ networks & 6 metrics
- sublinear scalability, near real-time response on billion-

scale networks

