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ABSTRACT
Managing patients with complex multimorbidity has long been
recognized as a di�cult problem due to complex disease and medi-
cation dependencies and the potential risk of adverse drug interac-
tions. Existing work either uses complicated rule-based protocols
which are hard to implement and maintain, or simple statistical
models that treat each disease independently, which may lead to
sub-optimal or even harmful drug combinations. In this work, we
propose the LEAP (LEArn to Prescribe) algorithm to decompose
the treatment recommendation into a sequential decision making
process while automatically determining the appropriate number of
medications. A recurrent decoder is used to model label dependen-
cies and content-based attention is used to capture label instance
mapping. We further leverage reinforcement learning to �ne tune
the model parameters to ensure accuracy and completeness. We
incorporate external clinical knowledge into the design of the re-
inforcement reward to e�ectively prevent generating unfavorable
drug combinations. Both quantitative experiments and qualitative
case studies are conducted on two real world electronic health
record datasets to verify the e�ectiveness of our solution. On both
datasets, LEAP signi�cantly outperforms baselines by up to 10-30%
in terms of mean Jaccard coe�cient and removes 99.8% adverse
drug interactions in the recommended treatment sets.

KEYWORDS
Treatment Recommendation, Multimorbidity, Multi-Instance Multi-
Label Learning

1 INTRODUCTION
Multimorbidity, i.e., the co-occurrence of two or more chronic or
acute medical conditions in an individual patient, is increasingly
prevalent and represents a major challenge in healthcare [26, 32].
The goal of treatment recommendation for such patients is to decide
the most appropriate combination of treatments for their disease
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conditions. Such decisions involve the assessment of patient’s med-
ical condition, the e�cacy of the treatments and potential adverse
e�ects of the treatments. Doctors typically prescribe medications
based on their intuition and experience. However, due to knowledge
gaps or unintended biases, often times these clinical decisions can
be sub-optimal. Studies have shown that 6.7% of hospital patients
in the United States su�er from serious adverse drug reactions and
0.32% of such adverse drug events are fatal, leading to a yearly cost
of over $136 billion [20]. Broad adoption and usage of electronic
health records (EHRs) in the last decade has opened up a great op-
portunity to leverage healthcare data for improved clinical decision
making. In this context, computer-assisted treatment recommenda-
tion systems based on EHR data could provide tremendous value.

Prior research on treatment recommendation based on EHR
data is limited. Existing treatment recommendation systems are
mainly implemented using rule-based protocols de�ned by doctors
based on clinical guidelines or personal experience [1, 8, 14]. These
hard-coded protocols are time-intensive to curate and di�cult to
maintain or implement [16]. Moreover, due to the high prevalence
of complex clinical conditions, which often require personalized
drug combinations to treat, hard-coded protocols are not able to
provide optimized personalized treatment regimens, especially for
those complex patients who present with multiple diseases concur-
rently. We seek to address this issue by discovering hidden clinical
knowledge from EHR data and leveraging it to form e�ective and
safe treatment recommendations.

EHRs are clinical records that capture comprehensive medical
histories of patients, including diagnoses, medications, treatment
plans, imaging and laboratory test results. In this work, our ob-
jective is to learn a prediction model from an EHR that takes a set
of disease conditions as input and gives a treatment recommen-
dation in the form of a set of medications and their mapping to
those disease conditions. Disease conditions and treatment plans
are represented as discrete sets of diseases and drugs, respectively.
Other available clinical evidence such as demographics, test results
or allergies can be also included as additional input along with
disease conditions.

We formulate the treatment recommendation as a Multi-Instance
Multi-Label (MIML) learning problem [42], where training samples
are provided as a set of instances (i.e., disease conditions) and the
associated label set (i.e., medications). The direct mapping between
instances (diseases) and labels (drugs) are absent. There exists a
large body of literature on both Multi-Instance and Multi-Label
problems [6, 7, 27, 41, 42]. Most prior solutions either assume
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independence among the items in the label set, or equal contribution
of all of the instances towards the label set. These assumptions are
invalid in our problem due to the inherent, complex higher order
relationships among diseases and drugs. For example, the drugs
paroxetine and quietepine are typically used for depression, and
traditional models for treatment recommendation would assign
the patient to these drugs if depression is in the patient’s disease
diagnosis set. However, since these drugs may lead to weight gain,
they should be avoided in depression patients that also present
with obesity. Dependencies like this are not able to be captured by
models following the independence assumptions made in traditional
models.

To address the aforementioned challenges, we propose LEArn
to Prescribe model (LEAP) to jointly consider label dependency and
label instance mapping in an end-to-end learning framework. Our
contributions can be summarized as follows:
• We formulate treatment recommendation as a sequential deci-

sion making problem and propose LEAP, which uses a recurrent
decoder to model label dependency and uses content-based
attention to model the underlying label-to-instance mapping.

• LEAP also incorporates a policy gradient based reinforcement
learning method to �ne-tune the model which can e�ectively
improve the accuracy and completeness of treatment recom-
mendation.

• We show that external domain knowledge can also be integrated
into LEAP to avoid unfavorable drug interactions in treatment
recommendation.

• We conduct both quantitative experiments and qualitative case
studies on real world EHR datasets to demonstrate the e�ec-
tiveness of LEAP.

2 RELATEDWORK

Treatment Recommendation systems are mainly implemented
based on hard-coded recommendation protocols [1, 8, 14] which
are typically de�ned by doctors or their institution’s guidelines.
For example, Lakkaraju and Rudin [19] propose to use a Markov
Decision Process (MDP) to provide cost-e�ective recommendations
based on a healthcare institution’s �nancial restrictions. There
are existing works on estimating treatment e�ect [10, 24] using
clinical data, but this line of work is limited to the estimation of the
e�ectiveness of some speci�c drug combinations for target disease
conditions.

Wei et al. [36] construct a medication-indication database by inte-
grating resources from medical knowledge bases such as RxNorm1,
SIDER2, and Wikipedia3. However, despite the accuracy and com-
pleteness of the mapping, the indication database only speci�es
the potential correlation between diseases and drugs and cannot
directly support personalized treatment recommendation. Bajor
and Lasko [3] proposed to use recurrent neural networks to predict
medications given a patient’s clinical history. The drawback to
their strategy is that it predicts whether a drug is being used by a
patient but does not recommend an e�ective combination of drugs
for managing multiple disease conditions.

1https://www.nlm.nih.gov/research/umls/rxnorm/
2http://sidee�ects.embl.de/
3https://www.wikipedia.org/
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Figure 1: Graphical representation of BR (1a) andCC (1b) for
single instance multi-label learning with |Y| = 4.

Multi-Instance Learning was �rst described by Dietterich et
al. [9], where training examples are bags composed of instances,
and the task is to predict the labels of unseen bags through analyzing
the training bags with known labels. A bag is positive if it contains
at least one positive instance, otherwise negative. However, the
labels of the instances in each bag are unknown. Multi-instance
learning has been used for biomedical applications such as predic-
tion of binding sites in mRNA molecules [4], and classi�cation of
mammogram images [43]. To date, there have been no implemen-
tations of multi-instance learning for treatment recommendation.
More recently, deep learning methods have been developed for
multi-instance learning [37, 38]. Wu et al. [37] proposed a multi-
instance convolutional neural network method for learning deep
representations from image data. Xu et al. [38] demonstrated the
use of subnets in multi-instance neural networks which are used
to classify individual concepts. Mapping to our problem, one may
consider a bag to be a set of disease diagnoses for a patient and the
label to be a drug. However, we wish to impose an extra constraint
such that the drug should cover all the diagnoses in the bag, which
is very di�erent from traditional multi-instance learning. Our prob-
lem di�ers from the traditional multi-label learning setting since an
e�ective drug for any given disease a patient has is not necessarily
an appropriate treatment due to the complex dependency among
drugs and diseases.
Multi-Label Learning studies the problem where each instance
is associated with a set of labels simultaneously [40]. Prior works
have tackled the multi-label learning problem by transforming it
into other well-established learning scenarios. The simple solution
is Binary Relevance (BR) [5] which assumes independence among
labels and decomposes multi-label learning into a set of binary
classi�cation tasks. Fürnkranz et al. [11] propose Calibrated Label
Ranking to distinguish relevant and non-relevant labels by adding
a “neutral element". However, the above methods ignore the cor-
relations among labels. Chen et al. [28] propose Classi�er Chains
(CC) to model label dependency by using previous predictions as
extra input for future classi�ers. Figure 1 illustrates the graphical
representation of BR and CC methods. Similar to CC, we also de-
compose the problem as a chain of correlated sub-problems, but
instead of learning a set of binary classi�ers with separate parame-
ters for each label, we interpret this problem as a sequential decision
making process. Liu et al. [22] discuss the optimality of Classi�er
Chains by considering the order of labels. The label dependency
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can also be modeled by graphical models, such as Conditional Ran-
dom Fields [12], Dependency Networks [15], and co-occurrence
matrices [39]. However, most of these models only capture simple
pairwise co-occurrences of labels and exhibit a high computation
cost when there are a large number of labels (e.g., if there are over
1000 drugs, and each drug corresponds to a label).
Multi-InstanceMulti-Label Learning Multi-instance multi-label
(MIML) learning combines the settings of multi-instance learning
and multi-label learning where a set of multiple labels is associated
with each instance bag. Zhou et al. [41] �rst address this problem
in the context of scene classi�cation and proposes to transform the
MIML problem to an ensemble of single instance single label (SISL)
sub-problems. Li et al. [21] modeled which instances trigger which
labels by considering the shared patterns across relevant labels.
Briggs et al. [6] proposed rank-loss support instance machines for
MIML instance annotation. Briggs et al. [7] considered the problem
of predicting instance labels while learning from data labeled only
at the bag level by using a new regularized rank-loss objective.
Huang et al. [17] proposed a fast MIML algorithm by exploiting
label relations with shared space and discovering sub-concepts for
complicated labels. Pham et al. [27] used a discriminative probabilis-
tic model to discover novel class instances in a MIML setting. Most
existing approaches assume equal contribution of all the instances
towards the label set which is di�erent from our setting due to the
complex higher order relationship among diseases and drugs.
Recurrent Neural Networks and Attention Mechanism Re-
cently, recurrent neural networks (RNNs) have been successfully
applied in various sequence modeling tasks including language
modeling [29], machine translation [30], speech recognition [13],
and image captioning [23, 34]. Wang et al. [35] propose to leverage
an RNN decoder to model label dependency in a multi-label learn-
ing problem, which is closely related to our work. An attention
mechanism [2, 25, 33] can be augmented to RNNs in order to guide
the network to focus on one particular part of the input. This strat-
egy has been adopted for translation of text between languages [2],
and for classi�cation of images [25]. Vinyals et al. [33] modeled
unordered sets by decomposing output random variables using a
chain rule, and used an attention RNN to model long-term correla-
tion. To date, there is no existing work that leverages RNN with
attention to address a MIML learning problem.

3 CHALLENGES OF TREATMENT
RECOMMENDATION

We seek to build a treatment recommendation system which mim-
ics the clinical decision making process of doctors by learning from
diagnosis and medication relations of existing EHR data. Based
on their domain knowledge, doctors prescribe treatments for pa-
tients by carefully considering all the dependencies among diseases
and medications to �nd the optimal combination of treatments
for a given patient. Such knowledge of speci�c combinations of
drugs used for speci�c combinations of diagnoses, is encoded in the
large amount of EHR data used in this study. Figure 2 summarizes
common dependencies among medical conditions and drugs.
Drug to DiseaseMapping: Generally, there is an underlying map-
ping between medications and disease conditions that indicates
the e�ectiveness of medications towards diseases. One disease

Hypertension Lisinopril

(a) One to one mapping

Toxoplasmosis

Daraprim

Dapsone

(b) Many to one mapping

Depression Paroxetine

Parkinson's disease Selegiline

(c) Drug-drug interaction

Hypertension Methyldopa

Pregnancy Lisinopril

(d) Drug-disease interaction

Figure 2: Example high order dependencies among diag-
noses and drugs. Gray nodes indicates diseases, white nodes
indicates drugs. Green arrows between drugs and diseases
indicates treatment relationship. Red arrows indicates ad-
verse drug interactions.

may require a combination of multiple medications as a treatment
(Figure 2b), while another medication may be suitable for treating
multiple related diseases. To select appropriate treatment plans for
patients, however, requires the expertise and experience of doc-
tors. Doctors typically formulate a mapping or hierarchy of drug
and disease relationships based on their medical knowledge and
experiences. A comprehensive medication to disease condition
mapping that accounts for the complexity of patients with multi-
morbidity is di�cult to explicitly construct but can be helpful in
assisting with patient care. There have been previous e�orts to cre-
ate a medication-indication database by integrating resources from
medical knowledge bases such as RxNorm, SIDER, and Wikipedia
[36]. However, besides the concern of its accuracy and the incom-
pleteness of the mapping, the main drawback of such a database
is that it does not dictate how drugs should be prescribed when a
patient presents with a complex constellation of multiple diseases
and existing medications. This is concerning because oftentimes
certain drug combinations should be avoided because they may ei-
ther exacerbate a co-occurring disease in the patient, or because the
drug combination is antagonistic and results in a non-e�cacious
or harmful outcome for a patient.
Adverse Drug Interaction: When a drug interacts with another
drug the patient is taking (drug-drug interaction), or interacts with
another medical condition the patient exhibits (drug-disease inter-
action), the outcome may be unfavorable (i.e. may result in severe
allergic reaction, death). Drug-drug interactions can be caused by
duplication (if two drugs with the same e�ect are taken, their side
e�ects may be intensi�ed), antagonism (two drugs with opposing
actions can interact, thereby reducing the e�ectiveness of one or
both), or alteration (one drug may alter how the body absorbs, dis-
tributes, metabolizes, or excretes another drug). Figure 2c shows an
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example of a drug-drug interaction. In this example, both paroxe-
tine and selegiline increase serotonin levels in the blood. However,
an excessive serotonin level is a potential life-threatening situation.
Thus, the combination of these two drugs should be avoided in
the treatment. Sometimes, drugs that are helpful in one disease or
medical condition are harmful for another. For instance, exposure
to ACE inhibitors such as lisinopril has been associated with fetal
abnormalities. Thus, lisinopril should be avoid as a treatment for
pregnant patient with hypertension (Figure 2d).

4 LEAPMODEL
We �rst de�ne the notations and formulate treatment recommenda-
tion problem (Section 4.1), followed by the description of basic LEAP
method (Section 4.2), and how to leverage reinforcement learning
to improve recommendation performance and avoid adverse drug
interactions (Section 4.3).

4.1 Problem Formulation
Let X denote the diagnosis space and Y denote the medication
space. R = {(X1,Y1), (X2,Y2), ...} is a set of medical records where
Xk ⊆ X is a diagnosis set Xk = {xk1 ,x

k
2 , ...,x

k
|Xk |
} and Yk ⊆ Y is

a medication set Yk = {yk1 ,y
k
2 , ...,y

k
|Yk |
}, where |Xk | and |Yk | are

the cardinalities of Xk and Yk , respectively. The explicit mapping
between a diagnosis in Xk and a medication in Yk is not given. To
avoid clutter, we omit k in the notation if there is no ambiguity.

The treatment recommendation objective is to select an optimal
set of medicationsY from all medicationsY based on a diagnosis set
X . Thus, we want to model the conditional probability p(Y |X ) and
�nd the maximum likelihood solution Y ∗. We formulate treatment
recommendation as a Multi-Instance Multi-Label Learning (MIML)
problem [42]. The task is to learn a function f : 2X → 2Y that maps
an arbitrary set of diagnoses to a corresponding set of medications.
The challenge here is to model: (1) label instance mapping, i.e. the
relationship between drugs and diseases. (2) label dependency, e.g.
drug drug interactions.

4.2 Basic LEAP
We propose to incorporate label dependency and instance-label
mapping in an end-to-end learning framework. We decompose
the problem as a chain of correlated sub-problems.In particular,
we interpret this problem as a sequential decision making process,
which means we add the medication one at time. In particular, We
select the t-th medication yt from Y based on the input X and the
already selected medications y1, ...,yt−1. Intuitively, early selected
drug yt is more important than later selected drug yt ′ when t < t ′.

Figure 3 gives an overview of LEAP. The input on the left hand
side are the set of diseases x1 to x4, which are embedded into a 4-
dimensional space x1 . . . x4 (indicated by rectangles with 4 circles).
Then via an attention mechanism, we compute the disease-drug
mapping and their association to each selected drug yi and its la-
tent state si. Here s0 is a vector represents the initial state of drug
selection process, y0 is a <START> label. To enable the model to
generate variable length output, we append an <END> label after
each Y to indicate the termination of recommendation. In this way,

LEAP is able to automatically determine the number of drugs rec-
ommended in Y as well as the sequence of drug recommendations
based on their importance.

Formally, the conditional probability ofY givenX is decomposed
as

p(Y |X ) =
|Y |∏
t=1

p(yt |X ,y1,y2, ...,yt−1)

=

|Y |∏
t=1

p(yt |{x1,x2, ...,x |X |},y1,y2, ...,yt−1),

(1)

where xi is the ith diagnosis code inX andyt is the t-th medication
being selected, {...} indicates a set of unordered and non-repetitive
discrete instances. Each diagnosis xi in X is |X|-dimensional one
hot vector and each medication yt in Y is a |Y|-dimensional one
hot vector. We use distributed representation to encode both di-
agnosis and medications, that is, we leverage embedding matrix
WX and WY to project diagnosis xi and medication yj into a uni-
�ed d-dimensional space. We use vector xi , yj ∈ Rd to denote the
embedding of xi and yj respectively, where

xi =WXxi , yj =WYyi . (2)

To model di�erent degrees of contribution of each xi ∈ X to
medication yt at step t we leverage a content-based attention mech-
anism [33], which is widely used in sequence modeling. Let st ∈ Rd
be a variable summarizing the state at step t .

st = д(st−1,yt−1,Ψt (X )) (3)

where Ψt (·) is an attention function that encode the compatibility
between each xi and the current state variable.

Ψt (X ) =
|X |∑
i=1

Mt ixi , (4)

where M ∈ R |X |× |Y | is an mapping matrix, in which each element
Mt i indicates the contribution of the ith diagnosis code xi to gen-
erating the t th medication yt . We formulate mapping matrix M as

Mt i =
exp(α(xi , st−1))∑ |X |

k=1 exp(α(xk , st−1))
(5)

where α(xi , st−1) is a function determines the weight for the ith
diagnosis code. α(x, y) is implemented as a MLP that takes the
concatenation of x and y as input. Now we can rewrite Equation
(3) as

st = д([Ψt (X ); yt−1], st−1), (6)

where [·; ·] denotes the concatenation of two vectors, д can be
de�ned as a RNN unit (e.g. we used GRU in our implementation).
The prediction at step t is given by

yt = arg max
y∈Y

softmax(st ). (7)

Training Model learning is to �nd an optimal parameter θ that
maximize the conditional log-probability on training samples R.
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M33
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M43

M44

s0 s1 s2 s3 s4

y1 y2 y3 y4

M34

<END>

K

Y

X

R(X, Y ) =

(
0, if K(X, Y ) = 1

�(Y, Ŷ ), otherwise

Hypertension

Edema

Heart failure

Type 2 diabetes

Lisinopril Torsemide Glipizide

y0

<START>

Adverse InteractionsAdverse InteractionsAdverse Interactions

�

 3

...

p(Y |X; ✓)

x1

x2

x3

x4

Figure 3: An overview of our solution for treatment recommendation. Gray nodes indicate input diagnoses, white nodes
denote output treatments, dashed nodes are state variables.

θ∗ = arg max
θ

∑
(X ,Y )∈R

logp(Y |X ;θ )

= arg max
θ

∑
(X ,Y )∈R

|Y |∑
t=1

logp(yt |X ,y1, ...,yt−1;θ ).
(8)

This can be achieved by leveraging the cross-entropy loss on Equa-
tion (7) and back-propagation. Recall that in Equation (1) we decom-
pose p(Y |X ) using chain rule, hence, we condition random variables
y1, ...,yt in a particular order. In principle the order should not mat-
ter, but due to the non-convex nature of the optimization there can
be certain orders better than others empirically [33]. We explore
four di�erent heuristics to order the training data:
• Frequent �rst determines the order of drugs by their occurrence

frequencies in the training data where drugs prescribed more
frequently will be put in front of the less frequent ones.

• Rare �rst put rare drugs before more frequent drugs.
• Vocabulary, we sorts drugs in an order according to �xed vo-

cabulary. In the experiment, we used the alphabetical order.
• Random, we shu�es the labels of each sample randomly at

training time.

Inference With the learned model parameter θ , the inference
step is to predict the optimal treatment set Y ∗ = {y∗1 ,y

∗
2 , ...,y

∗
|Y |}.

The probability of each medication y∗t is computed with the in-
formation of the diagnosis and the previously predicted medica-
tions y∗1 , ...,y

∗
t−1. The model automatically determine the sequence

length of labels by �nding a prediction path that maximizes a priori
probability

y∗1 , ...,y
∗
t = arg max

y1, ...,yt
logp(y1, ...,yt |X ;θ )

= arg max
y1, ...,yt

t∑
k=1

logp(yk |X ,y1, ...,yk ;θ ).
(9)

Finding the global optimal of Equation (9) is intractable, thus, we
employ beam search to estimate the best prediction path. Let Bt be
a beam of size K , Yt ′:t is a search path from t ′ to t , C is a candidate

Daraprim

Torsemide Paroxetine

Dapsone<START> Lisinopril

Glipizide Selegiline

<END>

<END>

Methyldopa

Glipizide

Methyldopa

y1 y2 y3 y4y0

DapsoneLisinopril

DaraprimDapsoneLisinopril

C

Figure 4: Top: beam search tree with a beam of size K = 2.
Gray rectangle indicates active search path at t = 4. Bottom:
resulting candidate prediction paths.

set of completed prediction paths. Figure 4 illustrate the process of
beam search. Starting from a <START> label, we iteratively extend
the search path. At step t + 1, we extend each active search path
Y0:t ∈ Bt with top K most probable yt+1 and add all the resulting
Y0:t+1 into Bt+1. Bt+1 is then �ltered to keep only the top K active
paths. We move all paths in Bt+1 end with an <END> label to
candidate set C and remove all Y0:t+1 from Bt+1 such that

p(Y0:t+1 |X ;θ ) < p(Ȳ |X ;θ ), ∀Ȳ ∈ C. (10)

The algorithm terminates when the probability of active paths in
Bt is smaller than that of all the completed candidate paths in C.
The inference algorithm is summarized in Algorithm 1.
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ALGORITHM 1: Inference LEAP with beam search.
Input: Input X , model p(X |Y ;θ ), beam size K ;
Output: Estimated best output Y ∗;
Initialize candidate set C;
Initialize beam B[0] with Y0:0 = (<START>);
t ← 0;
while B[t] , ∅ do

foreach Y0:t ∈ B[t] do
{Y0:t+1} ← extend Y0:t with yt+1 ∈ Y;
Append topK({Y0:t+1}) into B[t + 1];

end
B[t + 1] ← topK(B[t + 1]);
Move all paths in B[t + 1] end with <END> to C;
Filter B[t + 1] by Eq. (10) ;
t ← t + 1;

end
Y ∗ ← arg maxY ∈C p(Y |X ;θ );
return Y ∗;

4.3 Reinforcement Fine-Tuning
The basic LEAP has the capability to capture the label dependency
and instance-label correlation. However, there are two limitations:
(1) due to the lack of a negative training sample, it is still hard to
avoid all of the adverse drug interactions in the recommended treat-
ment plans. (2) according to our empirical results, the model tends
to generate incomplete medication sequences. To address these
limitations, we propose �ne-tuning the model via reinforcement
learning by leveraging clinical evidences from external knowledge
bases. Assume we have a list of known adverse drug interaction
pairs K (both drug to drug interaction and drug to disease inter-
action). To avoid adverse drug interaction, one simple heuristic is
to perform post-processing by removing con�icted drugs from the
recommendation. However, this will often hurt the coverage of the
treatment recommendations towards all the diseases the patient
has. Thus, instead, we try to directly �ne-tune the model param-
eter θ to prevent the model from generating con�ict drugs. We
address this problem using model-free policy-based Reinforcement
Learning [31]. We regard the above basic LEAP model p(Y |X ;θ ) as
a pre-trained parametrized stochastic policy. The objective is to
maximize the expected reward of the treatment setY recommended
by the policy:

J (θ |X ) = EY∼p(Y |X ;θ )[R(X ,Y , Ŷ )], (11)

where R(X ,Y , Ŷ ) is a scalar value reward function that evaluates
the quality of Y , Ŷ is the treatment set for X prescribed by doctors
(i.e. from the EHR data). We design the reward so that it encourage
the model to avoid adverse interactions. We de�ne an evaluator
K(X ,Y ) such that

K(X ,Y ) =


0, if ∃(xi ,yj ) ∈ K, ∀xi ∈ X , ∀yj ∈ Y
0, if ∃(yi ,yj ) ∈ K, ∀yi ,yj ∈ Y
1, otherwise

(12)

where X is a input diagnosis, Y is the corresponding treatment.
The reward is formulated as follows:

R(X ,Y , Ŷ ) = δ (Y , Ŷ ) × K(X ,Y ), (13)

where δ (·, ·) is a similarity measure. We choose Jaccard coe�cient
as the similarity measure because it balances the accuracy and
completeness. In this way, a recommended treatment gets zero
reward if it contains adverse interaction, otherwise it gets a positive
reward based on its similarity to the corresponding prescription in
the data. We use policy gradient [31] to optimize the parameters.
The gradient of Equation (11) is given by

∇θ J (θ |X ) = EY∼p(Y |X ;θ )[R(X ,Y )∇θ logp(Y |X ;θ )] (14)

We then update parameters as: θ ← θ +σ∇θ J (θ |X ), where σ ∈ R+
denotes the learning rate. Other advanced optimization algorithm
such as ADAM can be also adopted here.

In summary, Algorithm 2 shows the overview of our solution.
ALGORITHM 2: Fine-tune LEAP with reinforcement
Input: Training set R, number of training steps N ;
Output: Fine tuned model parameters θ ;
Initialize model parameter θ ;
Pre-train basic LEAP p(Y |X ;θ ) on R by Eq. (8) using SGD;
for i = 1 to N do

Sample pair (X , Ŷ ) from R;
Y ∗ ∼ p(Y |X ;θ );
Calculate R(X ,Y ∗, Ŷ ) by Eq. (13);
Calculate ∇θ J (θ |X ) by Eq. (14);
θ ← θ + σ∇θ J (θ |X );

end
return θ ;

5 EXPERIMENTS
In this section, we demonstrate the e�ectiveness of our model.
Our experiments are conducted real EHR datasets, some are pub-
lic available. First we describe the datasets and then present the
results. We make the source code of LEAP publicly available at
https://github.com/neozhangthe1/AutoPrescribe.

5.1 Data
We carry out experiments on two datasets, namely MIMIC-3 and
Sutter.

MIMIC-3. The MIMIC-3 dataset [18] is a publicly available
dataset consisting of medical records of 40K intensive care unit
(ICU) patients over 11 years. It consists of 50,206 medical encounter
records that associated with 6,695 distinct diseases and 4,127 drugs.

Su�er. This dataset from Sutter Palo Alto Medical Foundation
(PAMF) consists of 18-years longitudinal medical records of 258K
patients between age 50 and 90. It contains 2,415,414 medical en-
counters associated with 8,359 distinct diseases and 7,516 drugs.
Average number of diseases and drugs per record are 2.97 and 1.75
respectively.

Drugs in Sutter and MIMIC-3 are encoded using GPI4 and NDC5

codes, respectively. The GPI coding is inherently a multi-level
ontology that identi�es drugs from their primary therapeutic use
down to unique interchangeable product regardless of manufacturer
or package size. To conduct experiments at di�erent granularity,
we use the �rst and third level of GPI codes, resulting 93 and 982

4http://www.wolterskluwercdi.com/drug-data/medi-span-electronic-drug-�le/
5http://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm
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distinct drug groups, respectively. We convert drugs in MIMIC-
3 to GPI code using an open-source software from OHDSI6. The
diagnoses in both datasets are represented using ICD-9 code7. In
order to learn robust and nontrivial mapping between diseases and
medications, We extract the records from each dataset with more
than two diagnosis codes and �ltered the records to include only
top 2,000 most common diagnosis codes, which covers 95.3% of all
records.

5.2 Baseline Comparison Methods
We compare our method with the following baselines:
• Rule-based: This method recommends drugs based on an ex-

isting drug to disease mapping from the MEDI database [36].
For each disease, one of the drugs mentioned in the mapping is
assigned.

• K-Most frequent: This is a simple baseline that retrieves the
top K medications that most frequently co-occur with each dis-
ease as their treatment. We setK = 1 on Sutter dataset andK = 3
on MIMIC-3 dataset according to the performance on validate
set8.

• Softmax MLP: We learn a multi-label classi�er using a multi-
layer perceptron with softmax output layer. Our implementation
uses a 3-layer MLP. A global threshold is used to select positive
medications. The value of the threshold and hyper parameters
are tuned on a validation set using grid search.

• Classi�er Chains: Classi�er Chains [28] is a popular multi-
label learning method that models the correlation between labels
by a feeding both input and previous classi�cation results into
the latter classi�ers. We use a multi-hot vector to encode input
diagnosis set X and leverage SVM as binary classi�ers for each
label.

• LEAP: This is our proposed methods: Basic LEAP models label-
instance mapping and label dependency as described in Section
4.2. We then evaluate full LEAP with reinforcement learning �ne-
tuning as described in Section 4.3. We implemented LEAP with
Theano and used ADAM for model training,

5.3 Experimental Results
To evaluate the performance of treatment recommendations, we
measure quantitative as well as qualitative performance metrics.
Quantitative measures include prediction accuracy as well as mea-
sures related to drug-drug interactions. Qualitative measures in-
clude assessments of clinical meaningfulness, completeness, and
avoidance of drug-drug interactions. For all experiments, the diag-
nosis and medications was divided into training, validation and test
sets in a 0.7:0.1:0.2 ratio. The validation set was used to determine
hyper-parameters.

5.3.1 �antitative Performance: We �rst evaluate how closely
the generated prescription compares against the corresponding pre-
scription of medications (for a disease set) written by doctors. We

6http://www.ohdsi.org/
7http://www.icd9data.com/2015/Volume1/default.htm
8It makes intuitive sense because patients in MIMIC-3 are sicker and usually require
more medications as they visited the intensive care unit.

Sutter MIMIC-3
Granularity 1 3 1 3
Rule-based 0.3207 0.2770 0.2753 0.2354

K-Most frequent 0.4283 0.3181 0.2609 0.2616
Softmax MLP 0.4908 0.3739 0.4897 0.3342

Classi�er Chains 0.4839 0.3620 0.4621 0.3204
Basic LEAP 0.5270 0.3936 0.5107 0.3865

LEAP 0.5341 0.4073 0.5582 0.4342
Table 1: Treatment recommendation performance on Sut-
ter and MIMIC3 dataset. We evaluate the experimental re-
sults in terms of Jaccard Coe�cient. Granularity indicates
the level of GPI medication code we are using.

utilize Mean Jaccard Coe�cient to measure the performance. As-
sume Xi is the ith input diagnosis, Yi is the treatment set generated
by the algorithm, and Ŷ i is the doctor prescription in the data. The
Jaccard coe�cient is de�ned as the size of the intersection divided
by the size of the union of ground truth label set and predicted label
set.

Jaccard =
1
K

K∑
i

|Yi ∩ Ŷi |
|Yi ∪ Ŷi |

,

where K is the number of samples in test set.
Table 1 shows the performance of the aforementioned perfor-

mance metrics on Sutter and MIMIC-3 dataset. The rule-based
method is not e�ective because the drug to disease mapping sim-
ply aggregates all the related drugs for a disease, which cannot
be accurately tailored to individual patients. The K-Most frequent
method works poorly on the MIMIC-3 dataset because the number
of drugs and diseases associated with each encounter is large due
to high severity of patients at ICU, and thus the drug co-occurring
most frequently with a disease may not be an e�ective treatment.
Moreover, both Rule-based and K-most frequent greedily select a
constant number of drugs for each disease in the diagnosis without
considering any context information which can lead to unwanted
redundancy and adverse drug interaction.

Both Softmax MLP and Classi�er Chains assume equal contribu-
tion of all the diseases in one encounter record. The representation
of diagnoses is simply a reduction of linear embeddings of di�er-
ent instances which will cause information loss. Classi�er Chains
considers the label dependency by incorporating former predic-
tions into the input of latter classi�ers, but the performance is
constrained by the expressiveness of the model.

LEAP consistently outperforms other methods by 10+% on both
datasets with respect to Mean Jaccard Coe�cient. The reason is that
LEAP e�ectively captures the label dependency and label to instance
mapping. The reinforcement �ne-tuning provides signi�cantly
additional improvement of 3.4% on the Sutter dataset and an extra
12.3% on the MIMIC-3 dataset, compared to basic LEAP. Figure
5 illustrates the average reward obtained by each sample with
respect to training epochs, which con�rmed that LEAP is able to
progressively �nd better treatment recommendation policy over
training iterations.

Prior work [3] used micro-averaged area under ROC curve (AUC)
as primary measure to evaluate the performance of drug prediction.
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Figure 5: Average reward obtained by each recommendation
w.r.t training epochs on Sutter (5a) andMIMIC-3 (5b) dataset.

.

Method Drug Interaction Rate
K-Most frequent 12.06%

Softmax MLP 3.51%
Basic LEAP 2.41%

LEAP 0.23%

Table 2: Evaluation of the ability of avoiding adverse drug
interactions. The table shows the proportion of treatment
plans recommended by di�erent methods that contains
drug to drug interaction mentioned in the database.

We want to argue that AUC is not an appropriate measure for the
treatment recommendation problem. The reason is that instead of
outputting a ranked list of drugs, we need to generate a combination
of drugs that is both e�ective and avoid of redundancy and adverse
interactions. Empirically we observe that Softmax MLP can achieve
a near perfect AUC, but this does not necessarily indicate that the
recommended treatment is appropriate since selecting a proper
threshold for each record is non-trivial. LEAP can accurately predict
the <END> label to determine the completeness of a treatment set.

5.3.2 Di�erent Order of Labels. To address the label ordering
issue described in Section 4.2, we test the robustness of LEAP to dif-
ferent label ordering, Figure 6 illustrates the performance of LEAP
with di�erent ordering heuristics over training epochs. We can see
that Frequent �rst performs poorly on both datasets. The reason
is that by constraining the model to predict more frequent drugs
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Figure 6: Performance w.r.t training epochs on Sutter (6a)
and MIMIC-3 (6b) dataset with di�erent label order.

�rst, the generated treatment plans are likely to be predominated
by non-informative popular drugs. An interesting observation is
that random shu�ed order converges slowly at �rst, but eventu-
ally outperforms the alternative labeling strategies. Note that rare
�rst actually performed quite well especially regarding to the ini-
tial convergence speed, because it essentially upsampled the rare
medications so that a robust representation can be learned for them.

5.3.3 Avoiding Drug-Drug Interactions. To evaluate the ability
of avoiding adverse drug e�ect of our model, we compare the preva-
lence of drug-drug interactions in the treatment recommendations
given by the baselines in against LEAP, which considers drug to
drug interaction information using reinforcement �ne-tuning de-
scribed in Section 4.3. We collect known drug to drug interaction
pairs by crawling an online Drug interaction Database9. In table
2 we show the percentage of recommendations containing unfa-
vorable drug-drug interactions (i.e., one drug impedes the e�cacy
of another drug, two drugs interacting together lead to adverse ef-
fects) on the Sutter dataset, comparing LEAP against baselines. The
result shows that reinforcement �ne-tuning e�ectively removes
90+% of adverse drug interactions in the recommended treatment
plan without hurting the e�ectiveness.

5.3.4 �alitative Evaluation. We also invited a clinical expert
to manually score the results. We randomly chose 100 diagnosis
sets and corresponding medication treatment sets identi�ed with
our algorithms and baseline methods. For each diagnosis set, a

9https://www.drugs.com/drug_interactions.php

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1322



Diagnosis Methods Recommended Treatments
Type 2 diabetes
Hyperlipidemia

Depressive disorder
Hypertension

K-Most frequent PEG KCl Bicarb, Quinapril, Pravastatin, Metformin, Paroxetine
Softmax MLP Metformin
Basic LEAP Metformin, Quinapril, Pravastatin, Paroxetine
LEAP Metformin, Amiloride/HCTZ, Feno�brate, Paroxetine

Depressive Disorder
Acute bronchitis
Imbalance (gait)

K-Most frequent Azithromycine, Privastatin, Paroxetine
Softmax MLP Paroxetine, Azithromycin
Basic LEAP Azithromycin
LEAP Azithromycin, Dextromethorphan-K Guaiacolsulfonate, Paroxetine

Table 3: Example Recommended Treatments by Di�erent Methods
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Figure 7: Average meaningfulness score given to recom-
mendations from each method. Scores range from 0 to
2, where higher scores are better (n=100 recommendations
evaluated).

clinical domain expert (RC, MD/PhD in training) scored the recom-
mended medications in the following way: a score of 2 is given if the
medication set is complete (addresses all diagnoses) and does not
yield unfavorable drug-drug interactions; a score of 1 is given if the
medication set is partially complete (addresses at least 50% of the
diagnoses) and does not yield unfavorable drug-drug interactions; a
score of 0 is given if the medication either addresses less than 50% of
the diagnoses or possesses negative drug-drug interactions. Figure
7 shows the average rating of meaningfulness of recommended
treatments given for each of the 5 di�erent methods. LEAP yielded
the highest mean score of meaningfulness, and exhibits a 130+%
score improvement over the Classi�er chains and Softmax MLP.
LEAP further improves over the basic model by 50+%, hence validate
the e�ectiveness of reinforcement �ne-tuning.

5.3.5 Case Study. In table 3 we show two examples of treat-
ment recommendations made for patients multiple diseases. LEAP
performs favorably in two situations when comparing it against
the other baselines. For the �rst patient, LEAP recommended a
set of treatments with 100% coverage, with Metformin for Type 2
diabetes, Amiloride/HCTZ for Hypertension, Feno�brate for Hy-
perlipidemia, and Paroxetine for depressive disorder. In contrast,
the Classi�er chains only picked up Metformin, thus only target-
ing diabetes. The Softmax MLP only picked up Maroxetine, thus
only targeting depressive disorder. In the second patient in the
case study, we observe that the drugs recommended by the K-Most
frequent method yielded unfavorable drug-drug interactions. Pri-
vastatin and Azithromycin can lead to harmful, potentially fatal

e�ects when taken together including rhabdomyolysis and renal
failure. The combination of drugs recommended by LEAP was able
to target the diseases present in the patient, while simultaneously
avoiding the unfavorable drug-drug interaction.

6 CONCLUSION
In this paper, we propose LEAP, an end to end learning algorithm
for treatment recommendation that jointly models drug disease
mapping and drug drug interaction. LEAP decompose treatment
recommendation task into a sequential decision making process. A
recurrent decoder is used to model label dependencies and content-
based attention is used to capture is used to learn the disease-drug
mapping. We further leverage reinforcement learning to �ne-tune
the model to ensure accuracy and completeness. External clinical
knowledge is incorporated into the design of reinforcement reward
and e�ectively prevent adverse drug combinations. Throughout ex-
periments, we successfully demonstrated the superior performance
of LEAP by 10+% over all baselines.
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