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ABSTRACT
Network embedding (or graph embedding) has been widely used in

many real-world applications. However, existing methods mainly

focus on networks with single-typed nodes/edges and cannot scale

well to handle large networks. Many real-world networks consist

of billions of nodes and edges of multiple types, and each node

is associated with different attributes. In this paper, we formalize

the problem of embedding learning for the Attributed Multiplex
Heterogeneous Network and propose a unified framework to ad-

dress this problem. The framework supports both transductive and
inductive learning. We also give the theoretical analysis of the pro-

posed framework, showing its connection with previous works and

proving its better expressiveness. We conduct systematical eval-

uations for the proposed framework on four different genres of

challenging datasets: Amazon, YouTube, Twitter, and Alibaba
1
. Ex-

perimental results demonstrate that with the learned embeddings

from the proposed framework, we can achieve statistically signif-

icant improvements (e.g., 5.99-28.23% lift by F1 scores; p ≪ 0.01,

t−test) over previous state-of-the-art methods for link prediction.

The framework has also been successfully deployed on the recom-

mendation system of a worldwide leading e-commerce company,

Alibaba Group. Results of the offline A/B tests on product recom-

mendation further confirm the effectiveness and efficiency of the

framework in practice.
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• Mathematics of computing → Graph algorithms; • Com-
puting methodologies→ Learning latent representations.
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1 INTRODUCTION
Network embedding [4], or network representation learning, is

a promising method to project nodes in a network to a low-

dimensional continuous space while preserving network structure

and inherent properties. It has attracted tremendous attention re-

cently due to significant progress in downstream network learning

tasks such as node classification [1], link prediction [39], and com-

munity detection [8]. DeepWalk [27], LINE [35], and node2vec [10]

are pioneering works that introduce deep learning techniques into

network analysis to learn node embeddings. NetMF [29] gives a

theoretical analysis of equivalence for the different network embed-

ding algorithms, and later NetSMF [28] gives a scalable solution via

sparsification. Nevertheless, they were designed to handle only the

homogeneous network with single-typed nodes and edges. More re-

cently, PTE [34], metapath2vec [7], and HERec [31] are proposed for

heterogeneous networks. However, real-world network-structured

applications, such as e-commerce, are muchmore complicated, com-

prising not only multi-typed nodes and/or edges but also a rich set

of attributes. Due to its significant importance and challenging re-

quirements, there have been tremendous attempts in the literature

to investigate embedding learning for complex networks. Depend-

ing on the network topology (homogeneous or heterogeneous)

and attributed property (with or without attributes), we catego-

rize six different types of networks and summarize their relative

comprehensive developments, respectively, in Table 1. These six

categories include HOmogeneous Network (or HON), Attributed
HOmogeneous Network (or AHON), HEterogeneous Network (or

HEN), Attributed HEterogeneous Network (or AHEN), Multiplex

HEterogeneous Network (or MHEN), and Attributed Multiplex

HEterogeneous Network (or AMHEN). As can be seen, among

them the AMHEN has been least studied.

In this paper, we focus on embedding learning for AMHENs,

where different types of nodes might be linked with multiple dif-

ferent types of edges, and each node is associated with a set of

different attributes. This is common in many online applications.

For example, in the four datasets that we are working with, there

https://github.com/cenyk1230/GATNE
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Figure 1: The left illustrates an example of an attributed multiplex heterogeneous network. Users in the left part of the fig-
ure are associated with attributes, including gender, age, and location. Similarly, items in the left part of the figure include
attributes such as price and brand. The edge types between users and items are from four interactions, including click, add-
to-preference, add-to-cart and conversion. The three subfigures in the middle represent three different ways of setting up the
graphs, including HON, MHEN, and AMHEN from the bottom to the top. The right part shows the performance improvement
of the proposed models over DeepWalk on the Alibaba dataset. As can be seen, GATNE-I achieves a +28.23% performance lift
compared to DeepWalk.

are 20.3% (Twitter), 21.6% (YouTube), 15.1% (Amazon) and 16.3%

(Alibaba) of the linked node pairs having more than one type of

edges respectively. As an instance, in an e-commerce system, users

may have several types of interactions with items, such as click,

conversion, add-to-cart, add-to-preference. Figure 1 illustrates such

an example. Obviously, “users” and “items” have intrinsically differ-

ent properties and shall not be treated equally. Moreover, different

user-item interactions imply different levels of interests and should

be treated differently. Otherwise, the system cannot precisely cap-

ture the user’s behavioral patterns and preferences and would be

insufficient for practical use.

Not merely because of the heterogeneity and multiplicity, in

practice, dealing with AMHEN poses several unique challenges:

• Multiplex Edges. Each node pair may have multiple different types

of relationships. It is important to be able to borrow strengths

from different relationships and learn unified embeddings.

• Partial Observations. The real networked data are usually par-

tially observed. For example, a long-tailed customer may only

present few interactions with some products. Most existing net-

work embedding methods focus on the transductive settings, and

cannot handle the long-tailed or cold-start problems.

• Scalability. Real networks usually have billions of nodes and tens
or hundreds of billions of edges [40]. It is important to develop

learning algorithms that can scale well to large networks.

Table 1: The network types handled by different methods.

Network Type Method

Heterogeneity

Attribute

Node Type Edge Type

Homogeneous

Network (HON)

DeepWalk [27]

Single Single /

LINE [35]

node2vec [10]

NetMF [29]

NetSMF [28]

Attributed

Homogeneous

Network (AHON)

TADW [41]

Single Single Attributed

LANE [16]

AANE [15]

SNE [20]

DANE [9]

ANRL [44]

Heterogeneous

Network (HEN)

PTE [34]

Multi Single /metapath2vec [7]

HERec [31]

Attributed

HEN (AHEN)

HNE [3] Multi Single Attributed

Multiplex

Heterogeneous

Network (MHEN)

PMNE [22]

Single Multi

/

MVE [30]

MNE [43]

mvn2vec [32]

GATNE-T Multi Multi

Attributed

MHEN (AMHEN)

GATNE-I Multi Multi Attributed

To address the above challenges, we propose a novel approach

to capture both rich attributed information and to utilize multiplex

topological structures from different node types, namely General



Attributed Multiplex HeTerogeneous Network Embedding, or ab-

breviated as GATNE. The key features of GATNE are the following:

• We formally define the problem of attributed multiplex heteroge-

neous network embedding, which is a more general representa-

tion for real-world networks.

• GATNE supports both transductive and inductive embeddings

learning for attributed multiplex heterogeneous networks. We

also give the theoretical analysis to prove that our transduc-

tive model is a more general form than existing models (e.g.,

MNE [43]).

• Efficient and scalable learning algorithms for GATNE have been

developed. Our learning algorithms are able to handle hundreds

of million nodes and billions of edges efficiently.

We conduct extensive experiments to evaluate the proposedmod-

els on four different genres of datasets: Amazon, YouTube, Twitter,

and Alibaba. Experimental results show that the proposed frame-

work can achieve statistically significant improvements (∼5.99-
28.23% lift by F1 scores on Alibaba dataset; p ≪0.01, t−test) over
state-of-the-art methods. We have deployed the proposed model

on Alibaba’s distributed system and apply the method to Alibaba’s

recommendation engine. Offline A/B tests further confirm the ef-

fectiveness and efficiency of our proposed models.

2 RELATEDWORK
In this section, we review related state-of-the-arts for network

embedding, heterogeneous network embedding, multiplex hetero-

geneous network embedding, and attributed network embedding.

Network Embedding. Works in network embedding mainly con-

sist of two categories, graph embedding (GE) and graph neural net-

work (GNN). Representative works for GE include DeepWalk [27]

which generates a corpus on graphs by random walk and then

trains a skip-gram model on the corpus. LINE [35] learns node

presentations on large-scale networks while preserving both first-

order and second-order proximities. node2vec [10] designs a biased

random walk procedure to efficiently explore diverse neighbor-

hoods. NetMF [29] is a unified matrix factorization framework for

theoretically understanding and improving DeepWalk and LINE.

For popular works in GNN, GCN [19] incorporates neighbors’ fea-

ture representations into the node feature representation using

convolutional operations. GraphSAGE [11] provides an inductive

approach to combine structural information with node features. It

learns functional representations instead of direct embeddings for

each node, which helps it work inductively on unobserved nodes

during training.

HeterogeneousNetworkEmbedding. Heterogeneous networks
examine scenarios with nodes and/or edges of various types. Such

networks are notoriously difficult to mine because of the bewil-

dering combination of heterogeneous contents and structures. The

creation of a multidimensional embedding of such data opens the

door to the use of a wide variety of off-the-shelf mining techniques

for multidimensional data. Despite the importance of this problem,

limited efforts have been made on embedding a scalable network

of dynamic and heterogeneous data. HNE [3] jointly considers the

contents and topological structures in networks and represents

different objects in heterogeneous networks to unified vector rep-

resentations. PTE [34] constructs large-scale heterogeneous text

network from labeled information and different levels of word

co-occurrence information, which is then embedded into a low-

dimensional space. metapath2vec [7] formalizes meta-path based

random walk to construct the heterogeneous neighborhood of a

node and then leverages a heterogeneous skip-gram model to per-

form node embeddings. HERec [31] uses a meta-path based ran-

dom walk strategy to generate meaningful node sequences to learn

network embeddings that are first transformed by a set of fusion

functions and subsequently integrated into an extended matrix

factorization (MF) model.

Multiplex Heterogeneous Network Embedding. Existing ap-

proaches usually study networks with a single type of proximity

between nodes, which only captures a single view of a network.

However, in reality, there usually exist multiple types of proxim-

ities between nodes, yielding networks with multiple views, or

multiplex network embedding. PMNE [22] proposes three meth-

ods to project a multiplex network into a continuous vector space.

MVE [30] embeds networks with multiple views in a single collab-

orated embedding using attention mechanism. MNE [43] uses one

common embedding and several additional embeddings of each

edge type for each node, which are jointly learned by a unified

network embedding model. Mvn2vec [32] explores the feasibility

to achieve better embedding results by simultaneously modeling

preservation and collaboration to represent semantic meanings of

edges in different views respectively.

Attributed Network Embedding. Attributed network embed-

ding aims to seek for low-dimensional vector representations for

nodes in a network, such that original network topological struc-

ture and node attribute proximity can be preserved in such repre-

sentations. TADW [41] incorporates text features of vertices into

network representation learning under the framework of matrix

factorization. LANE [16] smoothly incorporates label information

into the attributed network embedding while preserving their cor-

relations. AANE [15] enables a joint learning process to be done

in a distributed manner for accelerated attributed network embed-

ding. SNE [20] proposes a generic framework for embedding social

networks by capturing both the structural proximity and attribute

proximity. DANE [9] can capture the high nonlinearity and pre-

serve various proximities in both topological structure and node

attributes. ANRL [44] uses a neighbor enhancement autoencoder

to model the node attribute information and an attribute-aware

skip-gram model based on the attribute encoder to capture the

network structure.

3 PROBLEM DEFINITION
Denote a networkG = (V, E), whereV is a set of n nodes and E is

a set of edges between nodes. Each edge ei j = (vi ,vj ) is associated
with a weightwi j ≥ 0, indicating the strength of the relationship

betweenvi andvj . In practice, the network could be either directed

or undirected. If G is directed, we have ei j . eji and wi j . w ji ;

if G is undirected, we have ei j ≡ eji andwi j ≡ w ji . Notations are

summarized in Table 2.



Table 2: Notations.

Notation Description
G the input network

V, E the node/edge set of G
O, R the node/edge type set of G
A the attribute set of G
n the number of nodes

m the number of edge types

r an edge type

d the dimension of base/overall embeddings

s the dimension of edge embeddings

v a node in the graph

N the neighborhood set of a node on an edge type

b, u, c, v the base/edge/context/overall embedding of a node

h, g transformation functions in our inductive approach

x the attribute of a node

Definition 1 (Heterogeneous Network). A heterogeneous
network [3, 33] is a networkG = (V, E) associated with a node type
mapping function ϕ : V → O and an edge type mapping function
ψ : E → R, where O and R represent the set of all node types and
the set of all edge types, respectively. Each node v ∈ V belongs to
a particular node type. Similarly, each edge e ∈ E is categorized
into a specific edge type. If |O| + |R | > 2, the network is called
heterogeneous; otherwise homogeneous.

Notice that in a heterogeneous network, an edge e can no longer

be denoted as ei j since theremay bemultiple types of edges between

node vi and vj . Under such situations, an edge is denoted as e
(r )
i j ,

where r corresponds to a certain edge type.

Definition 2 (AttributedNetwork). An attributed network
[3, 16] is a network G endowed with an attribute representation A,
i.e., G = (V, E,A). Each node vi ∈ V is associated with some types
of feature vectors. A = {xi |vi ∈ V} is the set of node features for all
nodes, where xi is the associated node feature of node vi .

Definition 3 (Attributed Multiplex Heterogeneous Net-

work). An attributedmultiplex heterogeneous network is a net-
work G = (V, E,A), E = ⋃

r ∈R Er , where Er consists of all edges
with edge type r ∈ R, and |R | > 1. We separate the network for every
edge type or view r ∈ R as Gr = (V, Er ,A).

An example of AMHEN is illustrated in Figure 1, which con-

tains 2 node types and 4 edge types. The two node types are user
and item with different attributes. Given the above definitions, we

can formally define our problem for representation learning on

networks.

Problem 1 (AMHEN Embedding). Given an AMHEN G =

(V, E,A), the problem of AMHEN embedding is to give a uni-
fied low-dimensional space representation of each node v on every
edge type r . The goal is to find a function fr : V → Rd for every
edge type r , where d ≪ |V|.

4 METHODOLOGY
In this section, we first explain the proposed GATNE framework

in the transductive context [19]. The resultant model is named as

Generating Overall Node Embedding

Base Embedding

Edge Embedding

 0 1 0 0 1

 1 0 0 1 0

0 1 0 1 0 

Node Attributes

GATNE-T
GATNE-I

0
0
0
0
1
0
0
0
0

0
0

0
0

Heterogeneous Skip-Gram

Input Layer

Hidden 
Layer

Output Layer

…

|V|-dim

|V1|×K1

…

…

|V2|×K2

|V3|×K3

Figure 2: Illustration of GATNE-T and GATNE-I models.
GATNE-T only uses network structure information while
GATNE-I considers both structure information and node at-
tributes. The output layer of heterogeneous skip-gram speci-
fies one set of multinomial distributions for each node type
in the neighborhood of the input node v. In this example,
V = V1 ∪ V2 ∪ V3 and K1,K2,K3 specify the size of v’s
neighborhood on each node type respectively.

GATNE-T. We also give a theoretical discussion about the connec-

tion of GATNE-T with the newly trending models, e.g., MNE. To

deal with the partial observation problem, we further extend the

model to the inductive context [42] and present a new inductive

model named as GATNE-I. For both models, we present efficient

optimization algorithms.

4.1 Transductive Model: GATNE-T
We begin with embedding learning for attributed multiplex het-

erogeneous networks in the transductive context, and present our

model GATNE-T. More specifically, in GATNE-T, we split the overall
embedding of a certain node vi on each edge type r into two parts:

base embedding, edge embedding as shown in Figure 2. The base

embedding of node vi is shared between different edge types. The

k-th level edge embedding u(k)i,r ∈ Rs , (1 ≤ k ≤ K) of node vi on
edge type r is aggregated from neighbors’ edge embeddings as:

u(k )i,r = aддreдator ({u(k−1)j,r ,∀vj ∈ Ni,r }), (1)

where Ni,r is the neighbors of node vi on edge type r . The ini-

tial edge embedding u(0)i,r for each node vi and each edge type r is

randomly initialized in our transductive model. Following Graph-

SAGE [11], the aддreдator function can be a mean aggregator as:

u(k )i,r = σ (Ŵ
(k) ·mean({u(k−1)j,r ,∀vj ∈ Ni,r })), (2)

or other pooling aggregators such as max-pooling aggregator:

u(k )i,r = max({σ (Ŵ(k )
poolu

(k−1)
j,r + b̂(k )pool ),∀vj ∈ Ni,r }), (3)

where σ is an activation function. We denote the K-th level edge

embedding u(K )
i,r as edge embedding ui,r , and concatenate all the



edge embeddings for node vi as Ui with size s-by-m, where s is the
dimension of edge-embeddings:

Ui = (ui,1, ui,2, . . . , ui,m ). (4)

We use self-attentionmechanism [21] to compute the coefficients

ai,r ∈ Rm of linear combination of vectors in Ui on edge type r as:

ai,r = softmax(wT
r tanh (WrUi ))T , (5)

wherewr andWr are trainable parameters for edge type r with size
da and da × s respectively and the superscript T denotes the trans-

position of the vector or the matrix. Thus, the overall embedding

of node vi for edge type r is:

vi,r = bi + αrMT
r Uiai,r , (6)

where bi is the base embedding for nodevi , αr is a hyper-parameter

denoting the importance of edge embeddings towards the overall

embedding and Mr ∈ Rs×d is a trainable transformation matrix.

Connectionwith PreviousWork. We chooseMNE [43], a recent

representative work for MHEN, as the base model for multiplex

heterogeneous networks to discuss the connection between our

proposed model and previous work. In GATNE-T, we use the atten-
tion mechanism to capture the influential factors between different

edge types. We theoretically prove that our transductive model is a

more general form of MNE and improves the expressiveness. For

MNE, the overall embedding ṽi,r of node vi on edge type r ∈ R is

ṽi,r = bi + αrXTr oi,r , (7)

where Xr is a edge-specific transformation matrix. And for GATNE-
T, the overall embedding for node vi on edge type r is:

vi,r = bi + αrMT
r Uiai,r = bi + αrMT

r

m∑
p=1

λpui,p , (8)

where λp denotes the p-th element of ai,r and is computed as:

λp =
exp(wT

r tanh (Wrui,p ))∑
t exp(wT

r tanh (Wrui,t ))
. (9)

Theorem 4.1. For any r ∈ R, there exist parameters wr and
Wr , such that for any oi,1, . . . , oi,m , and corresponding matrix Xr ,
with dimension s for each oi, j and size s × d for Xr , there exist
ui,1, . . . , ui,m , and corresponding matrix Mr , with dimension s +m
for each ui, j and size (s +m) × d forMr , that satisfy vi,r ≈ ṽi,r .

Proof. For any t , let ui,t = (oTi,t , u
′T
i,t )

T
concatenated by two

vectors, where the first s dimension is oi,t , and u′i,t is an m-

dimensional vector. Let u ′i,t,k denote the k-th dimension of u′i,t ,
then take u ′i,t,k = δtk , where δ is the Kronecker delta function as

δi j = 1, i = j;δi j = 0, i , j . (10)

LetWr be all zero, except for the element on row 1 and column s+r
with a large enough numberM ; therefore tanh(Wrui,p ) becomes a

vector with its 1
st

dimension approximately being δrp , and other

dimensions being 0. Take wr as a vector with its 1
st

dimension

being M , then exp(wT
r tanh (Wr ui,p )) ≈ exp(Mδrp ), so λp ≈ δrp .

Finally we takeMr being Xr at its first s × d dimension, and 0 on

the followingm × d dimension, and we can get vi,r ≈ ṽi,r . □

Thus the parameter space of MNE is almost included by our

model’s parameter space and we can conclude that GATNE-T is a

generalization of MNE, if edge embeddings can be trained directly.

However, in our model, the edge embedding u is generated from

single or multiple layers of aggregation. We give more discussions

about the aggregation case.

Effects of Aggregation. In the GATNE-T model, the edge embed-

ding u(k ) is computed by aggregating the edge embedding u(k−1)

of its neighbors as:

u(k )i,r = σ (Ŵ
(k ) ·mean({u(k−1)j,r ,vj ∈ Ni,r })). (11)

The mean aggregator is basically a matrix multiplication,

meank (vi ) = mean({u(k−1)j,r ,vj ∈ Ni,r }) = (U(k−1)
r Nr )i , (12)

where Nr is the neighborhood matrix on edge type r , U(k )
r =

(u(k )
1,r , ..., u

(k)
n,r ) is the k-th level edge embedding of all nodes in

the graph on edge type r , and (U(k−1)
r Nr )i denotes the ith column

of U(k−1)
r Nr . Nr can be a normalized adjacency matrix. The mean

operator of Equation (11) can be weighted and the neighborhood

matrix Ni,r can be sampled. Take Ŵ(k ) = I, where I is an identity

matrix, then u(k )i,r = σ (meank (vi )). If Nr is of full rank, then for any

Or = (o1,r , . . . , on,r ), there exists U(k−1)
r such that U(k−1)

r Nr = Or .

If the activation function σ is an automorphism, i.e., σ : R→ R
andNr is of full rank, we can use the constructionmethod described

in Theorem 4.1 to construct ui,r and the above method to construct

each level of edge embeddings u(K−1)
i,r , ..., u(0)i,r subsequently. There-

fore, our model is still a more general form that can generalize

the MNE model, when all the neighborhood matrices Nr and the

activation function σ are invertible in all levels of aggregation.

4.2 Inductive Model: GATNE-I
The limitation of GATNE-T is that it cannot handle unobserved data.

However, in many real-world applications, the networked data is

often partially observed [42]. We then extend our model to the

inductive context and present a new model named GATNE-I. The
model is also illustrated in Figure 2. Specifically, we define the base

embedding bi as a parameterized function of vi ’s attribute xi as
bi = hz (xi ), where hz is a transformation function and z = ϕ(i) is
nodevi ’s corresponding node type. Notice that nodes with different
types may have different dimensions of their attributes xi . The
transformation function hz can have different forms such as a

multi-layer perceptron [26]. Similarly, the initial edge embeddings

u(0)i,r for node i on edge type r should be also parameterized as

the function of attributes xi as u
(0)
i,r = gz,r (xi ), where gz,r is also

a transformation function that transforms the feature to an edge

embedding of nodevi on the edge type r and z isvi ’s corresponding
node type. To be more specific, for the inductive model, we also

add an extra attribute term to the overall embedding of node vi on
type r :

vi,r = hz (xi ) + αrMT
r Uiai,r + βrD

T
z xi , (13)

where βr is a coefficient and Dz is a feature transformation matrix

on vi ’s corresponding node type z. The difference between our



Algorithm 1: GATNE
Input: network G = (V, E,A), embedding dimension d , edge

embedding dimension s , learning rate η, negative
samples L, coefficient α , β .

Output: overall embeddings vi,r for all nodes on every edge

type r
1 Initialize all the model parameters θ .

2 Generate random walks on each edge type r as Pr .
3 Generate training samples {(vi ,vj , r )} from random walks Pr

on each edge type r .
4 while not converged do
5 foreach (vi ,vj , r ) ∈ training samples do
6 Calculate vi,r using Equation (6) or (13)

7 Sample L negative samples and calculate objective

function E using Equation (17)

8 Update model parameters θ by
∂E
∂θ .

transductive and inductive model mainly lies on how the base em-

bedding bi and initial edge embeddings u(0)i,r are generated. In our

transductive model, the base embedding bi and initial edge embed-

ding u(0)i,r are directly trained for each node based on the network

structure, and the transductive model cannot handle nodes that are

not seen during training. As for our inductive model, instead of

training bi and u
(0)
i,r directly for each node, we train transformation

functions hz and gz,r that transforms the raw feature xi to bi and
u(0)i,r , which works for nodes that did not appear during training as

long as they have corresponding raw features.

4.3 Model Optimization
We discuss how to learn the proposed transductive and inductive

models. Following [10, 27, 35], we use random walk to generate

node sequences and then perform skip-gram [24, 25] over the node

sequences to learn embeddings. Since each view of the input net-

work is heterogeneous, we use meta-path-based random walks [7].

To be specific, given a view r of the network, i.e., Gr = (V, Er ,A)
and a meta-path scheme T : V1 → V2 → · · ·Vt · · · → Vl , where

l is the length of the meta-path scheme, the transition probability

at step t is defined as follows:

p(vj |vi ,T) =


1

|Ni,r∩Vt+1 | (vi ,vj ) ∈ Er ,vj ∈ Vt+1,

0 (vi ,vj ) ∈ Er ,vj < Vt+1,

0 (vi ,vj ) < Er ,
(14)

where vi ∈ Vt and Ni,r denotes the neighborhood of node vi
on edge type r . The flow of the walker is conditioned on the pre-

defined meta path T. The meta-path-based random walk strategy

ensures that the semantic relationships between different types

of nodes can be properly incorporated into skip-gram model [7].

Supposing the random walk with length l on edge type r follows
a path P = (vp1 , . . . ,vpl ) such that (vpt−1 ,vpt ) ∈ Er (t = 2 . . . l),
denotevpt ’s context asC = {vpk |vpk ∈ P , |k−t | ≤ c, t , k}, where
c is the radius of the window size.

Table 3: Statistics of Datasets.

Dataset # nodes # edges # n-types # e-types

Amazon 10,166 148,865 1 2

YouTube 2,000 1,310,617 1 5

Twitter 10,000 331,899 1 4

Alibaba-S 6,163 17,865 2 4

Alibaba 41,991,048 571,892,183 2 4

Thus, given a node vi with its context C of a path, our objective

is to minimize the following negative log-likelihood:

− log Pθ
(
{vj |vj ∈ C}|vi

)
=

∑
vj ∈C

− log Pθ (vj |vi ), (15)

where θ denotes all the parameters. Following metapath2vec [7] we

use the heterogeneous softmax function which is normalized with

respect to the node type of node vj . Specifically, the probability of

vj given vi is defined as:

Pθ (vj |vi ) =
exp(cTj · vi,r )∑

k ∈Vt exp(cTk · vi,r )
, (16)

where vj ∈ Vt , ck is the context embedding of node vk and vi is
the overall embedding of node vi for edge type r .

Finally, we use heterogeneous negative sampling to approximate

the objective function − log Pθ (vj |vi ) for each node pair (vi ,vj ) as:

E = − logσ (cTj · vi,r ) −
L∑
l=1

Evk∼Pt (v)[logσ (−c
T
k · vi,r )], (17)

where σ (x) = 1/(1+ exp(−x)) is the sigmoid function, L is the num-

ber of negative samples correspond to a positive training sample,

and vk is randomly drawn from a noise distribution Pt (v) defined
on node vj ’s corresponding node setVt .

We summarize our algorithm in Algorithm 1. The time complex-

ity of our random walk based algorithm is O(nmdL) where n is the

number of nodes,m is the number of edge types, d is overall embed-

ding size, L is the number of negative samples per training sample

(L ≥ 1). The memory complexity of our algorithm isO(n(d +m×s))
with s being the size of edge embedding.

5 EXPERIMENTS
In this section, we first introduce the details of four evaluation

datasets and the competitor algorithms. We focus on the link pre-

diction task to evaluate the performances of our proposed methods

compared to other state-of-the-art methods. Parameter sensitiv-

ity, convergence, and scalability are then discussed. Finally, we

report the results of offline A/B tests of our method on Alibaba’s

recommendation system.

5.1 Datasets
Wework on three public datasets and the Alibaba dataset for the link

prediction task. Amazon Product Dataset
2
[13, 23] includes product

metadata and links between products; YouTube dataset
3
[36, 38]

2
http://jmcauley.ucsd.edu/data/amazon/

3
http://socialcomputing.asu.edu/datasets/YouTube



consists of various types of interactions; Twitter dataset
4
[6] also

contains various types of links. Alibaba dataset has two node types,

user and item (or product), and includes four types of interactions

between users and items. Since some of the baselines cannot scale

to the whole graph, we evaluate performances on sampled datasets.

The statistics of these four sampled datasets are summarized in

Table 3. Notice that n-types and e-types in the table denote node

types and edge types, respectively.

Amazon. In our experiments, we only use the product metadata

of Electronics category, including the product attributes and co-

viewing, co-purchasing links between products. The product at-

tributes include the price, sales-rank, brand, and category.

YouTube. YouTube dataset is a multiplex bidirectional network

dataset that consists of five types of interactions between 15,088

YouTube users. The types of edges include contact, shared friends,

shared subscription, shared subscriber, and shared favorite videos

between users.

Twitter. Twitter dataset is about tweets related to the discovery

of the Higgs boson between 1st and 7th, July 2012. It is made up of

four directional relationships between more than 450,000 Twitter

users. The relationships are re-tweet, reply, mention, and friend-

ship/follower relationships between Twitter users.

Alibaba. Alibaba dataset consists of four types of interactions

including click, add-to-preference, add-to-cart, and conversion be-

tween two types of nodes, user and item. The sampled Alibaba

dataset is denoted as Alibaba-S. We also provide the evaluation of

the whole dataset on Alibaba’s distributed cloud platform; the full

dataset is denoted as Alibaba.

5.2 Competitors
We categorize our competitors into the following four groups. The

overall embedding size is set to 200 for all methods. The specific

hyper-parameter settings for different methods are listed in the

Appendix.

Network Embedding Methods. The compared methods include

DeepWalk [27], LINE [35], and node2vec [10]. As these methods

can only deal with HON, we feed separate graphs with different

edge types to them and obtain different node embeddings for each

separate graph.

Heterogeneous Network Embedding Methods. We focus on

the representative work metapath2vec [7], which is designed to

deal with the node heterogeneity. When there is only one node type

in the network, metapath2vec degrades to DeepWalk. For Alibaba

dataset, the meta-path schemes are set to U − I −U and I −U − I ,
whereU and I denote User and Item respectively.

Multiplex Heterogeneous Network Embedding Methods.
The compared methods include PMNE [22], MVE [30], MNE [43].

We denote the three methods of PMNE as PMNE(n), PMNE(r) and

PMNE(c) respectively. MVE uses collaborated context embeddings

and applies an attention mechanism to view-specific embedding.

4
https://snap.stanford.edu/data/higgs-twitter.html

MNE uses one common embedding and several additional embed-

dings for each edge type, which are jointly learned by a unified

network embedding model.

Attributed Network Embedding Methods. The compared

method is ANRL [44]. ANRL uses a neighbor enhancement auto-

encoder to model the node attribute information and an attribute-

aware skip-gram model based on the attribute encoder to capture

the network structure.

Our Methods. Our proposed methods include GATNE-T and

GATNE-I. GATNE-T considers the network structure and uses base

embeddings and edge embeddings to capture the influential factors

between different edge types. GATNE-I considers both the network

structure and the node attributes, and learns an inductive trans-

formation function instead of learning base embeddings and meta

embeddings for each node directly. For Alibaba dataset, we use the

same meta-path schemes as metapath2vec. For some datasets with-

out node attributes, we also generate node features for them. Due

to the size of the Alibaba dataset with more than 40 million nodes

and 500 million edges and the scalabilities of the other competitors,

we only compare our GATNE model with DeepWalk, MVE, and

MNE. Specific implementations can be found in the Appendix.

5.3 Performance Analysis
Link prediction is a common task in both academia and industry.

For academia, it is widely used to evaluate the quality of network

embeddings obtained by different methods. In the industry, link

prediction is a very demanding task since in real-world scenarios

we are usually facing graphs with partial links, especially for e-

commerce companies that rely on the links between their users

and items for recommendations. We hide a set of edges/non-edges

from the original graph and train on the remaining graph. Follow-

ing [2, 18], we create a validation/test set that contains 5%/10%

randomly selected positive edges respectively with the equivalent

number of randomly selected negative edges for each edge type.

The validation set is used for hyper-parameter tuning and early

stopping. The test set is used to evaluate the performance and is

only run once under the tuned hyper-parameter. We use some com-

monly used evaluation criteria, i.e., the area under the ROC curve

(ROC-AUC) [12] and the PR curve (PR-AUC) [5] in our experiments.

We also use F1 score as the other metric for evaluation. To avoid

the thresholding effect [37], we assume that the number of hidden

edges in the test set is given [27, 29, 37]. All of these metrics are

uniformly averaged among the selected edge types.

Quantitative Results. The experimental results of three public

datasets and Alibaba-S are shown in Table 4. GATNE outperforms

all sorts of baselines in the various datasets. GATNE-T obtains

better performance than GATNE-I on Amazon dataset as the node

attributes are limited. The node attributes of Alibaba dataset are

abundant so that GATNE-I obtains the best performance. ANRL is

very sensitive to the weak node attributes and obtains the worst

result on Amazon dataset. The different node attributes of users

and items also limit the performance of ANRL on Alibaba-S dataset.

On YouTube and Twitter datasets, GATNE-I performs similarly to

GATNE-T as the node attributes of these two datasets are the node

embeddings of DeepWalk, which are generated by the network



Table 4: Performance comparison of different methods on four datasets.

Amazon YouTube Twitter Alibaba-S

ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1

DeepWalk 94.20 94.03 87.38 71.11 70.04 65.52 69.42 72.58 62.68 59.39 60.62 56.10

node2vec 94.47 94.30 87.88 71.21 70.32 65.36 69.90 73.04 63.12 62.26 63.40 58.49

LINE 81.45 74.97 76.35 64.24 63.25 62.35 62.29 60.88 58.18 53.97 54.65 52.85

metapath2vec 94.15 94.01 87.48 70.98 70.02 65.34 69.35 72.61 62.70 60.94 61.40 58.25

ANRL 71.68 70.30 67.72 75.93 73.21 70.65 70.04 67.16 64.69 58.17 55.94 56.22

PMNE(n) 95.59 95.48 89.37 65.06 63.59 60.85 69.48 72.66 62.88 62.23 63.35 58.74

PMNE(r) 88.38 88.56 79.67 70.61 69.82 65.39 62.91 67.85 56.13 55.29 57.49 53.65

PMNE(c) 93.55 93.46 86.42 68.63 68.22 63.54 67.04 70.23 60.84 51.57 51.78 51.44

MVE 92.98 93.05 87.80 70.39 70.10 65.10 72.62 73.47 67.04 60.24 60.51 57.08

MNE 90.28 91.74 83.25 82.30 82.18 75.03 91.37 91.65 84.32 62.79 63.82 58.74

GATNE-T 97.44 97.05 92.87 84.61 81.93 76.83 92.30 91.77 84.96 66.71 67.55 62.48

GATNE-I 96.25 94.77 91.36 84.47 82.32 76.83 92.04 91.95 84.38 70.87 71.65 65.54

Table 5: The experimental results on Alibaba dataset.

ROC-AUC PR-AUC F1

DeepWalk 65.58 78.13 70.14

MVE 66.32 80.12 72.14

MNE 79.60 93.01 84.86

GATNE-T 81.02 93.39 86.65

GATNE-I 84.20 95.04 89.94
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Figure 3: (a) The convergence curve for GATNE-T and
GATNE-I models on Alibaba dataset. The inductive model
converges faster and achieves better performance than the
transductive model. (b) The training time decreases as the
number of workers increases. GATNE-I takes less training
time to converge compared with GATNE-T.

structure. Table 5 lists the experimental results of Alibaba dataset.

GATNE scales very well and achieves state-of-the-art performance

on Alibaba dataset, with 2.18% performance lift in PR-AUC, 5.78%

in ROC-AUC, and 5.99% in F1-score, compared with best results

from previous state-of-the-art algorithms. The GATNE-I performs

better than GATNE-T model in the large-scale dataset, suggesting

that the inductive approach works better on large-scale attributed

multiplex heterogeneous networks, which is usually the case in

real-world situations.

Convergence Analysis. We analyze the convergence properties

of our proposed models on Alibaba dataset. The results, as shown

in Figure 3(a), demonstrate that GATNE-I converges faster and
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Figure 4: The performance of GATNE-T and GATNE-I on
Alibaba-S when changing base/edge embedding dimensions
exponentially.

achieves better performance than GATNE-T on extremely large-

scale real-world datasets.

Scalability Analysis. We investigate the scalability of GATNE
that has been deployed on multiple workers for optimization. Fig-

ure 3(b) shows the speedup w.r.t. the number of workers on the

Alibaba dataset. The figure shows that GATNE is quite scalable on

the distributed platform, as the training time decreases significantly

when we add up the number of workers, and finally, the inductive

model takes less than 2 hours to converge with 150 distributed

workers. We also find that GATNE-I’s training speed increases al-

most linearly as the number of workers increases but less than 150.

While GATNE-T converges slower and its training speed is about

to reach a limit when the number of workers being larger than 100.

Besides the state-of-the-art performance, GATNE is also scalable

enough to be adopted in practice.

Parameter Sensitivity. We investigate the sensitivity of different

hyper-parameters in GATNE, including overall embedding dimen-

sion d and edge embedding dimension s . Figure 4 illustrates the

performance of GATNE when altering the base embedding dimen-

sion d or edge embedding dimension s from the default setting

(d = 200, s = 10). We can conclude that the performance of GATNE
is relatively stable within a large range of base/edge embedding

dimensions, and the performance drops when the base/edge em-

bedding dimension is either too small or too large.



5.4 Offline A/B Tests
We deploy our inductive model GATNE-I on Alibaba’s distributed

cloud platform for its recommendation system. The training dataset

has about 100 million users and 10 million items, with 10 billion

interactions between them per day. We use the model to generate

embedding vectors for users and items. For every user, we use K

nearest neighbor (KNN) with Euclidean distance to calculate the

top-N items that the user is most likely to click. The experimental

goal is to maximize top-N hit-rate. Under the framework of A/B

tests, we conduct an offline test on GATNE-I, MNE, and DeepWalk.

The results demonstrate that GATNE-I improves hit-rate by 3.26%
and 24.26% compared to MNE and DeepWalk, respectively.

6 CONCLUSION
In our paper, we formalized the attributed multiplex heterogeneous

network embedding problem and proposed GATNE to solve it with

both transductive and inductive settings. We split the overall node

embedding of GATNE-I into three parts: base embedding, edge

embedding, and attribute embedding. The base embedding and

attribute embedding are shared among edges of different types,

while the edge embedding is computed by aggregation of neighbor-

hood information with the self-attention mechanism. Our proposed

methods achieve significantly better performances compared to

previous state-of-the-art methods on link prediction tasks across

multiple challenging datasets. The approach has been successfully

deployed and evaluated on Alibaba’s recommendation system with

excellent scalability and effectiveness.
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A APPENDIX
In the appendix, we first give the implementation notes of our

proposed models. The detailed descriptions of datasets and the

parameter configurations of all methods are then given. Finally, we

discuss the questions about fair comparison and our future work.

A.1 Implementation Notes

Running Environment. The experiments in this paper can be

divided into two parts. One is conducted on four datasets using a

single Linux server with 4 Intel(R) Xeon(R) Platinum 8163 CPU @

2.50GHz, 512G RAM and 8 NVIDIA Tesla V100-SXM2-16GB. The

codes of our proposed models in this part are implemented with

TensorFlow
5
1.12 in Python 3.6. The other part is conducted on

the full Alibaba dataset using Alibaba’s distributed cloud platform

which contains thousands of workers. Every two workers share an

NVIDIA Tesla P100 GPU with 16GB memory. Our proposed models

are implemented with TensorFlow 1.4 in Python 2.7 in this part.

Implementation Details. Our codes used by single Linux server

can be split into three parts: random walk, model training and

evaluation. The random walk part is implemented referring to the

corresponding part of DeepWalk
6
and metapath2vec

7
. The training

part of the model is implemented referring to the word2vec part

of TensorFlow tutorials
8
. The evaluation part uses some metric

functions from scikit-learn
9
including roc_auc_score, f1_score, preci-

sion_recall_curve, auc. Our model parameters are updated and opti-

mized by stochastic gradient descent with Adam updating rule [17].

The distributed version of our proposed models is implemented

based on the coding rules of Alibaba’s distributed cloud platform

in order to maximize the distribution efficiency. High-level APIs,

such as tf.estimator and tf.data, are used for the higher coefficient

of utilization of computation resources in the Alibaba’s distributed

cloud platform.

Function Selection. Many different aggregator functions in Equa-

tion (1), such as the mean aggregator (Cf. Equation (2)) or pooling

aggregator (Cf. Equation (3)), achieve similar performance in our

experiments. Mean aggregator is finally used to be reported in the

quantitative experiments in our model. We use the linear transfor-

mation function as the parameterized function of attributes hz and

gz,r in Equation (13) of our inductive model GATNE-I.

Parameter Configuration. Our base/overall embedding dimen-

sion d is set to 200 and the dimension of edge embedding s is set to
10. The number of walks for each node is set to 20 and the length

of walks is set to 10. The window size is set to 5 for generating

node contexts. The number of negative samples L for each positive

training sample is set to 5. The number of maximum epochs is set

to 50 and our models will early stop if ROC-AUC on the validation

set does not improve in 1 training epoch. The coefficient αr and βr
are all set to 1 for every edge type r . For Alibaba dataset, the node
types include U and I representing User and Item respectively. The

meta-path-schemes of our methods are set toU − I −U and I −U − I .
5
https://www.tensorflow.org/

6
https://github.com/phanein/deepwalk

7
https://ericdongyx.github.io/metapath2vec/m2v.html

8
https://www.tensorflow.org/tutorials/representation/word2vec

9
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

We use the default setting of Adam optimizer in TensorFlow; the

learning rate is set to lr = 0.001. For offline A/B test in section 5.4,

we use N = 50.

Code and Dataset Releasing Details. The codes of our pro-

posed models on the single Linux server (based on Tensorflow

1.12), together with our partition of the three public datasets and

the Alibaba-S dataset are available.

A.2 Compared Methods
We give the detailed running configuration about all compared

methods as follows. The embedding size is set to 200 for all methods.

For random-walk based methods, the number of walks for each

node is set to 20 and the length of walks is set to 10. The window

size is set to 5 for generating node contexts. The number of negative

samples for each training pairs is set to 5. The number of iterations

for training the skip-gram model is set to 100. The code sources

and other specific hyper-parameter settings of compared methods

are explained below.

A.2.1 Network Embedding Methods.

• DeepWalk [27]. For public and Alibaba-S datasets, we use

the codes from the corresponding author’s GitHub
6
. For

Alibaba dataset, we re-implemented DeepWalk on Alibaba

distributed cloud platform.

• LINE [35]. The codes of LINE are from the corresponding

author’s GitHub
10
. We use the LINE(1st+2nd) as the overall

embeddings. The embedding size is set to 100 both for first-

order and second-order embeddings. The number of samples

is set to 1000 million.

• node2vec [10]. The codes of node2vec are from the corre-

sponding author’s GitHub
11
. Node2vec adds two parameters

to control the random walk process. The parameter p is set

to 2 and the parameter q is set to 0.5 in our experiments.

A.2.2 Heterogeneous Network Embedding Methods.

• metapath2vec [7]. The codes provided by the correspond-

ing author are only for specific datasets and could not directly

generalize to other datasets. We re-implement metapath2vec

for networks with arbitrary node types in Python based

on the original C++ codes
12
. As the number of node types

of three public datasets is one, metapath2vec degrades to

DeepWalk in these three datasets. For Alibaba dataset, the

node types include U and I representing User and Item re-

spectively. The meta-path-schemes are set to U − I −U and

I −U − I .

A.2.3 Multiplex Heterogeneous Network Embedding Methods.

• PMNE [22]. PMNE proposes three different methods to ap-

ply node2vec on multiplex networks. We denote their net-

work aggregation algorithm, result aggregation algorithm,

and layer co-analysis algorithm as PMNE(n), PMNE(r), and

PMNE(c) respectively in accord with the denotations of

10
https://github.com/tangjianpku/LINE

11
https://github.com/aditya-grover/node2vec

12
https://ericdongyx.github.io/metapath2vec/m2v.html



Table 6: Statistics of Original Datasets.

Dataset # nodes # edges # n-types # e-types

Amazon 312,320 7,500,100 1 4

YouTube 15,088 13,628,895 1 5

Twitter 456,626 15,367,315 1 4

MNE[43]. We use the codes fromMNE’s GitHub
13
. The prob-

ability of traversing layers of PMNE(c) is set to 0.5.

• MVE [30]. MVE uses collaborated context embeddings and

applies an attention mechanism to view-specific embeddings.

The code of MVE was received from the corresponding au-

thor by email. The embedding dimensions for each view is

set to 200. The number of training samples for each epoch is

set to 100 million and the number of epochs is set to 10. As

for Alibaba dataset, we re-implemented this method on the

Alibaba distributed cloud platform.

• MNE [43]. MNE uses one common embedding and several

additional embeddings of each edge type for each node,

which are jointly learned by a unified network embedding

model. The additional embedding size for MNE is set to 10.

We use the codes released by the corresponding author in

the GitHub
13
. As for Alibaba dataset, we re-implemented it

on the Alibaba distributed cloud platform.

A.2.4 Attributed Network Embedding Methods.

• ANRL [44]. We use the codes from Alibaba’s GitHub
14
. As

YouTube and Twitter datasets do not have node attributes,

we generate node attributes for them. To be specific, we use

the node embeddings (200 dimensions) of DeepWalk as the

input node features on these datasets for ANRL. For Alibaba-

S and Amazon dataset, we use raw features as attributes.

A.3 Datasets
Our experiment evaluates on five datasets, including four datasets

and Alibaba dataset. Due to the limitation of memory and com-

putation resources on a single Linux server, the four datasets are

subgraphs sampled from the original datasets for training and eval-

uation. Table 6 shows the statistics of the original public datasets.

• Amazon is a dataset of product reviews and metadata from

Amazon. In our experiments, we only use the product meta-

data, including the product attributes and co-viewing, co-

purchasing links between products. The node type set of

Amazon is O = {product} and the edge type set of Ama-

zon is R = {also_bouдht ,also_viewed}, which denotes two

products are co-bought or co-viewed by the same user re-

spectively. The products of Amazon are split into many cat-

egories. The number of products in all the categories is so

large that we use the Electronics category of products for ex-

perimentation. The number of products in Electronics is still
large for many algorithms; therefore, we extract a connected

subgraph from the whole graph.

13
https://github.com/HKUST-KnowComp/MNE

14
https://github.com/cszhangzhen/ANRL

• YouTube is a multi-dimensional bidirectional network

dataset consists of 5 types of interactions between 15,088

YouTube users. The types of edges include contact, shared

friends, shared subscription, shared subscriber, and shared

favorite videos between users. It is a multiplex network with

|O| = 1 and |R | = 5.

• Twitter is a dataset about tweets posted on Twitter about

the discovery of the Higgs boson between 1st and 7th, July

2012. It is made up of 4 directional relationships between

more than 450,000 Twitter users. The relationships are re-

tweet, reply, mention, and friendship/follower relationship

between Twitter users. It is a multiplex network with |O| = 1

and |R | = 4.

• Alibaba consists of 4 types of interactions which includ-

ing click, add-to-preference, add-to-cart, and conversion be-

tween two types of nodes, user and item. The node type set

of Alibaba is O = {user , item} and the size of the edge type

set is |R | = 4. The whole graph of Alibaba is so large that we

cannot evaluate the performances of different methods on it

by a single machine. We extract a subgraph from the whole

graph for comparison with different methods, denoted as

Alibaba-S. By the way, we also provide the evaluation of

the whole graph on the Alibaba’s distributed cloud platform,

the full graph is denoted as Alibaba.

A.4 Discussion
As for research on network embedding, many people use link predic-

tion or node classification tasks for evaluating the representation of

network embeddings. However, although there aremany commonly

used public datasets, like Twitter or YouTube dataset, none of them

provide a "standard" separation for train, validation, and test for

different tasks. This causes different results on the same dataset for

different evaluation separations so the results from previous papers

cannot be directly used, and researchers have to re-implement and

run all baselines themselves, reducing their attention on improving

their model.

Here we appeal on researchers to provide the standardized

dataset, which contains a standard separation of train, validation

and test sets as well as the full dataset. Therefore researchers can

evaluate their method based on a standard environment, and results

across papers can be compared directly. This also helps to increase

the reproducibility of research.

Future Work. Apart from the heterogeneity of networks, the

dynamics of networks are also crucial to network representation

learning. There are three ways to capture the dynamic information

of networks. Firstly, we can add dynamic information into node

attributes. For example, we can use methods like LSTM [14] to

capture the dynamic activities of users. Secondly, the dynamic

information, such as the timestamp of each interaction, can be

considered as the attributes of edges. Thirdly, we may consider the

several snapshots of networks representing the dynamic evolution

of networks. We leave representation learning for the dynamic

attributed multiplex heterogeneous network as our future work.
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