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Cross-domain collaborations is very different from traditional collaborations:

1) sparse connection: cross-domain collaborations are rare

2) complementary expertise: cross-domain collaborators have different expertise 

3) topic skewness: cross-domain collaboration topics are focused on a subset of topics

   Empirical Analysis

Baselines:
Content Similarity(Content)—based on similarity between authors’s publications
Collaborative Filtering(CF)—based on existing collaborations
Hybrid— a linear combination of the scores obtained by the Content and the CF methods.
Katz—the best link predictor in link-prediction problem for social networks
Author Matching(Author)—based on the random walk with restart on the collaboration graph
Topic Matching(Topic)—combining the extracted topics into the random walking algorithm

Performance on new collaboration prediction of all algorithms

Recommendation performance(%)

Parameter analysis

Datasets (from Arnetminer): 5 domains
Data Mining(DM)—6,282 authors and 22,862 relationships.
Medical Informatics(MI)—9,150 authors and 31,851 relationships.
Theory(TH)—5,449 authors and 27,712 relationships.
Visualization(VIS)—5,268 authors and 19,261 relationships.
Database(DB)—7,590 authors and 37,592 relationships.
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Probabilistic generative process in CTL

   Interdisciplinary collaborations have generated huge impact to society.

   Cross-domain Topic Learning (CTL)
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Step 2. CTL Learning

Graphical representation of CTL model.
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Intuitive explanation of the CTL learning

Prototype system: http://arnetminer.org/collaborator
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Author Matching:
Random walk with restart on 
the collaboration graph
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Topic Matching:
Combining the topic model into 
the random walk framework
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CTL:
Discriminating collaboration topics 

from irrelevant topics

Step 1. Learning LDA or ACT model on the 

source and the target domain respectively.

Step 3. Random walk with restart on the topic 

augmented graph.
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Trends of existing and new collaborations over years.
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