Preliminaries # Are we really making much progress? Revisiting, benchmarking, and refining heterogeneous graph neural networks Qingsong Lv*[†], Ming Ding*[†], Qiang Liu♣, Yuxiang Chen[†], Wenzheng Feng[†], Siming He[⋄], Chang Zhou[‡], Jianguo Jiang[♣], Yuxiao Dong[¶], Jie Tang^{†§} > † Tsinghua University * Chinese Academy of Sciences ‡ Alibaba Group ♦ University of Pennsylvania ¶ Microsoft > > June, 2021 - Preliminaries - 2 Motivation - 3 Methodology - 4 Experiments - 6 References Preliminaries Preliminaries 0000 - 3 Methodology # Heterogeneous Graph - $G = \{V, E, \phi, \psi\}$ - V: set of nodes; E: set of edges. - Each node v has a type $\phi(v)$; Each edge e has a type $\psi(e)$. - Assume $T_v = \{\phi(v) : \forall v \in V\}$ and $T_e = \{\psi(e) : \forall e \in E\}$. - When $|T_v| = |T_e| = 1$, the graph degenerates into an ordinary homogeneous graph. Otherwise, G is a heterogeneous graph. Figure 1: Homogeneous Graph and Heterogeneous Graph illustration. # Graph Neural Networks Preliminaries 0000 - GCN: $H^{(l)} = \sigma(\hat{A}H^{(l-1)}W^{(l)})$ - GAT: $\alpha_{ij} = \frac{\exp(\text{LeakyReLU}(a^T[Wh_i||Wh_j]))}{\sum_{k \in \mathcal{N}_i} \exp(\text{LeakyReLU}(a^T[Wh_i||Wh_k]))}$ - Homogeneous GNN → Heterogeneous GNN #### Meta-Paths - A meta-path [1, 2] is a pre-defined node and edge types pattern. - $\mathcal{P} \triangleq n_1 \xrightarrow{r_1} n_2 \xrightarrow{r_2} \cdots \xrightarrow{r_l} n_{l+1}$, where $r_i \in T_e$ and $n_i \in T_v$. - For example, "user \xrightarrow{buy} item \xleftarrow{buy} user \xrightarrow{buy} item" is a meta-path, and "user $3\xrightarrow{buy}$ item $1\xleftarrow{buy}$ user $1\xrightarrow{buy}$ item 4" is an instance of the meta-path. Figure 2: An Example of User-Item Graph. - 1 Preliminaries - 2 Motivation - 3 Methodology ### Issues with Current HGNN Research - Experiment settings - Improper settings for homogeneous baselines - Biased performance reporting for multiple runs - Data leakage - Datasets: - Various train/test split and preprocessing steps in different papers (even with a same dataset) - Pipelines: - Various designs for components outside HGNNs #### Issues Demonstration Table 1: Reproduction of Heterogeneous GNNs with simple GCN and GAT as baselines—all reproduction experiments use official codes and the same dataset, settings, hyperparameters as the original paper. The line with star (*) are results reported in the paper, and the lines without star are our reproduction. "-" means the results are not reported in the original paper. We mark the reproduction terms with >1 point gap compared to the reported results by \uparrow and \downarrow . We also keep the standard variance terms above 1. | | HAN | 1 [3] | I | GTN [4] | | 1 | RSHN [6] | | 1 | HetGI | NN [5] | | |----------------|--------------------------|--------------------------|-----------------|-----------------------|---|----------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------| | Dataset | AC | M | DBLP | ACM | IMDB | AIFB | MUTAG | BGS | MC (| 10%) | MC (| 30%) | | Metric | Macro-F1 | Micro-F1 | Macro-F1 | Macro-F1 | Macro-F1 | Accuracy | Accuracy | Accuracy | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | | model*
GCN* | 91.89
89.31 | 91.85
89.45 | 94.18
87.30 | 92.68
91.60 | 60.92
56.89 | 97.22 | 82.35
- | 93.10 | 97.8 | 97.9
- | 98.1 | 98.2 | | GAT* | 90.55 | 90.55 | 93.71 | 92.33 | 58.14
57.53±2.22↓ | 91.67 | 72.06
82.35 | 93.10 | 96.2 | 96.3 | 96.5 | 96.5 | | GCN
GAT | 92.25 ↑
92.08↑ | 92.29 ↑
92.15↑ | 91.48↑
94.18 | 92.28
92.49 | 59.11 ± 1.73 ↑ 58.86±1.73 | | 79.41
80.88↑ | 96.55
100 ↑ | 91.88
98.25 ↑ | 92.04
98.30 ↑ | 95.37
98.42 ↑ | 95.57
98.50 ↑ | - 3 Methodology Heterogeneous Graph Benchmark (HGB) A Simple but Strong Baseline (Simple-HGN) - 3 Methodology Heterogeneous Graph Benchmark (HGB) Preliminaries HGB standardizes heterogeneous experiment settings for all HGNNs for fair comparison. - We collect 11 widely-recognized medium-scale datasets on 3 tasks with predefined meta-paths from previous works - We run all datasets for all methods 5 times and report the average score and standard deviation - We design a unified pipeline for each task to reveal the ability of HGNN module and eliminate variation from other components #### Datasets Table 2: Statistics of HGB datasets. | Node
Classification | #Nodes | #Node
Types | #Edges | #Edge
Types | Target | #Classes | |------------------------|---------------|----------------|-----------|----------------|-----------------|----------| | DBLP | 26,128 | 4 | 239,566 | 6 | author | 4 | | IMDB | 21,420 | 4 | 86,642 | 6 | movie | 5 | | ACM | 10,942 | 4 | 547,872 | 8 | paper | 3 | | Freebase | 180,098 | 8 | 1,057,688 | 36 | book | 7 | | Link Prediction | | | | | T | arget | | Amazon | 10,099 | 1 | 148,659 | 2 | product-product | | | LastFM | LastFM 20,612 | | 141,521 | 3 | user-artist | | | PubMed | 63,109 | 4 | 244,986 | 10 | disease-disease | | | Recommenda | tion Ama | zon-book | LastFM | Moviele | ens Yelp | p-2018 | | #Users | #Users | | 23,566 | 37,3 | 85 4 | 45,919 | | #Items | #Items | | 48,123 | 6,1 | .82 | 45,538 | | #Interaction | #Interactions | | 3,034,763 | 539,3 | 00 1,18 | 33,610 | | #Entities | #Entities | | 106,389 | 24,5 | 36 13 | 36,499 | | #Relations | 5 | 39 | 9 | | 20 | 42 | | #Triplets | 2 | 2,557,746 | 464,567 | 237,1 | 55 1,8 | 53,704 | ### **Pipelines** We use "feature preprocessing \rightarrow HGNN encoder \rightarrow downstream decoder" pipeline in HGB, and the whole pipeline is trained in an end-to-end fashion. Figure 3: HGB Pipelines - 1 Preliminaries - 2 Motivation - 3 Methodology Heterogeneous Graph Benchmark (HGB) A Simple but Strong Baseline (Simple-HGN) - 4 Experiments - 6 References # Simple-HGN Simple-HGN uses GAT as backbone, and adding three simple yet effective components: • Relation-aware attention weight calculation: $$\hat{\alpha}_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\mathsf{a}^T[Wh_i\|Wh_j\|W_rr_{\psi(\langle i,j\rangle)}]\right)\right)}{\sum_{k\in\mathcal{N}_i}\exp\left(\mathsf{LeakyReLU}\left(\mathsf{a}^T[Wh_i\|Wh_k\|W_rr_{\psi(\langle i,k\rangle)}]\right)\right)}$$ - Residual connection for nodes edges - L₂ normalization for output representations - 1 Preliminaries - 3 Methodology - **4** Experiments ### Node Classification Table 3: Node classification benchmark. Vacant positions ("-") mean that the models run out of memory on large graphs. | | DBLP | | IMDB | | ACM | | Freebase | | |------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | | RGCN | 91.52±0.50 | 92.07±0.50 | 58.85±0.26 | 62.05±0.15 | 91.55±0.74 | 91.41±0.75 | 46.78±0.77 | 58.33±1.57 | | HAN | 91.67 ± 0.49 | 92.05 ± 0.62 | 57.74 ± 0.96 | 64.63 ± 0.58 | 90.89 ± 0.43 | 90.79 ± 0.43 | 21.31 ± 1.68 | 54.77±1.40 | | GTN | 93.52 ± 0.55 | 93.97 ± 0.54 | 60.47 ± 0.98 | 65.14 ± 0.45 | 91.31 ± 0.70 | 91.20 ± 0.71 | - | - | | RSHN | 93.34 ± 0.58 | 93.81 ± 0.55 | 59.85 ± 3.21 | 64.22 ± 1.03 | 90.50 ± 1.51 | 90.32 ± 1.54 | - | - | | HetGNN | 91.76 ± 0.43 | 92.33 ± 0.41 | 48.25 ± 0.67 | 51.16 ± 0.65 | 85.91 ± 0.25 | 86.05 ± 0.25 | - | - | | MAGNN | 93.28 ± 0.51 | 93.76 ± 0.45 | 56.49 ± 3.20 | 64.67 ± 1.67 | 90.88 ± 0.64 | 90.77 ± 0.65 | - | - | | HetSANN | 78.55 ± 2.42 | 80.56 ± 1.50 | 49.47 ± 1.21 | 57.68 ± 0.44 | 90.02 ± 0.35 | 89.91 ± 0.37 | - | - | | HGT | 93.01 ± 0.23 | 93.49 ± 0.25 | 63.00 ± 1.19 | 67.20 ± 0.57 | 91.12 ± 0.76 | 91.00 ± 0.76 | 29.28 ± 2.52 | 60.51 ± 1.16 | | GCN | 90.84±0.32 | 91.47±0.34 | 57.88±1.18 | 64.82±0.64 | 92.17±0.24 | 92.12±0.23 | 27.84±3.13 | 60.23±0.92 | | GAT | 93.83 ± 0.27 | 93.39 ± 0.30 | 58.94 ± 1.35 | 64.86 ± 0.43 | 92.26 ± 0.94 | 92.19 ± 0.93 | 40.74 ± 2.58 | 65.26±0.80 | | Simple-HGN | 94.01±0.24 | 94.46±0.22 | 63.53±1.36 | 67.36±0.57 | 93.42±0.44 | 93.35±0.45 | 47.72±1.48 | 66.29±0.45 | ### Link Prediction Table 4: Link prediction benchmark. Vacant positions ("-") are due to lack of meta-paths on those datasets. | | Ama | azon | Las | tFM | PubMed | | | |---|---|---|--|--|--|---|--| | | ROC-AUC | MRR | ROC-AUC | MRR | ROC-AUC | MRR | | | RGCN
GATNE
HetGNN
MAGNN
HGT | 86.34±0.28
77.39±0.50
77.74±0.24
-
88.26±2.06 | 93.92±0.16
92.04±0.36
91.79±0.03
-
93.87±0.65 | 57.21 ± 0.09
66.87 ± 0.16
62.09 ± 0.01
56.81 ± 0.05
54.99 ± 0.28 | 77.68±0.17
85.93±0.63
83.56±0.14
72.93±0.59
74.96±1.46 | 78.29 ± 0.18 63.39 ± 0.65 73.63 ± 0.01 $ 80.12\pm0.93$ | 90.26±0.24
80.05±0.22
84.00±0.04
-
90.85±0.33 | | | GCN
GAT | 92.84±0.34
91.65±0.80 | 97.05±0.12
96.58±0.26 | 59.17±0.31
58.56±0.66 | 79.38±0.65
77.04±2.11 | 80.48±0.81
78.05±1.77 | 90.99±0.56
90.02±0.53 | | | Simple-HGN | 93.40±0.62 | 96.94±0.29 | 67.59±0.23 | 90.81 ± 0.32 | 83.39±0.39 | 92.07±0.26 | | ## Knowledge-aware Recommendation Table 5: Knowledge-aware recommendation benchmark. GCN and GAT are not included, because they are already very similar to KGCN and KGAT-. (MovieLens dataset is omitted here due to the space constraint.) | | Amazo | n-Book | Las | :FM | Yelp-2018 | | | |-----------------------------------|--|--|--|--|--|---|--| | | recall@20 | ndcg@20 | recall@20 | ndcg@20 | recall@20 | ndcg@20 | | | KGCN
KGNN-LS
KGAT
KGAT — | 0.1464±0.0002
0.1448±0.0003
0.1507±0.0003
0.1486±0.0003 | 0.0769±0.0002
0.0759±0.0001
0.0802±0.0004
0.0790±0.0002 | 0.0819±0.0002
0.0806±0.0003
0.0877±0.0003
0.0890±0.0002 | 0.0705±0.0002
0.0695±0.0002
0.0749±0.0003
0.0762±0.0002 | 0.0683±0.0003
0.0671±0.0003
0.0697±0.0002
0.0715±0.0001 | $\begin{array}{c} 0.0431 \!\pm\! 0.0003 \\ 0.0422 \!\pm\! 0.0002 \\ 0.0450 \!\pm\! 0.0001 \\ 0.0460 \!\pm\! 0.0001 \end{array}$ | | | Simple-HGN | $0.1587\!\pm\!0.0011$ | 0.0854±0.0005 | 0.0917±0.0006 | 0.0797±0.0003 | 0.0732 ± 0.0003 | 0.0466±0.0003 | | - 1 Preliminaries - 3 Methodology - 6 References [1] Yizhou Sun and Jiawei Han. Preliminaries - Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan and Claypool Publishers, 2012. - [2] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. - Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S [3] Yii Heterogeneous graph attention network. In WWW'19. 2019. PVLDB, 4(11):992-1003, 2011. - [4] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks. In NeurIPS'19. 2019. - [5] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla Heterogeneous graph neural network. In KDD'19, pages 793-803, 2019. [6] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingguan Zhu, and Bin Wang. Relation structure-aware heterogeneous graph neural network. In ICDM'19, 2019. Thank You!