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Heterogeneous Graph

G={V,E ¢, v}

V' set of nodes; E: set of edges.

Each node v has a type ¢(v); Each edge e has a type 9(e).
Assume T, = {¢(v) : Vv € V} and T, = {¢(e) : Ve € E}.
When | T, | = | Te| = 1, the graph degenerates into an ordinary
homogeneous graph. Otherwise, G is a heterogeneous graph.

> DI

Figure 1: Homogeneous Graph and Heterogeneous Graph illustration.
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Graph Neural Networks

e GCN: H) = g(AHU-D W)
exp(LeakyReLU(a” [Wh;||Whj]))
Sken; exp(LeakyReLU(a” [Wh;||Wh]))
® Homogeneous GNN — Heterogeneous GNN

* GAT: ajj =
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Meta-Paths

® A meta-path [1, 2] is a pre-defined node and edge types

pattern.

s r r
ePa2n LA .oo Dnyq, wherer; € Toand n; € T,

. buy . buy buy . "o
® For example, “user—>item<+——user—=item” is a meta-path,

‘" b . b b . T .
and “user 3—2item 1+—user 1—sitem 4" is an instance of
the meta-path.

A A A

user 1 user 2 user 3

HERREN

item 1 item 2 item 3 item 4

Figure 2: An Example of User-Iltem Graph.
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Issues with Current HGNN Research

® Experiment settings
® |mproper settings for homogeneous baselines
® Biased performance reporting for multiple runs
® Data leakage
® Datasets:
® Various train/test split and preprocessing steps in different
papers (even with a same dataset)
® Pipelines:
® Various designs for components outside HGNNs
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Issues Demonstration

Table 1: Reproduction of Heterogeneous GNNs with simple GCN and GAT as
baselines—all reproduction experiments use official codes and the same
dataset, settings, hyperparameters as the original paper. The line with star (*)
are results reported in the paper, and the lines without star are our
reproduction. “-" means the results are not reported in the original paper. We
mark the reproduction terms with >1 point gap compared to the reported
results by 7 and |. We also keep the standard variance terms above 1.

\ HAN [3] \ GTN [4] \ RSHN [6] \ HetGNN [5]

Dataset | ACM | DBLP ACM IMDB | AIFB  MUTAG  BGS

MC (10%) MC (30%)

Metric ‘Macro-Fl Micro-Fl‘Macro-Fl Macro-F1 Macro-F1 ‘Accuracy Accuracy Accuracy‘Macro-Fl Micro-F1 Macro-F1 Micro-F1

model* 91.89 91.85 94.18 92.68 60.92 97.22 82.35 93.10 97.8 97.9 98.1 98.2
GCN* 89.31 89.45 87.30 91.60 56.89 - - - - - - -
GAT* 90.55 90.55 93.71 92.33 58.14 91.67 72.06 66.32 96.2 96.3 96.5 96.5

9295 9228  57.531+2.22)
91.487 9228  59.11+1.737
94.18 92.49 58.861+1.73

9722 8235  93.10
9722 7941  96.55
1007  80.887 1007

97.06 97.11 97.34 97.37
91.88 92.04 95.37 95.57
98.251  98.307  98.427  98.501"

GCN 92.251  92.297

model | 90.94  90.96
GAT | 92081 92.151
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Heterogeneous Graph Benchmark (HGB)
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HGB standardizes heterogeneous experiment settings for all
HGNNs for fair comparison.

® We collect 11 widely-recognized medium-scale datasets on 3
tasks with predefined meta-paths from previous works

® We run all datasets for all methods 5 times and report the
average score and standard deviation

® We design a unified pipeline for each task to reveal the ability
of HGNN module and eliminate variation from other
components
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Datasets

Table 2: Statistics of HGB datasets.

Node #Node #Edge
Classification #Nodes Types #Edges Types Target #Classes
DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3
Freebase 180,098 8 1,057,688 36 book 7
Link Prediction Target
Amazon 10,099 1 148,659 2 product-product
LastFM 20,612 3 141,521 3 user-artist
PubMed 63,109 4 244,986 10 disease-disease

Recommendation Amazon-book LastFM  Movielens Yelp-2018

#Users 70,679 23,566 37,385 45,919
#ltems 24,915 48,123 6,182 45,538
#Interactions 846,434 3,034,763 539,300 1,183,610
#Entities 113,487 106,389 24,536 136,499
#Relations 39 9 20 42
F#Triplets 2,557,746 464,567 237,155 1,853,704
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We use “feature preprocessing — HGNN encoder — downstream
decoder” pipeline in HGB, and the whole pipeline is trained in an

end-to-end fashion.

Feature Preprocessing

Input Features in a shared space —

HGNN encoder (2-layer Simple-HGN) Downstream Decoders

N Node classification:
Graph ground truth

L Gy

Cross-entropy loss

Neighbor or
Negative sample

| - >q::\:§:o QIIID
/ 7 Binary
4 DistMult or Dot product Cross-entropy
/ loss

h \// Link prediction:

/ Recommendation:
/ Neighbor Negative sample
aIm a1 @D - — > d a1 D

N
Output Embeddings HGNN(v) ~

Figure 3: HGB Pipelines
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A Simple but Strong Baseline (Simple-HGN)
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Simple-HGN

Simple-HGN uses GAT as backbone, and adding three simple yet
effective components:

® Relation-aware attention weight calculation:

A exp(LeakyReLU(aT [Whil|Wh;|| W, ryi)]))
Aij = Sken; exp(LeakyReLU(aT [Whil|Whi|| W, ry (i 1))]))

® Residual connection for nodes edges

® [, normalization for output representations
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Node Classification

Table 3: Node classification benchmark. Vacant positions (“-") mean that the
models run out of memory on large graphs.

DBLP IMDB ACM Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.524+0.50 92.0740.50 58.85+0.26 62.0540.15 91.55+0.74 91.41+0.75 46.78+0.77 58.33+1.57
HAN 91.67+0.49 92.0540.62 57.741+0.96 64.63+0.58 90.89+0.43 90.79+0.43 21.31+1.68 54.77+1.40
GTN 93.5240.55 93.97+0.54 60.47+£0.98 65.14+0.45 91.31+0.70 91.204+0.71 - -
RSHN 93.344+0.58 93.81+0.55 59.85+3.21 64.22+1.03 90.50+1.51 90.32+1.54 - -
HetGNN 91.7640.43 92.33+0.41 48.25+0.67 51.16+0.65 85.91+0.25 86.0510.25 - -
MAGNN 93.284+0.51 93.76+0.45 56.49+3.20 64.67+1.67 90.88+0.64 90.7710.65 - -
HetSANN ~ 78.55+2.42 80.56+1.50 49.47+121 57.68+0.44 90.02+0.35 89.91+0.37 - -
HGT 93.014+0.23 93.49+0.25 63.00£1.19 67.20+0.57 91.12+0.76 91.00+0.76 29.28+2.52 60.51+1.16

GCN 90.8440.32 91.4740.34 57.881+1.18 64.8240.64 92.1740.24 92.1240.23 27.8443.13 60.2310.92
GAT 93.834+0.27 93.3940.30 58.9441.35 64.8640.43 92.2640.94 92.1940.93 40.7442.58 65.264-0.80

Simple-HGN  94.01+0.24 94.46+0.22 63.53+1.36 67.36:+0.57 93.42+0.44 93.35+0.45 47.72+1.48 66.29+0.45
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Link Prediction

Table 4: Link prediction benchmark. Vacant positions (“-") are due to lack of
meta-paths on those datasets.

Amazon LastFM PubMed

ROC-AUC MRR ROC-AUC MRR ROC-AUC MRR

RGCN 86.3440.28 93.924+0.16 57.2140.09 77.6840.17 78.2940.18 90.264-0.24
GATNE 77394050 92.0440.36 66.8740.16 859340.63 63.3940.65 80.0540.22
HetGNN 77.744+0.24 91.7940.03 62.0940.01 83.5640.14 73.631+0.01 84.0040.04

MAGNN - - 56.8140.05 72.9340.59 - -
HGT 88.2642.06 93.8710.65 54.9940.28 74.961+1.46 80.124+0.93 90.8540.33
GCN 92.8440.34 97.0540.12 59.1740.31 79.3840.65 80.484+0.81 90.9940.56
GAT 91.6540.80 96.58+0.26 585640.66 77.0442.11 78.054+1.77 90.0240.53

Simple-HGN  93.40+0.62 96.94+0.29 67.59+0.23 90.81+0.32 83.39+0.39 92.07+0.26
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Knowledge-aware Recommendation

Table 5: Knowledge-aware recommendation benchmark. GCN and GAT are not
included, because they are already very similar to KGCN and KGAT-.
(Movielens dataset is omitted here due to the space constraint.)

Amazon-Book LastFM Yelp-2018

recall@20 ndcg©@20 recall@20 ndcg@20 recall@20 ndcg©20

KGCN 0.1464+£0.0002  0.0769+0.0002  0.081940.0002 0.070540.0002  0.0683+0.0003  0.0431+0.0003
KGNN-LS ~ 0.144840.0003  0.07594:0.0001  0.0806+0.0003  0.0695+0.0002 0.067140.0003  0.0422+0.0002
KGAT 0.1507£0.0003  0.0802+0.0004 0.08774:0.0003 0.0749+0.0003  0.0697+0.0002  0.04504-0.0001
KGAT — 0.1486+0.0003  0.0790+0.0002  0.08904-0.0002 0.0762+0.0002  0.0715+0.0001  0.0460+4-0.0001

Simple-HGN  0.1587+0.0011 0.0854--0.0005 0.0917-40.0006 0.0797-+0.0003 0.073240.0003 0.0466-+0.0003
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