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ABSTRACT
Large pre-trained code generation models, such as OpenAI Codex,
can generate syntax- and function-correct code, making the cod-
ing of programmers more productive. In this paper, we introduce
CodeGeeX, a multilingual model with 13 billion parameters for code
generation. CodeGeeX is pre-trained on 850 billion tokens of 23
programming languages as of June 2022. Our extensive experiments
suggest that CodeGeeX outperforms multilingual code models of
similar scale for both the tasks of code generation and translation
on HumanEval-X. Building upon HumanEval (Python only), we
develop the HumanEval-X benchmark for evaluating multilingual
models by hand-writing the solutions in C++, Java, JavaScript, and
Go. In addition, we build CodeGeeX-based extensions on Visual
Studio Code, JetBrains, and Cloud Studio, generating 8 billion to-
kens for tens of thousands of active users per week. Our user study
demonstrates that CodeGeeX can help to increase coding efficiency
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for 83.4% of its users. Finally, CodeGeeX is publicly accessible since
Sep. 2022, we open-sourced its code, model weights, API, extensions,
and HumanEval-X at https://github.com/THUDM/CodeGeeX.

KEYWORDS
code generation, pre-trained model, large language model

ACM Reference Format:
Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue,
Lei Shen, Zihan Wang, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie
Tang. 2023. CodeGeeX: A Pre-Trained Model for Code Generation with
Multilingual Benchmarking on HumanEval-X. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3580305.3599790

1 INTRODUCTION
Given the description such as “write a factorial function”,
can the machine automatically generate an executable program
that addresses this need? This problem has been explored since the
early days of computer science in the 1960s [31, 37]. From LISP-
based pioneering deductive synthesis approaches [31, 37] tomodern
program synthesis systems [23, 30], to end-to-end code generation
via deep neural networks [19, 32, 33], tremendous efforts have been
made to enable machines to automatically write correct programs
as part of the quest to artificial general intelligence.
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By treating programs as language sequences, neural sequen-
tial architectures, such as recurrent neural networks and trans-
former [36], can be naturally applied to code generation. Notably,
the OpenAI Codex [7] model (Python only) with 12 billion (12B)
parameters pioneered and demonstrated the potential of large code
generation models pre-trained on billions of lines of public code.
By using the generative pre-training strategy, Codex can solve
introductory-level programming problems in Python with a high
probability. Research studies [46] also show that 88% of users of
GitHub Copilot—a paid service powered by Codex—feel more pro-
ductive when coding with it. Since then, large pre-trained code
models have been extensively developed, including DeepMind Al-
phaCode [17], Salesforce CodeGen [20], Meta InCoder [10], and
Google PaLM-Coder-540B [8].

In this work, we present CodeGeeX, a multilingual code gen-
eration model with 13 billion parameters, pre-trained on a large
code corpus of 23 programming languages. It was trained on more
than 850 billion tokens on a cluster of 1,536 Ascend 910 AI Pro-
cessors between April and June 2022, and was publicly released
in Sep. 2022 (Cf. the GitHub repo). CodeGeeX has the following
properties. First, different from Codex in [7], both CodeGeeX—the
model itself—and how such scale of code models can be pre-trained
are open-sourced, facilitating the understanding and advances in
pre-trained code models. Second, in addition to code generation and
code completion as Codex and others, CodeGeeX supports the tasks
of code explanation and code translation between language pairs
(Cf. Figure 1 (a)). Third, it offers consistent performance advantages
over well-known multilingual code generation models of the same
scale, including CodeGen-16B, GPT-NeoX-20B, InCoder-6.7B, and
GPT-J-6B (Cf. Figure 1 (b) and (c)).

We build the free CodeGeeX extension in several IDEs, currently
including Visual Studio Code, JetBrains, and Tencent Cloud Studio
(a Web IDE). It supports several different modes—code completion,
function-level generation, code translation, code explanation, and
customizable prompting—to help users’ programming tasks in real-
time. Since its release, there are tens of thousands of daily active
users, each of which on average makes 200+ API calls per weekday.
As of this writing, the CodeGeeX model generates 8 billion tokens
per week. Our user survey suggests that 83.4% of users feel the
CodeGeeX extensions improve their programming efficiency.

Additionally, we develop the HumanEval-X benchmark for eval-
uating multilingual code models as 1) HumanEval [7]—developed
by OpenAI for evaluating Codex—and other benchmarks [2, 13, 20]
only consist of programming problems in a single language and
2) existing multilingual datasets [18, 28, 45] use string similarity
metrics like BLEU [21] for evaluation rather than really verify
the functional correctness of generated code. Specifically, for each
problem—defined only for Python—in HumanEval, we manually
rewrite its prompt, canonical solution, and test cases in C++, Java,
JavaScript, and Go. In total, HumanEval-X covers 820 hand-written
problem-solution pairs (164 problems, each of which has solutions
in 5 languages). Importantly, HumanEval-X supports the evalu-
ation of both code generation and translation between different
languages. Our contributions can be summarized as follows:

• We develop and release CodeGeeX, a 13B pre-trained 23-language
code generation model that demonstrates consistent outperfor-
mance on code generation and translation over its multilingual
baselines of the same scale.

• We build the CodeGeeX extensions on VS Code, JebBrains, and
Tencent Cloud Studio. Compared to Copilot, it supports more
diverse functions, including code completion, generation, trans-
lation, and explanation. According to the user survey, CodeGeeX
can improve the coding efficiency for 83.4% of its users.

• We hand-craft the HumanEval-X benchmark to evaluate multilin-
gual code models for the tasks of code generation and translation
in terms of functional correctness, facilitating the understanding
and development of pre-trained (multilingual) code models.

2 THE CodeGeeX MODEL
CodeGeeX is a multilingual code generation model with 13 billion
(13B) parameters, pre-trained on a large code corpus of 23 program-
ming languages. As of June 22, 2022, CodeGeeX has been trained
on more than 850 billion tokens on a cluster of 1,536 Ascend 910
AI Processors for over two months. We introduce the CodeGeeX
model and its design choices. The consensus reality is that it is
computationally unaffordable to test different architectural designs
for large pre-trained models [6, 8, 42, 44].

2.1 CodeGeeX’s Architecture

Transformer Backbone. Similar to recent pre-trained models,
such as GPT-3 [6], PaLM [8], and Codex [7], CodeGeeX follows the
generative pre-trained transformer (GPT) [25] with the decoder-
only style for autoregressive (programming) language modeling.
The core architecture of CodeGeeX is a 39-layer transformer de-
coder. In each transformer layer (in Figure 2), we apply a multi-head
self-attention mechanism [36] followed by MLP layers, together
with layer normalization [3] and residual connection [12]. We use
an approximation of GELU (Gaussian Linear Units) operation [14],
namely FastGELU, which is more efficient under Ascend 910:

FastGELU(𝑋𝑖 ) =
𝑋𝑖

1 + exp(−1.702 ∗ |𝑋𝑖 | ) ∗ exp(0.851 ∗ (𝑋𝑖 − |𝑋𝑖 | ) )
(1)

Generative Pre-Training Objective. By adopting the GPT par-
adigm [7, 26], we train the model on a large amount of unlabeled
code data. The principle is to iteratively take code tokens as in-
put, predict the next token, and compare it with the ground truth.
Specifically, for any input sequence {𝑥1, 𝑥2, ..., 𝑥𝑛} of length 𝑛, the
output of CodeGeeX is a probability distribution of the next token
P(𝑥𝑛+1 |𝑥1, 𝑥2, ..., 𝑥𝑛,Θ) = 𝑝𝑛+1 ∈ [0, 1]1×𝑣 , where Θ represents all
parameters of the model and 𝑣 is the vocabulary size. By comparing
it with the ground-truth tokens, i.e., one-hot vector𝑦𝑛+1 ∈ {0, 1}1×𝑣 ,
we can optimize the cumulative cross-entropy loss:

L = −
𝑁 −1∑︁
𝑛=1

𝑦𝑛+1 logP(𝑥𝑛+1 |𝑥1, 𝑥2, ..., 𝑥𝑛,Θ) (2)

Top Query Layer and Decoding. The original GPT model uses a
pooler function to obtain the final output. We use an extra query
layer [43] on top of all other transformer layers to obtain the final
embedding through attention. As shown in Figure 2, the input
of the top query layer replaces the query input 𝑋𝑖𝑛 by the query
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Figure 1: Summary of CodeGeeX. (a): In supported IDEs, users can interact with CodeGeeX by providing prompts. Different models are
used to support three tasks: code generation, code translation and code explanation. (b) and (c): In HumanEval and our newly proposed
HumanEval-X, CodeGeeX shows promising multilingual ability and consistently outperforms other multilingual code generation models.

Table 1: Large pre-trained language models related to programming languages in the literature.

Model Properties Dataset Evaluation

Open Multi-
lingual # Params Source Languages Size Multilingual

Evaluation Translation Benchmark

Codex [7] % % 12B Collected Python Code: 159GB % % HumanEval, APPS

AlphaCode [17] % ! 41B Collected 12 langs Code: 715.1GB ! %
HumanEval, APPS

CodeContest

PaLM-Coder [8] % ! 8B, 62B, 540B Collected Multiple
Text: 741B tokens

Code: 39GB
(780B tokens trained)

! !
HumanEval, MBPP
TransCoder, DeepFix

PolyCoder [41] ! ! 2.7B Collected 12 langs Code: 253.6GB % % HumanEval

GPT-Neo [5] ! ! 1.3B, 2.7B The Pile Multiple
Text: 730GB
Code: 96GB

(400B tokens trained)
% % HumanEval

GPT-NeoX [4] ! ! 20B The Pile Multiple
Text: 730GB
Code: 96GB

(473B tokens trained)
% % HumanEval

GPT-J [38] ! ! 6B The Pile Multiple
Text: 730GB
Code: 96GB

(473B tokens trained)
% % HumanEval

InCoder [10] ! ! 1.3B, 6.7B Collected 28 langs
Code: 159GB

StackOverflow: 57GB
(60B tokens trained)

% %
HumanEval, MBPP

CodeXGLUE

CodeGen-Multi [20] ! ! 6.1B, 16.1B BigQuery 6 langs
Code: 150B tokens
Text: 355B tokens

(1000B tokens trained)
% % HumanEval, MTPB

CodeGen-Mono [20] ! % 6.1B, 16.1B BigPython Python
Code: 150B tokens
Text: 355B tokens

(1300B tokens trained)
% % HumanEval, MTPB

CodeGeeX ! ! 13B
The Pile

CodeParrot
Collected

23 langs Code: 158B tokens
(850B tokens trained) ! !

HumanEval-X, HumanEval
MBPP, CodeXGLUE, XLCoST
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Figure 2: CodeGeeX’smodel architecture.Themodel has 13B pa-
rameters, consisting of 39-layer left-to-right transformer decoders
and a top query layer. It takes text/code tokens as input and outputs
the probability of the next token autoregressively.

embedding of position 𝑛 + 1. The final output is multiplied by the
transpose of word embedding matrix to get the output probability.
For decoding strategies, CodeGeeX supports greedy, temperature
sampling, top-k sampling, top-p sampling, and beam search. Finally,
detokenization will turn the selected token ID into an actual word.

Figure 3: Language distribution and tags of CodeGeeX’s data.

2.2 Pre-Training Setup

Code Corpus. The training corpus contains two parts. The first
part is from open source code datasets, the Pile [11] and CodePar-
rot1. The Pile contains a subset of public repositories with more
1https://huggingface.co/datasets/transformersbook/codeparrot

than 100 stars on GitHub, from which we select files of 23 popular
programming languages including C++, Python, Java, JavaScript,
C, Go, and so on. We identify the programming language of each
file based on its suffix and the major language of the repository
it belongs to. CodeParrot is another public Python dataset from
BigQuery. The second part is supplementary data of Python, Java,
and C++ directly scraped from GitHub public repositories that do
not appear in the first part. We choose repositories that have at
least one star and a total size within 10MB, then we filter out files
that: 1) have more than 100 characters per line on average, 2) are
automatically generated, 3) have a ratio of alphabet less than 40%,
4) are bigger than 100KB or smaller than 1KB. We format Python
code according to the PEP8 standards.

Figure 3 shows the composition of the 158B-token training data,
containing 23 programming languages. We divide the training data
into segments of equal length. To help the model distinguish be-
tween multiple languages, we add a language-specific tag before
each segment in the form of [Comment sign]language: [LANG],
e.g., # language: Python.

Tokenization. The first step is to convert code snippets into nu-
merical vectors. Considering that 1) there is a large number of
natural language comments in code data, 2) the naming of vari-
ables, functions, and classes are often meaningful words, we treat
code data in the same way as text data and apply the GPT-2 tok-
enizer [26]. It is a BPE (Byte Pair Encoding) [29] tokenizer that deals
with the open-vocabulary problem using a fixed-size vocabulary
with variable-length characters. The initial vocabulary size is 50,000,
we encode multiple whitespaces as extra tokens following [7] to
increase the encoding efficiency. Specifically, L whitespaces are
represented by <|extratoken_X|>, where X=8+L. Since the vocab-
ulary contains tokens from various natural languages, it allows
CodeGeeX to process tokens in languages other than English, like
Chinese, French, Russian, Japanese, and more. The final vocabulary
size is 𝑣 = 52, 224. After tokenization, any code snippet or text
description can be transformed into a vector of integers.

Word and Positional Embeddings. The next step is to associate
each token with a word embedding. By looking up the token ID in
a word embedding matrix𝑊𝑤𝑜𝑟𝑑 ∈ R𝑣×ℎ , where 𝑣 = 52224 is the
vocabulary size (with extra tokens) and ℎ = 5120 is the hidden size,
a learnable embedding 𝑥𝑤𝑜𝑟𝑑 ∈ Rℎ is obtained for each token. To
capture positional information, we also adopt learnable positional
embedding that maps the current position ID to a learnable em-
bedding 𝑥𝑝𝑜𝑠 ∈ Rℎ , from𝑊𝑝𝑜𝑠 ∈ R𝑛𝑚𝑎𝑥×ℎ , where 𝑛𝑚𝑎𝑥 = 2048 is
the maximum sequence length. Then, two embeddings are added
to obtain the input embeddings 𝑥𝑖𝑛 = 𝑥𝑤𝑜𝑟𝑑 + 𝑥𝑝𝑜𝑠 for the model.
Finally, the entire sequence can be turned into input embeddings
𝑋𝑖𝑛 ∈ R𝑛×ℎ , where 𝑛 is the input sequence length.

2.3 CodeGeeX Training

Parallel Training on Ascend 910. CodeGeeX was trained on a
cluster of the Ascend 910 AI processors (32GB) with Mindspore
(v1.7.0). We faced and addressed numerous unknown technical
and engineering challenges during pre-training, as Ascend and
Mindspore are relatively new compared to NVIDIA GPUs and
PyTorch/TensorFlow. The entire pre-training process takes two
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months on 192 nodes with 1,536 AI processors, during which the
model consumes 850B tokens, equivalent to 5+ epochs (213,000
steps). Detailed configurations can be found in Table 2.

Table 2: Training configuration of CodeGeeX.

Category Parameter Value

Environment

Framework Mindspore v1.7.0
Hardwares 1,536x Ascend 910 AI processors

Mem per GPU 32GB
GPUs per node 8
CPUs per node 192
RAM per node 2048GB

Model

Model parameters 13B
Vocabulary size 52224

Position embedding Learnable
Maximum sequence length 2048

Hidden size ℎ 5120
Feed-forward size 4ℎ 20480

Feed-forward activation FastGELU
Layernorm epsilon 1e-5
Layernorm precision FP32

Number of attention heads ℎ𝑛 40
Attention softmax precision FP32

Dropout rate 0.1

Parallelism
Model parallel size 8
Data parallel size 192
Global batch size 3072

Optimization

Optimizer Adam
Optimizer parameters 𝛽1 = 0.9, 𝛽2 = 0.999

Initial/final learning rate 1e-4/1e-6
Warm-up step 2000
Decay step 200000

Learning rate scheduler cosine decay
Loss function L Cross entropy
Loss scaling Dynamic

Loss scaling window 1000
Trained steps 213000

To increase training efficiency, we adopt an 8-way model parallel
training together with 192-way data parallel training, with ZeRO-
2 [27] optimizer enabled to further reduce thememory consumption
of optimizer states. Finally, the micro-batch size is 16 per node and
the global batch size reaches 3,072.

Specifically, we use Adam optimizer [15] to optimize the loss
in Equation 2. Themodel weights are under FP16, except that we use
FP32 for layer-norm and softmax for higher precision and stability.
The model takes ∼27GB of GPU memory. We start from an initial
learning rate 1e-4, and apply a cosine learning rate decay by:

𝑙𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑙𝑟𝑚𝑖𝑛 + 0.5 ∗ (𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛 ) ∗ (1 + cos(𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑛𝑑𝑒𝑐𝑎𝑦

𝜋 ) ) (3)

Training Efficiency Optimization. Over the course of the train-
ing, we actively attempted to optimize the Mindspore framework to
release the power of Ascend 910. Notably, we adopt the following
techniques that significantly improve training efficiency:
• Kernel fusion:We fuse several element-wise operators to improve
calculation efficiency on Ascend 910, including Bias+LayerNorm,
BatchMatmul+Add, FastGELU+Matmul, Softmax, etc. We also op-
timize LayerNorm operator to support multi-core calculation.

• Auto Tune optimization2: When loading models, Mindspore first
compiles them to static computational graphs. It uses the Auto

2https://support.huawei.com/enterprise/en/doc/EDOC1100219270?section=j01g

Tune tool to optimize the choice of operators (e.g., matrix multipli-
cation in different dimensions). And it applies graph optimization
techniques to deal with operator fusion and constant folding.

Table 3 shows the comparison of training efficiency before and
after our optimization. The overall efficiency is measured by trained
tokens per day. We observe that the efficiency per processor was
improved 3× compared to the non-optimized implementation and
the overall token throughput of 1,536 GPUs was improved by 224%.

Table 3: Training efficiency (before and after optimization).

Before After

Device Ascend 910 Ascend 910
#GPUs 1536 1536

Parallelism Data parallel + Model parallel Data parallel + Model parallel
Sequence length 2048 2048
Global batch size 2048 3072

Step time(s) 15s 10s
Overall efficiency 24.2B tokens/day 54.3B tokens/day

2.4 Fast Inference
To serve the pre-trained CodeGeeX, we implement a pure PyTorch
version of CodeGeeX that supports inference on NVIDIA GPUs. To
achieve fast and memory-efficient inference, we apply both quanti-
zation and acceleration techniques to the pre-trained CodeGeeX.

Quantization. We apply post-training quantization techniques to
decrease memory consumption of CodeGeeX during inference. We
transform weights𝑊 in all linear transformations from FP16 to
INT8 using the common absolute maximum quantization:

𝑊𝑞 = Round(𝑊
𝜆
), 𝜆 =

Max( |𝑊 |)
2𝑏−1 − 1

(4)

where 𝑏 is the bitwidth and 𝑏 = 8. 𝜆 is the scaling factor. This
quantization transform FP16 values in [−Max( |𝑊 |),Max( |𝑊 |)] to
integers between [−127, 127].

As in Table 4, the memory consumption of CodeGeeX decreases
from ∼26.9GB to ∼14.7GB (down by 45.4%), allowing CodeGeeX
inference on one RTX 3090 GPU. Importantly, Figure 4 shows that
the quantization only slightly affects the performance on the code
generation task (Cf. Section 3 for details about HumanEval-X.).

Table 4: GPU memory and inference time of CodeGeeX w/
and w/o quantization on different GPUs and frameworks.

Implementation GPU Format L=128 L=512 L=2048
Mem (G) Time (s) Mem (G) Time (s) Mem (G) Time (s)

Pytorch A100 FP16 26.9 3.66 27.6 14.35 34.6 63.20
Pytorch A100 INT8 14.7 9.40 16.1 37.38 18.7 155.01
Pytorch 3090 FP16 OOM
Pytorch 3090 INT8 14.7 13.82 16.1 55.42 18.7 228.67

FastTrans A100 FP16 26.0 2.43 26.3 10.21 27.5 50.09
FastTrans A100 INT8 14.9 1.61 15.2 6.35 15.6 34.96

FastTrans 3090 FP16 OOM
FastTrans 3090 INT8 14.5 2.25 14.8 9.34 16.0 43.81

Acceleration. After quantization, we further implement a faster
version of CodeGeeX using FasterTransformer (FastTrans)3. It sup-
ports highly-optimized operations by using layer fusion, GEMM
autotuning, and hardware-accelerated functions. For INT8 quan-
tized version, we also implement a custom kernel that accelerates
3https://github.com/NVIDIA/FasterTransformer
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Figure 4: CodeGeeX vs. its quantized version on code genera-
tion of 5 programming languages in HumanEval-X.

the mixed precision matrix multiplication between INT8 weights
and FP16 activation vectors. As in Table 4, the INT8 quantization
plus FastTrans implementation achieves the fastest inference speed
and the lowest GPU memory consumption on a single GPU. The
inference time per token is within 13ms (1.61 seconds / 128 tokens).

3 THE HumanEval-X BENCHMARK
We develop the HumanEval-X benchmark4 for evaluating multi-
lingual code models. There are 164 code problems defined for five
major languages: C++, Java, JavaScript, Go, and Python, resulting
in 164×5=820 problem-solution pairs. For each problem, it supports
both code generation and code translation.

3.1 HumanEval-X: A Multilingual Benchmark
HumanEval [7] has been developed to evaluate Codex by Ope-
nAI. However, similar to MBPP [2] and APPS [13], it only consists
of handcrafted programming problems in Python, thus cannot be
directly applied to systematically evaluate the performance of mul-
tilingual code generation. To this end, we propose to develop a
multilingual variant of HumanEval, referred to as HumanEval-X.
This is not trivial. For each problem, defined only for Python, in
HumanEval, we manually rewrite its prompt, canonical solution,
and test cases in the other four languages—C++, Java, JavaScript,
and Go. Altogether, we have 820 problem-solution pairs in total in
HumanEval-X, each comprising the following parts:

• task_id: programming language and numerical problem id,
e.g., Java/0 represents the 0-th problem in Java;

• declaration: function declaration including necessary li-
braries or packages;

• docstring: description that specifies the functionality and
example input/output;

• prompt: function declaration plus docstring;
• canonical_solution: a verified solution to the problem;
• test: test program including test cases.

Each problem-solution pair in HumanEval-X supports both code
generation code translation. An illustrative example is shown in Fig-
ure 5. We take the following efforts to make sure that the rewritten
code conforms to the programming style of the corresponding lan-
guage. First, we use the customary naming styles, like CamelCase
in Java, Go, and JavaScript, and snake_case in C++. Second, we put
the docstrings before the function declaration in Java, JavaScript,

4https://hub.docker.com/r/codegeex/codegeex

Figure 5: An illustration of HumanEval-X benchmark. Decla-
rations, docstrings, solutions, and test cases are marked with red,
green, blue, and purple respectively. Generation uses declaration
and docstring as input to generate the solution. Translation uses
declaration in both languages and solution in the source language
as input, to generate solutions in the target language (docstring is
not used to prevent models from directly solving the problem).

C++, and Go. Symbols in docstrings are modified, e.g., single quotes
are replaced by double quotes in some languages, and keywords
like True/False, None are also replaced. Third, we refine test cases
according to language-specific behaviors, rather than forcing the
programs to return the same result for different languages. For
example, when converting an integer to a binary string, Python
method bin adds a prefix “0b” before the string while Java method
Integer.toBinaryString does not, so we remove such prefix in
Java test cases. Last, we also take care of the rounding function.
In Python, round converts half to the closest even number, unlike
in other languages. Thus, we change the test cases to match the
rounding implementations in each language.

3.2 HumanEval-X: Tasks
In HumanEval-X, we evaluate two tasks:

Code Generation. The task of code generation takes a problem
description (e.g., “write a factorial function”) as input and
generates the solution in the selected languages (Cf. Figure 1 (a)).
Specifically, the model takes in the prompt including declaration
and docstrings, and generates the implementation of the function.
Note that HumanEval-X uses the same problem set for all the five
languages, thus, for solving each problem, it supports either one
single language or multiple languages simultaneously.

Code Translation. The task of code translation takes the imple-
mentation of a problem in the source language and generates its
counterpart implementation in the target language. Precisely, its
input includes the function declaration and a canonical solution
in the source language (e.g., Python). The model should translate
the solution to the target language. Adding declaration in the tar-
get language restricts function names and variable types, making
the evaluation easier, especially under the zero-shot setting. To
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prevent the models from directly solving the problem rather than
translating, we do not include the docstrings.

HumanEval-X supports the translation between all pairs of 5
languages, that is, in total 20 source-target language pairs.

Metric. For both tasks, we use test cases to evaluate the exact
functional correctness of the generated code, measuring the perfor-
mance with pass@𝑘 [16]. Specifically, we use the unbiased method
to estimate pass@𝑘 [7]:

pass@𝑘 := E[1 −
(𝑛−𝑐

𝑘

)(𝑛
𝑘

) ], 𝑛 = 200, 𝑘 ∈ {1, 10, 100} (5)

where 𝑛 is the total number of generations (𝑛=200 in this work), 𝑘 is
the sampling budget (typically 𝑘 ∈ {1, 10, 100}), and 𝑐 is the number
of samples that pass all test cases. We average over the problem set

to get the expectation. 1−
(𝑛−𝑐
𝑘

)(𝑛
𝑘

) is the estimated pass@𝑘 for a single

problem, and E is the expectation of pass@𝑘 over all problems. In
practice, we average single-problem pass@𝑘 among all test-set
problems to get the expectation.

Multilingual Metric with Budget Allocation. Unlike mono-
lingual models, multilingual code models can solve problems by
allocating generation budgets to various languages to increase the
sampling diversity and improve the solve rate. Given a budget 𝑘 ,
we can distribute part of it 𝑛𝑖 to each language with the assignment

𝜋 = (𝑛1, 𝑛2, ..., 𝑛𝑚 ),
𝑚∑︁
𝑖=1

𝑛𝑖 = 𝑘, (6)

where 𝑛𝑖 is the generation budget assigned to language 𝑖 , 𝑚 is
the number of candidate languages. Under an assignment 𝜋 =

(𝑛1, ...𝑛𝑚), for a problem 𝑝 , the pass@𝑘𝜋 can be estimated by:

pass@𝑘𝜋 = E[1 −
𝑚∏
𝑖=1

(𝑛−𝑐𝑖
𝑛𝑖

)(𝑛
𝑛𝑖

) ], (7)

where 𝑛 is the total number of generations, 𝑛𝑖 is the sampling
budget and 𝑐𝑖 is the number of samples that pass all test cases for
language 𝑖 . We show in Section 4.2 that multilingual models can
benefit from budget allocation strategies and have a higher solve
rate than using any single language.

4 EVALUATING CodeGeeX ON HumanEval-X
We evaluate CodeGeeX for the code generation and translation
tasks on the multilingual benchmark HumanEval-X. For baselines,
we compare CodeGeeXwith five competitive open-source baselines:
GPT-J-6B [38], GPT-NeoX-20B [4], InCoder-6.7B [10], and CodeGen-
Multi-6B/16B [20]. These models are all trained on multilingual
code data, but is previously only evaluated in HumanEval (Python).
And they are closer to the scale of CodeGeeX or even larger, while
smaller models in the literature are ignored. For all baselines, we
use the versions available on HuggingFace [40]. For each model,
all pass@𝑘 , 𝑘 ∈ {1, 10, 100} results are estimated with 𝑛 = 200. We
follow the HumanEval-X’s settings in Section 3.

4.1 Experimental Results

Multilingual Code Generation. Table 6 reports the code genera-
tion results in terms of the pass@𝑘 , 𝑘 ∈ {1, 10, 100} for CodeGeeX
and five baseline models on HumanEval-X. CodeGeeX significantly

outperforms models trained with mixed corpora (GPT-J-6B and
GPT-NeoX-20B), even though GPT-NeoX-20B has much more pa-
rameters. For models trained on codes, CodeGeeX outperforms
those with smaller scales (InCoder-6.7B, CodeGen-Multi-6B) by a
largemargin, and is competitivewith the larger CodeGen-Multi-16B
model. CodeGeeX achieves the best average performance among all
models, even slightly better than the larger CodeGen-Multi-16B in
all three metrics (0.37%∼1.67% improvements). When considering
individual languages, models have preferences highly related to
the training set distribution. For example, the best language for
CodeGeeX is Python while for CodeGen-Multi-16B is Java.

Cross-Lingual Code Translation. Table 5 illustrates the results
on code translation. For CodeGeeX, we evaluate both the origi-
nal version CodeGeeX-13B and the fine-tuned CodeGeeX-13B-FT.
CodeGeeX-13B-FT is first fine-tuned using the training set of code
translation task in XLCoST [45], and then continuously fine-tuned
by a small amount of Go data (since Go is missing in XLCoST).
Among all translation pairs, CodeGeeX-13B-FT performs the best
on pass@100 in 11 out of the 20, while CodeGen-Multi-16B is the
best on 7 of them. We also observe a clear preference for languages
by different models. CodeGeeX performs the best when translating
other languages to Python and C++, while CodeGen-Multi-16B
performs better when translating to JavaScript and Go.

4.2 Multilingual Understanding
We perform studies to understand whether and how multilingual
pre-training can benefit problem-solving of CodeGeeX.

Exploration vs. Exploitation under Fixed Budgets. Given a
fixed budget 𝑘 , pass@k evaluates the ability of models generating at
least 1 correct solution under 𝑘 generations. Previous works [7, 17]
have already discovered that there’s a trade-off between exploration
and exploitation: When the budget is small, it is better to use a low
temperature to ensure accuracy on easy problems.When the budget
is large, instead, adjusting a higher temperature makes the model
more likely to find at least one solution for difficult problems.

Pass Rate Distribution vs. Languages. Unlike monolingual mod-
els, multilingual models can solve problems more effectively using
various programming languages. In Figure 6, we observe that the
pass rate distribution of problems against different languages are
diverse. This inspires us to use budget allocation methods to help
improve the diversity of the generated solutions.

Budget Allocation Strategies. We compare three basic strategies:
Best Single, choose a single language with the best performance;
Uniform, allocate the budget uniformly; Weighted, allocate the bud-
get to multiple languages based on their proportions in the training
corpus (detailed weights can be found in Appendix Table 9). Table 7
illustrates how budget allocation improves multilingual genera-
tion. Both Uniform and Weighted outperform Best Single by
promoting a more diverse generation, which gives a higher chance
of solving problems. Weighted is slightly better due to the prior
knowledge of the model. For model-wise comparison, CodeGeeX
shows up a decent advantage over other baselines in both strate-
gies, which suggests that it might have a more diverse solution set
under multiple languages. In real-world scenarios, programming
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Table 5: Code translation on HumanEval-X.

Target Language

Model Python C++ Java JavaScript Go
@1 @10 @100 @1 @10 @100 @1 @10 @100 @1 @10 @100 @1 @10 @100

Py

InCoder-6.7B - - - 26.11 41.00 54.25 26.74 42.66 61.20 37.05 58.85 78.91 15.69 27.57 43.67
CodeGen-Multi-16B - - - 35.94 47.81 59.37 29.27 45.70 64.45 43.40 66.26 82.55 28.87 41.01 57.72

CodeGeeX-13B - - - 26.54 43.56 56.48 25.84 41.52 59.72 23.22 47.33 65.87 9.56 23.83 33.56
CodeGeeX-13B-FT - - - 34.16 46.86 61.22 41.98 58.17 72.78 34.81 53.05 66.08 16.41 30.76 46.37

C++

InCoder-6.7B 34.37 58.41 78.57 - - - 34.04 57.02 68.70 37.05 65.05 79.61 25.54 39.11 58.02
CodeGen-Multi-16B 33.83 55.37 76.64 - - - 43.20 69.84 88.82 54.51 71.50 83.14 27.94 49.73 68.32

CodeGeeX-13B 27.18 49.02 67.69 - - - 22.56 40.91 64.08 30.23 55.68 75.58 8.64 18.79 31.76
CodeGeeX-13B-FT 62.79 80.39 87.10 - - - 71.68 81.62 85.84 50.83 64.55 74.57 16.71 34.18 52.98

Java

InCoder-6.7B 42.76 65.55 80.43 40.01 55.17 70.39 - - - 43.20 68.24 84.39 21.58 35.20 54.97
CodeGen-Multi-16B 52.73 69.30 82.74 41.42 54.68 65.50 - - - 57.65 67.90 79.22 34.00 48.49 67.94

CodeGeeX-13B 43.41 68.46 84.03 39.33 58.48 72.36 - - - 44.19 64.22 82.89 17.17 32.74 47.71
CodeGeeX-13B-FT 75.03 87.71 95.13 49.67 65.65 75.40 - - - 49.95 62.82 79.64 18.85 32.92 48.93

JS

InCoder-6.7B 23.18 50.47 67.26 35.47 54.48 70.71 30.67 50.90 71.03 - - - 25.79 42.96 61.47
CodeGen-Multi-16B 35.52 52.23 69.78 35.41 53.12 64.47 33.79 56.06 74.00 - - - 33.38 49.08 64.14

CodeGeeX-13B 31.15 54.02 72.36 30.32 51.63 69.37 24.68 48.35 69.03 - - - 11.91 26.39 39.81
CodeGeeX-13B-FT 67.63 81.88 89.30 46.87 60.82 73.18 56.55 70.27 80.71 - - - 16.46 32.99 50.29

Go

InCoder-6.7B 34.14 54.52 70.88 30.45 48.47 62.81 34.52 53.95 69.92 39.37 63.63 80.75 - - -
CodeGen-Multi-16B 38.32 50.57 68.65 32.95 45.88 59.56 36.55 59.12 78.70 38.93 56.68 70.68 - - -

CodeGeeX-13B 35.92 56.02 77.32 29.83 41.98 58.15 22.89 41.04 61.46 25.24 46.50 69.93 - - -
CodeGeeX-13B-FT 57.98 79.04 93.57 38.97 53.05 63.92 54.22 69.03 79.40 43.07 59.78 74.04 - - -

Table 6: Code generation on HumanEval-X.

Language Metric GPT-J
-6B

GPT-NeoX
-20B

InCoder
-6.7B

CodeGen
-Multi-6B

CodeGen
-Multi-16B

CodeGeeX
-13B (ours)

Python
(HumanEval)

pass@1 11.10% 13.83% 16.41% 19.41% 19.22% 22.89%
pass@10 18.67% 22.72% 26.55% 30.29% 34.64% 39.57%
pass@100 30.98% 39.56% 43.95% 49.63% 55.17% 60.92%

C++
pass@1 7.54% 9.90% 9.50% 11.44% 18.05% 17.06%
pass@10 13.67% 18.99% 19.30% 26.23% 30.84% 32.21%
pass@100 30.16% 38.75% 36.10% 42.82% 50.90% 51.00%

Java
pass@1 7.86% 8.87% 9.05% 15.17% 14.95% 20.04%
pass@10 14.37% 19.55% 18.64% 31.74% 36.73% 36.70%
pass@100 32.96% 42.23% 40.70% 53.91% 60.62% 58.42%

JavaScript
pass@1 8.99% 11.28% 12.98% 15.41% 18.40% 17.59%
pass@10 16.32% 20.78% 22.98% 27.92% 32.80% 32.28%
pass@100 33.77% 42.67% 43.34% 48.81% 56.48% 56.33%

Go
pass@1 4.01% 5.00% 8.68% 9.98% 13.03% 14.43%
pass@10 10.81% 15.70% 13.80% 23.26% 25.46% 25.68%
pass@100 23.70% 32.08% 28.31% 41.01% 48.77% 47.14%

Average
pass@1 7.90% 9.78% 11.33% 14.28% 16.73% 18.40%
pass@10 14.77% 19.55% 20.25% 27.89% 32.09% 33.29%
pass@100 30.32% 39.06% 38.48% 47.24% 54.39% 54.76%

Figure 6: In HumanEval-X, each problem’s pass rate varies
when generating in different programming languages with
CodeGeeX. Left: 𝑡 = 0.2, 𝑝 = 0.95; Right: 𝑡 = 0.8, 𝑝 = 0.95.

Table 7: Results for fixed-budget multilingual generation on
HumanEval-X. Best model-wise performances on methods are
bolded, while best method-wise performances are in italic.

Metric Method GPT-J
-6B

GPT-NeoX
-20B

InCoder
-6.7B

CodeGen
-Multi-6B

CodeGen
-Multi-16B

CodeGeeX
-13B

pass@𝑘𝜋
(𝑘 = 100)

Best Single 33.77% 42.67% 43.95% 53.19% 60.62% 60.92%
Uniform 36.40% 44.75% 43.89% 53.47% 61.01% 62.41%
Weighted 36.76% 44.97% 45.60% 53.94% 61.34% 62.95%

languages are created with a specific purpose and unique design.
With the proper budget allocation strategy, we can take advantage
of the model’s multilingual ability for specific tasks.

Test Result Characteristics. To study how models actually be-
have on programming problems, we group the generated samples’
test results into five categories: Passed, Wrong Answer, Runtime
Error, Syntax/Semantic Error and Unfinished. More precisely,
Runtime Error includes an out-of-bound index, wrong string for-
mat, etc; Syntax/Semantic Error indicates errors detected by
syntax or semantic check, like compilation error in compiled lan-
guages and syntax/undefined/type error in interpreted languages;
Unfinished means that the model fails to complete one function
within maximum length. As in Figure 7, the most common error
type is Wrong Answer, with a ratio ranging from 0.44 to 0.75 (ex-
cept for Go), showing that code generation models at the current
stage mainly suffer from incorrect code logic rather than semantics.
Models have a high syntax error rate with Go, which may be due
to Go’s strict restrictions on syntax, i.e., forbidding unused vari-
ables and imports, thus failing to compile many logically correct
codes. Overall, CodeGeeX is less probable to generate code that has
Runtime or Syntax/Semantic Error.

Negative Correlation in Translation.When evaluating the trans-
lation ability in HumanEval-X, an interesting observation is that the
performance of A-to-B and B-to-A are usually negatively correlated,
shown in Figure 8. Such asymmetry suggests that multilingual code
generation models may have an imbalanced focus on source and
target languages during code translation. We provide two possible
explanations. First, language distributions in the training corpus
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Figure 7: Test result statistics across models. For each model
and language, we study 200 samples generated under 𝑡 = 0.8, 𝑝 =

0.95. CodeGeeX has less Runtime or Syntax/Semantic Error.

Figure 8: Performance of translating A-to-B is negatively cor-
related with B-to-A. Such asymmetry indicates that multilingual
models lack a high-level understanding between languages.

differ a lot, resulting in different levels of generation ability. For
example, the ratio of Python is 26.6% (vs. Go 4.7%) in CodeGeeX
training corpus, and average pass@100 of Others-to-Python reaches
~90% (vs.Others-to-Go only ~50%). Second, some languages are them-
selves harder to automatically write with syntactic and semantic
accuracy due to language-dependent features, affecting translation
performance as target languages. For instance, Go, which models
translate poorly into, has more constraints on the syntax level, like
forbidding unused variables or imports.

5 THE CODEGEEX TOOLS AND USERS
Based on CodeGeeX, we build open-source extensions for IDEs
including VS Code, JetBrains and Cloud Studio. The extensions
support code generation, completion, translation and explanation,
aiming at improving the development efficiency of programmers.
As of this writing, CodeGeeX has served tens of thousands of users,
with an average of 200+ API calls per active user per weekday.

Figure 9: Profession vs. satisfaction. Left: Profession distribu-
tion. Right: Averaged rating score of CodeGeeX extensions.

We took a survey on CodeGeeX’s user experience from 168 users
covering front-end developer, backend developer, full stack engineer,
algorithm engineer, students, researcher, and other programmers. Fig-
ure 9 illustrates users’ profession distribution and the satisfaction
score. We evaluate the satisfaction considering five dimensions,
"Ease of Use", "Reliability", "Feature", "Visual", "Speed", each scored
from 0 to 5. Figure 9 shows that the majority of users have pos-
itive experiences with CodeGeeX, especially for researchers and
students.

Figure 10: Survey on "Has CodeGeeX improved your coding
efficiency?". Over 83.4% of users have positive answers.

We further investigate how multilinguality of CodeGeeX help
coding. Figure 10 illustrates how users evaluate the helpfulness of
CodeGeeX during development. There are on average over 83.4% of
users think CodeGeeX can improve or slightly increase their coding
efficiency, especially for mainstream programming languages like
Go, C++, Python, C, C#, etc. Note that these well-performing pro-
gramming languages also appear more frequently in the training
data (Figure 3), which encourages us to train CodeGeeX on more
language-specific data to enhance its capability.

6 CONCLUSION
We introduce CodeGeeX, a 13B pre-trained 23-language code gen-
eration model, as well as we build HumanEval-X, to fill the gap of
multilingual code generation. CodeGeeX consistently outperforms
open-sourced multilingual baselines of the same scale on code gen-
eration and translation tasks. The extensions built on CodeGeeX
bring significant benefits in increasing coding efficiency. The mul-
tilinguality of CodeGeeX brings the potential of solving problems
with a ubiquitous set of formalized languages. We open sourced
CodeGeeX aiming to help researchers and developers to widely
take benefit of large pre-trained models for code generation.
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A APPENDIX
A.1 Statistics of Code Corpus
Table 8 summarizes the composition of CodeGeeX’s code corpus.

Table 8: Composition of our code corpus for pre-training.

Language # Tokens (B) % Tokens (%) Language Tag
C++ 45.2283 28.4963 // language: C++

Python 42.3250 26.667 # language: Python
Java 25.3667 15.9824 // language: Java

JavaScript 11.3165 7.13 // language: JavaScript
C 10.6590 6.7157 // language: C
Go 7.4774 4.7112 // language: Go

HTML 4.9355 3.1096 <!–language: HTML–>
Shell 2.7498 1.7325 # language: Shell
PHP 2.1698 1.3671 // language: PHP
CSS 1.5674 0.9876 /* language: CSS */

TypeScript 1.1667 0.7351 // language: TypeScript
SQL 1.1533 0.7267 – language: SQL
TeX 0.8257 0.5202 % language: TeX
Rust 0.5228 0.3294 // language: Rust

Objective-C 0.4526 0.2851 // language: Objective-C
Scala 0.3786 0.2385 // language: Scala
Kotlin 0.1707 0.1075 // language: Kotlin
Pascal 0.0839 0.0529 // language: Pascal
Fortran 0.077 0.0485 !language: Fortran

R 0.0447 0.0281 # language: R
Cuda 0.0223 0.014 // language: Cuda
C# 0.0218 0.0138 // language: C#

Objective-C++ 0.0014 0.0009 // language: Objective-C++

A.2 Details of Budget Allocation Strategies
As in Table 9, we allocate the budget to multiple languages based
on their proportions in the training corpus.

Table 9: Detailed assignment of budget allocation strategies.

Strategy Model Python C++ Java JavaScript Go

Uniform All 20 20 20 20 20

Weighted

GPT-J-6B 17 36 11 22 14
GPT-NeoX-20B 17 36 11 22 14
InCoder-6.7B 45 12 5 34 4

CodeGen-Multi-6B/16B 17 38 29 8 8
CodeGeeX-13B (ours) 32 33 20 9 6

A.3 Evaluation on other benchmarks
A.3.1 Evaluation on HumanEval. The evaluation setting on Hu-
manEval is the same as HumanEval-X. We show that among mul-
tilingual code generation models, CodeGeeX achieves the second
highest performance on HumanEval, reaching 60% in pass@100
(surpassed by PaLMCoder-540B). We also notice that monolingual
models outperform multilingual ones by a large margin, indicating
that multilingual models might require a larger model capacity to
master different languages.

Table 10: The results of CodeGeeX on HumanEval.

Model Size Type Available pass@1 pass@10 pass@100

CodeParrot [35] 1.5B Multi Yes 4.00% 8.70% 17.90%
PolyCoder [41] 2.7B Multi Yes 5.60% 9.80% 17.70%
GPT-J [38] 6B Multi Yes 11.60% 15.70% 27.70%
CodeGen-Multi [20] 6.1B Multi Yes 18.16% 27.81% 44.85%
InCoder [10] 6.7B Multi Yes 15.20% 27.80% 47.00%
GPT-NeoX [4] 20B Multi Yes 15.40% 25.60% 41.20%
LaMDA [34] 137B Multi No 14.00%* - 47.30%*
CodeGen-Multi [20] 16.1B Multi Yes 19.22% 34.64% 55.17%
PaLM-Coder [8] 540B Multi No 36.00%* - 88.40%*

Codex [7] 12B Mono No 28.81% 46.81% 72.31%
CodeGen-Mono [20] 16.1B Mono Yes 29.28% 49.86% 75.00%

CodeGeeX (ours) 13B Multi Yes 22.89% 39.57% 60.92%

A.3.2 Evaluation on MBPP. MBPP dataset is proposed by [2], con-
taining 974 problems in Python. Due to specific input-output format,
MBPP need to be evaluated under a few-shot setting. We follow the
splitting in the original paper and use problems 11-510 for testing.
Under 1-shot setting, we use problem 2 in prompts. Under 3-shot
setting, we use problem 2,3,4 in prompts. The metric is pass@𝑘 ,
𝑘 ∈ {1, 10, 80}. For pass@1, the temperature is 0.2 and top-p is
0.95; for pass@10 and pass@ 80, the temperature is 0.8 and top-p is
0.95. For baselines, we consider LaMDA-137B, PaLM-540B, Davinci-
Codex (online API version of OpenAI Codex), PaLMCoder-540B
and InCoder-6.7B.

The results indicate that the model capacity is essential for multi-
lingual code generation model. With significantly more parameters,
PaLM and Codex outperform CodeGeeX with a large margin. Mean-
while, we find that more shot in the prompts harm the performance
of CodeGeeX, the same phenomenon have also been discovered in
InCoder [10]. We assume that it is because smaller models do not
have enough reasoning ability to benefit from the few-shot setting.

Table 11: The results of CodeGeeX on MBPP dataset [2].

Method Model Pass@1 Pass@10 Pass@80

3-shot

LaMDA-137B [2] 14.80 - 62.40
PaLM-540B [8] 36.80 - 75.00
Davinci-Codex [7] 50.40 - 84.40
PaLMCoder-540B [8] 47.00 - 80.80
CodeGeeX-13B (ours) 22.44 43.24 63.52

1-shot InCoder-6.7B [10] 19.40 - -
CodeGeeX-13B (ours) 24.37 47.95 68.50

A.3.3 Evaluation on CodeXGLUE. CodeXGLUE [18] contains multi-
ple datasets to support evaluation onmultiple tasks, using similarity-
based metrics like CodeBLEU, BLEU, and accuracy for generation
tasks. We test the performance of CodeGeeX on the code summa-
rization task. We first fine-tune CodeGeeX by mixing the training
data in all languages to get one fine-tuned model. Then, we test
the performance of the fine-tuned model in each language, using
the BLEU score for evaluation because the models generate natural
language in summarization tasks.

For all languages, we set the temperature to 0.2 and top-p to
0.95, and generate one summarization for each sample in the test
set. We report the results in Table 14. CodeGeeX obtains an aver-
age BLEU score of 20.63, besting all baseline models. It is worth
noting that after removing the results on Ruby (that CodeGeeX is
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Table 12: The results of CodeGeeX on code translation in XLCoST benchmark. Six languages are considered, C++, Java, Python,
C#, JavaScript, PHP, C. The metric is CodeBLEU [28]. The results of baselines are adopted from the original paper [45].

Snippet-level Program-level
Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

C++

CodeBERT – 84.94 74.55 84.99 82.79 68.56 45.46 – 74.73 24.96 76.35 72.95 50.40 21.84
PLBART – 83.85 74.89 84.57 83.19 68.62 83.95 – 75.26 70.13 78.01 61.85 67.01 72.59
CodeT5 – 86.35 76.28 85.85 84.31 69.87 90.45 – 80.03 71.56 81.73 79.48 70.44 85.67

CodeGeeX – 86.99 74.73 86.63 84.83 70.30 94.04 – 84.40 73.89 84.49 82.20 71.18 87.32

Java

CodeBERT 87.27 – 58.39 92.26 84.63 67.26 39.94 79.36 – 8.51 84.43 76.02 51.42 21.22
PLBART 87.31 – 58.30 90.78 85.42 67.44 72.47 81.41 – 66.29 83.34 80.14 67.12 63.37
CodeT5 88.26 – 74.59 92.56 86.22 69.02 82.78 84.26 – 69.57 87.79 80.67 69.44 78.78

CodeGeeX 89.08 – 74.65 92.94 86.96 69.77 88.44 87.07 – 73.11 91.78 84.34 70.61 81.07

Py

CodeBERT 80.46 58.50 – 54.72 57.38 65.14 10.70 68.87 28.22 – 17.80 23.65 49.30 18.32
PLBART 80.15 74.15 – 73.50 73.20 66.12 62.15 74.38 67.80 – 66.03 69.30 64.85 29.05
CodeT5 81.56 78.61 – 78.89 77.76 67.54 68.67 78.85 73.15 – 73.35 71.80 67.50 56.35

CodeGeeX 82.91 81.93 – 81.30 79.83 67.99 82.59 82.49 79.03 – 80.01 77.47 68.91 71.67

C#

CodeBERT 86.96 90.15 56.92 – 84.38 67.18 40.43 78.52 82.25 10.82 – 75.46 51.76 21.63
PLBART 84.98 6.27 69.82 – 85.02 67.30 75.74 80.17 81.37 67.02 – 79.81 67.12 57.60
CodeT5 88.06 91.69 73.85 – 85.95 68.97 81.09 83.59 85.70 69.52 – 80.50 69.63 77.35

CodeGeeX 88.70 93.03 74.55 – 86.44 69.49 86.69 87.11 90.46 72.89 – 83.83 70.58 80.73

JS

CodeBERT 84.38 84.42 52.57 84.74 – 66.66 33.29 75.43 72.33 9.19 75.47 – 52.08 19.79
PLBART 84.45 84.90 69.29 85.05 – 67.09 72.65 80.19 76.96 64.18 78.51 – 67.24 67.70
CodeT5 85.06 85.48 73.15 85.96 – 68.42 80.49 82.14 79.91 68.42 81.77 – 68.76 74.57

CodeGeeX 86.72 86.96 73.25 86.41 – 69.00 83.85 85.84 83.85 72.11 85.35 – 69.80 79.41

PHP

CodeBERT 82.58 81.57 69.29 80.96 79.94 – 28.45 50.13 46.81 16.92 49.75 48.12 – 22.19
PLBART 83.87 81.66 71.17 78.00 82.94 – 57.39 79.40 72.77 61.26 74.16 44.26 – 56.23
CodeT5 86.33 85.12 73.22 84.56 83.56 – 79.30 85.55 82.09 72.26 83.79 81.72 – 65.86

CodeGeeX 86.75 86.24 71.37 85.58 84.17 – 83.89 87.23 83.90 71.02 85.34 82.81 – 78.76

C

CodeBERT 45.84 39.69 13.55 39.71 29.85 38.88 – 21.70 21.27 21.10 19.50 15.64 31.71 –
PLBART 82.53 72.35 49.16 75.78 75.05 60.86 – 78.42 13.45 5.53 45.15 31.47 25.17 –
CodeT5 90.26 81.81 63.81 83.05 79.73 66.32 – 88.17 76.12 56.32 80.20 76.50 64.28 –

CodeGeeX 91.30 85.58 71.52 87.52 84.91 68.52 – 88.21 82.46 69.78 85.56 81.21 68.80 –

Table 13: The results of CodeGeeX on code summarization
task in CodeXGLUE [18].

Model All Ruby JavaScript Go Python Java PHP

CodeBERT [9] 17.83 12.16 14.90 18.07 19.06 17.65 25.16
PLBART [1] 18.32 14.11 15.56 18.91 19.30 18.45 23.58
ProphetNet-X [24] 18.54 14.37 16.60 18.43 17.87 19.39 24.57
CoTexT [22] 18.55 14.02 14.96 18.86 19.73 19.06 24.68
PolyglotCodeBERT [9] 19.06 14.75 15.80 18.77 18.71 20.11 26.23
DistillCodeT5 [39] 20.01 15.75 16.42 20.21 20.59 20.51 26.58
CodeGeeX (ours) 20.63 10.05* 16.01 24.62 22.50 19.60 31.00

not trained on), CodeGeeX outperforms the best baseline model
(DistillCodeT5 [39]) by 1.88 in the average BLEU score.

A.3.4 Evaluation on XLCoST. XLCoST is a benchmark proposed by
[45], containing parallel multilingual code data, with code snippets
aligned among different languages. For generation tasks, XLCoST
uses CodeBLEU, BLEU for evaluation. We choose the code transla-
tion task of XLCoST for CodeGeeX evaluation. We first fine-tune
the parameters of CodeGeeX on the given training set, combining
the training data in all 42 language pairs to obtain one fine-tuned

Table 14: The results of CodeGeeX on code summarization in
CodeXGLUE benchmark [18]. Six languages are considered,
Ruby, JavaScript, Go, Python, Java, PHP. The metric is the
BLEU score. *We don’t have Ruby in the pre-training corpus.

Model All Ruby JavaScript Go Python Java PHP

CodeBERT [9] 17.83 12.16 14.90 18.07 19.06 17.65 25.16
PLBART [1] 18.32 14.11 15.56 18.91 19.30 18.45 23.58

ProphetNet-X [24] 18.54 14.37 16.60 18.43 17.87 19.39 24.57
CoTexT [22] 18.55 14.02 14.96 18.86 19.73 19.06 24.68

PolyglotCodeBERT [9] 19.06 14.75 15.80 18.77 18.71 20.11 26.23
DistillCodeT5 [39] 20.01 15.75 16.42 20.21 20.59 20.51 26.58
CodeGeeX (ours) 20.63 10.05* 16.01 24.62 22.50 19.60 31.00

model. Then, we test the performance of the fine-tuned model on
each language pair with CodeBLEU score.

For all language pairs, we set the temperature to 0.2 and top-p
to 0.95, and generate one translation for each sample in the test
set. We report the results in Table 12. CodeGeeX performs better
than all baseline models on all language pairs except for PHP to
Python on the program level, C++ to Python on the snippet level,
and PHP to Python on the snippet level. On average, CodeGeeX
outperforms the baseline by 4.10 on the program level and by 1.99
on the snippet level.
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