
Appendix—Graph Random Neural Network
for Semi-Supervised Learning on Graphs
A Reproducibility

A.1 Datasets Details

Table 2 summarizes the statistics of the three benchmark datasets — Cora, Citeseer and Pubmed. Our
preprocessing scripts for Cora, Citeseer and Pubmed is implemented with reference to the codes of
Planetoid [48]. We use exactly the same experimental settings—such as features and data splits—on
the three benchmark datasets as literature on semi-supervised graph mining [48, 24, 41] and run 100
trials with 100 random seeds for all results on Cora, Citeseer and Pubmed reported in Section 4. We
also evaluate our method on six publicly available and large datasets, the statistics and results are
summarized in Appendix C.1.

Table 2: Benchmark Dataset statistics.
Dataset Nodes Edges Train/Valid/Test Nodes Classes Features

Cora 2,708 5,429 140/500/1,000 7 1,433
Citeseer 3,327 4,732 120/500/1,000 6 3,703
Pubmed 19,717 44,338 60/500/1,000 3 500

A.2 Implementation Details

We make use of PyTorch to implement GRAND and its variants. The random propagation proce-
dure is efficiently implemented with sparse-dense matrix multiplication. The codes of GCN and
GRAND_GCN are implemented referring to the PyTorch version of GCN 1. As for GRAND_GAT
and GAT, we adopt the implementation of GAT layer from the PyTorch-Geometric library 2 in our
experiments. The weight matrices of classifier are initialized with Glorot normal initializer [16]. We
employ Adam [23] to optimize parameters of the proposed methods and adopt early stopping to
control the training epochs based on validation loss. Apart from DropNode (or dropout [40]) used
in random propagation, we also apply dropout on the input layer and hidden layer of the prediction
module used in GRAND as a common practice of preventing overfitting in optimizing neural network.
For the experiments on Pubmed, we also use batch normalization [22] to stabilize the training proce-
dure. All the experiments in this paper are conducted on a single NVIDIA GeForce RTX 2080 Ti
with 11 GB memory size. Server operating system is Unbuntu 18.04. As for software versions, we
use Python 3.7.3, PyTorch 1.2.0, NumPy 1.16.4, SciPy 1.3.0, CUDA 10.0.

A.3 Hyperparameter Details

Overall Results in Section 4.2. GRAND introduces five additional hyperparameters, that is the
DropNode probability � in random propagation, propagation step K, data augmentation times S
at each training epoch, sharpening temperature T when calculating consistency regularization loss
and the coefficient of consistency regularization loss � trading-off the balance between Lsup and
Lcon. In practice, � is always set to 0.5 across all experiments. As for other hyperparameters, we
perform hyperparameter search for each dataset. Specifically, we first search K from { 2,4,5,6,8}.
With the best selection of K, we then search S from {2,3,4}. Finally, we fix K and S to the best
values and take a grid search for T and � from {0.1, 0.2, 0.3,0.5} and {0.5, 0.7, 1.0} respectively.
For each search of hyperparameter configuration, we run the experiments with 20 random seeds and
select the best configuration of hyperparameters based on average accuracy on validation set. Other
hyperparameters used in our experiments includes learning rate of Adam, early stopping patience,
L2 weight decay rate, hidden layer size, dropout rates of input layer and hidden layer. We didn’t
spend much effort to tune these hyperparameters in practice, as we observe that GRAND is not very

1https://github.com/tkipf/pygcn
2https://pytorch-geometric.readthedocs.io

15

https://github.com/tkipf/pygcn
https://pytorch-geometric.readthedocs.io


sensitive with those. Table 3 reports the best hyperparameters of GRAND we used for the results
reported in Table 1.

Table 3: Hyperparameters of GRAND for results in Table 1
Hyperparameter Cora Citeseer Pubmed

DropNode probability � 0.5 0.5 0.5
Propagation step K 8 2 5

Data augmentation times S 4 2 4
CR loss coefficient � 1.0 0.7 1.0

Sharpening temperature T 0.5 0.3 0.2
Learning rate 0.01 0.01 0.2

Early stopping patience 200 200 100
Hidden layer size 32 32 32

L2 weight decay rate 5e-4 5e-4 5e-4
Dropout rate in input layer 0.5 0.0 0.6

Dropout rate in hidden layer 0.5 0.2 0.8

Robustness Analysis in Section 4.5. For random attack, we implement the attack method with
Python and NumPy library. The propagation step K of GRAND (with or without CR) is set to 5.
And the other hyperparameters are set to the values in Table 3. As for Metattack [55], we use the
publicly available implementation3 published by the authors with the same hyperparameters used in
the original paper. We observe GRAND (with or without CR) is sensitive to the propagation step K
under different perturbation rates. Thus we search K from {5,6,7,8} for each perturbation rate. The
other hyperparameters are fixed to the values reported in Table 3.

Other Experiments. For the other results reported in Section 4.2 — 4.6, the hyperparameters used
in GRAND are set to the values reported in Table 3 with one or two changed for the corresponding
analysis.

Baseline Methods. For the results of GCN or GAT reported in Section 4.5 — 4.6, the learning rate
is set to 0.01, early stopping patience is 100, L2 weight decay rate is 5e-4, dropout rate is 0.5. The
hidden layer size of GCN is 32. For GAT, the hidden layer consists 8 attention heads and each head
consists 8 hidden units.

B Theorem Proofs

B.1 Proof for Theorem 1

Proof. The expectation of Lcon is:

1
2

n�1X

i=0

E
h
(z̃(1)i � z̃(2)i )2

i
=

1
2

n�1X

i=0

E
⇣

(z̃(1)i � zi)� (z̃(2)i � zi)
⌘2

�
. (8)

Here zi = sigmoid(AiX ·W), z̃i = sigmoid(Ai
eX ·W). For the term of z̃i�zi, we can approximate

it with its first-order Taylor expansion around AiX ·W, i.e., z̃i � zi ⇡ zi(1 � zi)(Ai(eX�X) ·W).
Applying this rule to the above equation, we have:

1
2

n�1X

i=0

E
h
(z̃(1)i � z̃(2)i )2

i
⇡ 1

2

n�1X

i=0

z2i (1� zi)
2E

h
(Ai(eX(1) � eX(2)) ·W)2

i

=
n�1X

i=0

z2i (1� zi)
2Var✏

⇣
Ai

eX ·W
⌘
.

(9)

B.2 Proof for Theorem 2

Proof. Expanding the logistic function, Lorg is rewritten as:

3https://github.com/danielzuegner/gnn-meta-attack

16

https://github.com/danielzuegner/gnn-meta-attack


Lorg =
m�1X

i=0

⇥
�yiAiX ·W +A(Ai,X)

⇤
, (10)

where A(Ai,X) = � log
⇣

exp(�AiX·W)

1+exp(�AiX·W)

⌘
. Then the expectation of perturbed classification loss

can be rewritten as:

E✏(Lsup) = Lorg +R(W), (11)

where R(W) =
Pm�1

i=0 E✏

h
A(Ai, eX) � A(Ai,X)

i
. Here R(W) acts as a regularization term

for W. To demonstrate that, we can take a second-order Taylor expansion of A(Ai, eX) around
AiX · W:

E✏

h
A(Ai, eX)�A(Ai,X)

i
⇡ 1

2
A

00
(Ai,X)Var✏

⇣
Ai

eX ·W
⌘
. (12)

Note that the first-order term E✏

h
A

0
(Ai,X)(eX � X)

i
vanishes since E✏(eX) = X. We can easily

check that A
00
(Ai,X) = zi(1 � zi). Applying this quadratic approximation to R(W) , we get the

quadratic approximation form of R(W):

R(W) ⇡ R
q(W) =

1

2

m�1X

i=0

zi(1 � zi)Var✏(Ai
eX · W). (13)

C Additional Experiments

C.1 Results on Large Datasets

Table 4: Statistics of Large Datasets.
Classes Features Nodes Edges

Cora-Full 67 8,710 18,703 62,421
Coauthor CS 15 6,805 18,333 81,894

Coauthor Physics 5 8,415 34,493 247,962
Aminer CS 18 100 593,486 6,217,004

Amazon Computers 10 767 13,381 245,778
Amazon Photo 8 745 7,487 119,043

We also evaluate our methods on six relatively large datasets, i.e., Cora-Full, Coauthor CS, Coauthor
Physics, Amazon Computers, Amazon Photo and Aminer CS. The statistics of these datasets are
given in Table 4. Cora-Full is proposed in [4]. Coauthor CS, Coauthor Physics, Amazon Computers
and Amazon Photo are proposed in [39]. We directly use the processed versions of the five datasets4

in our experiments.

Aminer CS is conducted by us based on DBLP citation network5. In Aminer CS, each node
corresponds to a paper in computer science, and edges represent citation relations between papers. We
manually categorize these papers into 18 topics based on their publication venues. The corresponding
topic of each class is described in Table 5. We use averaged GLOVE-100 [35] word vector of paper
abstract as the node feature vector. The goal is to predict the corresponding topic of each paper based
on feature matrix and citation graph structure.

Following the evaluation protocol used in [39], we run each model on 100 random train/validation/test
splits and 20 random initializations for each split (with 2000 runs on each dataset in total). For each
trial, we choose 20 samples for training, 30 samples for validation and the remaining samples for

4https://github.com/shchur/gnn-benchmark
5https://www.aminer.cn/citation

17

https://github.com/shchur/gnn-benchmark
https://www.aminer.cn/citation


1 2 3 4 5 6 7 8 9 10
Propagation Step K

5

10

15

20

25

30

35

40

45

T
im

e
(m

s)

2-layer GCN

2-layer GAT

Grand, S=1

Grand, S=2

Grand, S=3

Grand, S=4

(a) Per-epoch Training Time

1 2 3 4 5 6 7 8 9 10
Propagation Step K

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y

2-layer GCN

2-layer GAT

Grand, S=1

Grand, S=2

Grand, S=3

Grand, S=4

(b) Classification Accuracy

Figure 5: Efficiency Analysis for GRAND.

test. We ignore 3 classes with less than 50 nodes in Cora-Full dataset as done in [39]. The results are
presented in Table 6. The results of GCN and GAT on the first five datasets are taken from [39]. We
can observe that GRAND significantly outperforms GCN and GAT on all these datasets.

Table 5: Topics of Aminer CS.
Class Topic #Nodes Class Topic #Nodes

0 Artificial Intelligence 83172 9 Robotics 16457
1 Information System 17419 10 Computational Theory 18196
2 Parallel Computing 44841 11 Computer-aided Design 30514
3 Computer Network 137328 12 Computer Vision 35729
4 Information Security 18263 13 Natural Language Processing 21034
5 Database and Data Mining 52401 14 Computer Graphics 6820
6 Software Engineering 13631 15 Machine Learning 24900
7 Multimedia 18187 16 Bioinformatics 8873
8 Human-computer Interaction 13970 17 Signal Processing 31751

Table 6: Results on large datasets.

Method Cora
Full

Coauthor
CS

Coauthor
Physics

Amazon
Computer

Amazon
Photo

Aminer
CS

GCN 62.2 ± 0.6 91.1 ± 0.5 92.8 ± 1.0 82.6 ± 2.4 91.2 ± 1.2 49.9 ± 2.0
GAT 51.9 ± 1.5 90.5 ± 0.6 92.5 ± 0.9 78.0 ± 19.0 85.7 ± 20.3 49.6 ± 1.7

GRAND 63.5 ±0.6 92.9 ± 0.5 94.6 ± 0.5 85.7 ± 1.8 92.5 ± 1.7 52.8 ± 1.2

C.2 Efficiency Analysis

The efficiency of GRAND is mainly influenced by two hyperparameters: the propagation step K
and augmentation times S. Figure 5 reports the average per-epoch training time and classification
accuracy of GRAND on Cora under different values of K and S with #training epochs fixed to 1000.
It also includes the results of the two-layer GCN and two-layer GAT with the same learning rate,
#training epochs and hidden layer size as GRAND.

From Figure 5, we can see that when K = 2, S = 1, GRAND outperforms GCN and GAT in terms of
both efficiency and effectiveness. In addition, we observe that increasing K or S can significantly
improve the model’s classification accuracy at the cost of its training efficiency. In practice, we can
adjust the values of K and S to balance the trade-off between performance and efficiency.

18



0.1 0.3 0.5 0.7 0.9
CR Loss Coe�cient �

0.830

0.835

0.840

0.845

0.850

A
cc

ur
ac

y

Grand

Grand GCN

Grand GAT

(a) CR loss coefficient �

0.1 0.3 0.5 0.7
DropNode Probability �

 0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y

Grand

Grand GCN

Grand GAT

(b) DropNode probability �

Figure 6: Parameter sensitivity of � and � on Cora.

C.3 Parameter Sensitivity

We investigate the sensitivity of consistency regularization (CR) loss coefficient � and DropNode
probability � in GRAND and its variants on Cora. The results are shown in Figure 6. We observe that
their performance increase when enlarging the value of �. As for DropNode probability, GRAND,
GRAND_GCN and GRAND_GAT reach their peak performance at � = 0.5. This is because the
augmentations produced by random propagation in that case are more stochastic and thus make
GRAND generalize better with the help of consistency regularization.

C.4 DropNode vs Dropout

1 5 10
Propagation Step

0.76

0.78

0.80

0.82

0.84

A
cc

ur
ac

y

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(a) Cora

1 5 10
Propagation Step

 0.6

0.64

0.68

0.72

0.76

A
cc

ur
ac

y

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(b) Citeseer

1 5 10
Propagation Step

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

A
cc

ur
ac

y

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(c) Pubmed

Figure 7: GRAND vs. GRAND_dropout.

We compare GRAND and GRAND_dropout under different values of propagation step K. The results
on Cora, Citeseer and Pubmed are illustrated in Figure 7. We observe GRAND always achieve better
performance than GRAND_dropout, suggesting DropNode is much more suitable for graph data
augmentation.

C.5 GRAND vs. GRAND_GCN & GRAND_GAT

As shown in Table 1, GRAND_GCN and GRAND_GAT get worse performances than GRAND,
indicating GCN and GAT perform worse than MLP under the framework of GRAND. Here we
conduct a series of experiments to analyze the underlying reasons. Specifically, we compare the
MADGap values and accuracies GRAND, GRAND_GCN and GRAND_GAT under different values of
propagation step K with other parameters fixed. The results are shown in Figure 8. We find that the
MADGap and classification accuracy of GRAND increase significantly when enlarging the value of
K. However, both the metrics of GRAND_GCN and GRAND_GAT have little improvements or even
decrease. This indicates that GCN and GAT have higher over-smoothing risk than MLP.

19



1 2 3 4 5 6 7 8 9 10
Propagation Step

0.66

0.68

0.70

0.72

0.74

0.76

0.78

M
A

D
G

ap

Grand

Grand GCN

Grand GAT

(a) MADGap

1 2 3 4 5 6 7 8 9 10
Propagation Step

0.80

0.81

0.82

0.83

0.84

0.85

A
cc

ur
ac

y

Grand

Grand GCN

Grand GAT

(b) Classification Results

Figure 8: Over-smoothing: GRAND vs. GRAND_GCN & GRAND_GAT on Cora.

C.6 Performance of GRAND under different label rates

We have conducted experiments to evaluate GRAND under different label rates. For each label rate
setting, we randomly create 10 data splits, and run 10 trials with random initialization for each split.
We compare GRAND with GCN and GAT. The results are shown in Table 7. We observe that GRAND
consistently outperforms GCN and GAT across all label rates on three benchmarks.

Table 7: Classification Accuracy under different label rates (%).
Dataset Cora Citeseer Pubmed

Label Rate 1% 3% 5% 1% 3% 5% 0.1% 0.3% 0.5%

GCN 62.8±5.3 76.1±1.9 79.6±2.1 63.4±2.9 70.6±1.7 72.2±1.1 71.5±2.1 77.5±1.8 80.8±1.5

GAT 64.3±5.8 77.2±2.4 80.8±2.1 64.4±2.9 70.4±1.9 72.0±1.3 72.0±2.1 77.6±1.6 80.6±1.2

GRAND 69.1±4.0 79.5±2.2 83.0±1.6 65.3±3.3 72.3±1.8 73.8±0.9 74.7±3.4 81.4±2.1 83.8±1.3

20


	Introduction
	Problem and Related Work
	Graph Random Neural Networks
	Random Propagation for Graph Data Augmentation
	Consistency Regularized Training
	Theoretical Analysis

	Experiments
	Experimental Setup
	Overall Results
	Ablation Study
	Generalization Analysis
	Robustness Analysis
	Over-Smoothing Analysis

	Conclusions
	Reproducibility
	Datasets Details
	Implementation Details
	Hyperparameter Details

	Theorem Proofs
	Proof for Theorem 1
	Proof for Theorem 2

	Additional Experiments
	Results on Large Datasets
	Efficiency Analysis
	Parameter Sensitivity
	DropNode vs Dropout
	Grand vs. Grand_GCN & Grand_GAT
	Performance of Grand under different label rates


