
Adaptive Diffusion in Graph Neural Networks

Jialin Zhao
Tsinghua University

zjl19970607@gmail.com

Yuxiao Dong
Tsinghua University

yuxiaod@tsinghua.edu.cn

Ming Ding
Tsinghua University

dm18@mails.tsinghua.edu.cn

Evgeny Kharlamov
Bosch Center for Artificial Intelligence
Evgeny.Kharlamov@de.bosch.com

Jie Tang†
Tsinghua University

jietang@tsinghua.edu.cn

Abstract

The success of graph neural networks (GNNs) largely relies on the process of
aggregating information from neighbors defined by the input graph structures. No-
tably, message passing based GNNs, e.g., graph convolutional networks, leverage
the immediate neighbors of each node during the aggregation process, and recently,
graph diffusion convolution (GDC) is proposed to expand the propagation neigh-
borhood by leveraging generalized graph diffusion. However, the neighborhood
size in GDC is manually tuned for each graph by conducting grid search over the
validation set, making its generalization practically limited. To address this issue,
we propose the adaptive diffusion convolution (ADC)* strategy to automatically
learn the optimal neighborhood size from the data. Furthermore, we break the
conventional assumption that all GNN layers and feature channels (dimensions)
should use the same neighborhood size for propagation. We design strategies to
enable ADC to learn a dedicated propagation neighborhood for each GNN layer
and each feature channel, making the GNN architecture fully coupled with graph
structures—the unique property that differs GNNs from traditional neural networks.
By directly plugging ADC into existing GNNs, we observe consistent and sig-
nificant outperformance over both GDC and their vanilla versions across various
datasets, demonstrating the improved model capacity brought by automatically
learning unique neighborhood size per layer and per channel in GNNs.

1 Introduction

Graph neural networks (GNNs) are a type of neural networks that can be directly coupled with
graph-structured data [30, 41]. Specifically, graph convolution networks [12, 19] (GCNs) generalize
the convolution operation to local graph structures, offering attractive performance for various graph
mining tasks [15, 32, 37]. The graph convolution operation is designed to aggregate information from
immediate neighboring nodes into the central node, which is also referred to as message passing [14].
To propagate information between nodes that are further away, multiple neural layers can be stacked
to go beyond the immediate hop of neighbors. To directly collect high-order information, spectral
based GNNs leverage graph spectral properties to collect signals from global neighbors [6, 12, 17].
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Though generating promising results, both strategies are limited to a pre-determined and fixed
neighborhood for passing and receiving messages. Essentially, these methods have an implicit
assumption that all graph datasets share the same size of receptive field during the message passing
process. To break this, graph diffusion convolution (GDC) [21] was recently proposed to extend the
discrete message passing process in GCN to a diffusion process, enabling it to aggregate information
from a larger neighborhood. For each input graph, GDC hand-tunes the best neighborhood size
for feature aggregation by grid-searching the parameters on the validation set, making its practical
application limited and sensitive.

To eliminate the manual search process of the optimal propagation neighborhood in GDC, we propose
the adaptive diffusion convolution (ADC) strategy that supports learning the optimal neighborhood
from the data automatically. ADC achieves this by formalizing the task as a bilevel optimization
problem [11], enabling the customized learning of one optimal propagation neighborhood size for
each dataset. In other words, all GNN layers and feature channels (dimensions) share the same
neighborhood size during message passing on each graph.

To further this direction, we also enable ADC to automatically learn a customized neighborhood
size for each GNN layer and each feature channel from data. By learning a unique propagation
neighborhood for each layer, ADC can empower GNNs to capture neighbors’ information from
diverse graph structures, which is fully dependent on the data and downstream learning objective.
Similarly, by learning distinct neighborhood size for each feature channel, GNNs are then capable of
selectively modeling each neighbor’s multiple feature signals. Altogether, ADC makes GNNs fully
coupled with the graph structures and all feature channels.

By design, ADC is a general plugin that can be directly applied to existing GNN models. By plugging
it on several GNNs, we show that the upgraded GNNs can offer significant performance advances over
their vanilla versions across a wide range of datasets. Furthermore, experimental results also show
that by learning the propagation neighborhood size automatically, ADC can consistently outperform
GDC, which customizes this for each dataset by grid search. Finally, we demonstrate that GNNs’
model capacity can benefit from the better coupling between the its architecture, graph structures, and
feature channels, that is, by learning dedicated neighborhood size for each GNN layer and feature
channel.

2 Neighborhood Radius in GNNs

We focus on the problem of semi-supervised node classification. The input includes an undirected
network G = (V,E), where the node set V contains of n nodes {v1, ..., vn} and E is the edge set,
and A ∈ Rn×n is the symmetric adjacency matrix of graph G. Given the input feature matrix X and
a subset of node label Y, the task is to predict the labels of remaining nodes.

2.1 Neighborhood Radius in Message Passing Networks

The convolution operation on graphs can be described as the process of neighborhood feature
aggregation or message passing [14]. The message passing graph convolutional networks can be
simply defined as:

H(l) = γ(l)(ϕ(l)(H(l−1)), G) (1)

where H(l) denotes the hidden feature of layer l with H(0) = X and X as the input feature, ϕ(·)
denotes feature transformation and γ(·) denotes feature propagation. Take GCN [19] for example. The
feature transformation and feature propagation functions correspond to ϕ(H) = HW , γ(Ĥ, G) =
D̃−

1
2 ÃD̃−

1
2 Ĥ, respectively, in which D is the diagonal degree matrix with D̃ii =

∑
j Ãij , and Ĥ

denotes hidden feature after transformation. Note that GCN uses the adjacency matrix A with self
loop, so it actually uses Ã = I+A. To simplify the notations, we use T to denote D̃−

1
2 ÃD̃−

1
2 .

Straightforwardly, the feature transformation function ϕ(·) describes how features transform inside
each node and the feature propagation function γ(·) describes how features propagate between nodes.
Essentially, how good a GNN model can utilize graph structures heavily depends on the design of the
feature propagation function.
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Neighborhood radius r. Most graph-based models can be represented as γ(l)(Ĥ, G) = f(T)Ĥ,
where f(T) is a matrix that can be generated by T. So f(T) can be represented as f(T) =∑∞

k=0 θkT
k. To quantify how far each node could aggregate features from, we define the neighbor-

hood radius of a node as r:

r =

∑∞
k=0 θkk∑∞
k=0 θk

(2)

Here, θk denotes the influence from k-step-away nodes. For a large r, this means the model puts
more emphasis on long distance nodes, i.e., global information. For a small r, this means the model
amplifies local information.

Neighborhood radius r in GCN. For GCN, the neighborhood radius r = 1, which is just range of
nodes directly connected to it. To collect information beyond direct connections, it is required to
stack multiple GCN layers to reach high-order neighborhoods.

Neighborhood radius r in multi-hop models. There are attempts to improve GCN’s feature
propagation function from first-hop neighborhood to multi-hop neighborhood, such as MixHop [2],
JKNet [38], and SGC [35]. For example, SGC [35] uses feature propagation function γ(Ĥ, G) =
TKĤ, where T = D̃−

1
2 ÃD̃−

1
2 . In other words, the neighborhood radius r = K for SGC, which is

the range of neighborhoods to collect information from each GNN layer. However, for all multi-hop
models, the discrete nature of hop numbers makes r non-differentiable.

2.2 Neighborhood Radius in Graph Diffusion Convolution

Recently, a line of work has been focused on generalizing feature propagation from discrete hops to
continuous graph diffusion [21, 36, 40]. Notably, graph diffusion convolution (GDC) addresses this
by the following propagation setup [21]:

γ(l)(Ĥ, G) =

∞∑
k=0

θkT
kĤ (3)

where k is summed from 0 to infinity, making each node aggregate information from the whole graph.

In Eq.3, the weight coefficients should satisfy
∑∞

k=0 θk = 1 such that the signal strength is not
amplified nor reduced through the propagation. The two commonly-used sets of weight coefficients
[21, 36, 40] are generated from personalized PageRank (θk = α(1− α)k) [27] and the heat kernel
(θk = e−t t

k

k! ) [22], respectively. In this work, we focus on heat kernel.

Heat kernel. Heat kernel incorporates prior knowledge into the GNN model, which means the
feature propagation between nodes follows Newton’s law of cooling [34], i.e., the feature propagation
speed between two nodes is proportional to the difference between their features. Formally, this prior
knowledge can be described as:

dxi(t)

dt
= −

∑
j∈N(i)

Ãij(xi(t)− xj(t)) (4)

where N(i) denotes the neighborhood of node i, xi(t) represents the feature of node i after diffusion
time t. This differential equation can be solved as:

X(t) = HtX(0) (5)

where X(t) means the feature matrix after diffusion time t and Ht = e−(I−T)t is the heat kernel.

Neighborhood radius rh in diffusion models. According to the definition of neighborhood radius
Eq. 2, the heat kernel version of the GDC has neighborhood radius rh as

rh =

∑∞
k=0 θkk∑∞
k=0 θk

=

∑∞
k=0 e

−t tk
k!k∑∞

k=0 e
−t tk

k!

=
e−t

∑∞
k=0

tk

k!k

e−t
∑∞

k=0
tk

k!

=
e−t(ett)

e−tet
= t (6)

This suggests that t is the neighborhood radius for the heat kernel based GDC, that is, t becomes a
perfect continuous substitute for the hop number in multi-hop models.
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Figure 1: Comparison among fixing t (red), training t on train set (blue), training t on validation set
(green), and training t separately for each feature channel on validation set (black). The results are
reported by using the Heat Kernel version of GCN on the Cora dataset. Training t on validation set
can prevent overfitting.

3 Adaptive Diffusion Convolution

Recall that the heat kernel version of graph diffusion convolution (GDC) has the following feature
propagation function as

γ(l)(Ĥ, G) = e−LtĤ =

∞∑
k=0

e−t
tk

k!
TkĤ (7)

where the Laplacian matrix L = I−T. For each graph dataset, it requires the manual grid search
step to determine the neighborhood radius related parameter t. Moreover, t is fixed for all feature
channels and propagation layers in each dataset. In this work, we explore how to adaptively learn the
neighborhood radius from data for each graph and further examine the potential to generalize it for
different feature channels and GNN layers.

3.1 Training Neighborhood Radius

Diffusion convolution enables us to replace GNNs’ discrete feature propagation function with the
continuous heat kernel. Instead of hand-tuning t, we can calculate the gradient of t and update t to
converge to an optimal neighborhood, which is the same to learning other weight and bias parameters
in the model.

Figure 1 shows the training process of learning t. With more epochs, both t and training loss
decrease when learning on the training set (blue). Meanwhile, the validation and test accuracies
drop dramatically as t tends to zero (more epochs)—representing each node could only use its own
features to predict the label. That is, learning t directly on the training set causes overfitting. This
phenomenon has also been observed in GDC [21]. The authors found that strong regularization on
the difference of θk+1 − θk could help overcome the overfitting issue. However, that would require
hand-tuning the regularization factor for every dataset, which is similar to hand-tuning t itself, e.g.,
by grid search, further limiting the generalization of the model.

To address this issue, we propose a method of training t by using the gradient of the model on the
validation set. The goal for the model is to find t∗ that minimizes the validation loss Lval(t, w

∗),
where w denotes all the other trainable parameters in the feature transformation function and w∗
denotes the set of parameters that minimize the training loss Ltrain(t, w). This strategy can be
formalized as a bilevel optimization problem [3, 11]:

t∗ = argmin
t
Lval(t, w

∗(t)) (8)

w∗(t) = argmin
w
Ltrain(t, w) (9)

By doing so, every time we update t, we need to make w converge to the optimal value, which is too
expensive to train. An approximation method is to update t every time we update w, that is,

w(e+1) = w(e) − α1 5w Ltrain(t
(e), w(e)) (10)
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t(e+1) = t(e) − α2 5t Lval(t
(e), w(e+1)) (11)

where e denotes the number of training epochs, α1 and α2 denote the learning rate on the training and
validation sets, respectively. The similar idea has been proposed in the gradient-based hyperparameter
tuning [24] and neural architecture search [23]. Figure 1 shows that using this method (green lines)
helps avoid overfitting and thus offers better generalization, as there is no sign of test accuracy
drop. Meanwhile, t does not diminish to zero, indicating the meaningful learning of this parameter—
neighborhood radius.

3.2 Training Neighborhood Radius for Each Layer and Channel

0 1

Figure 2: Illustration of the Adaptive Diffusion Convolu-
tion (ADC). For the hidden feature Ĥi of feature channel i
in layer l, we train a separate feature propagation function
γ(l)(Ĥ, G)i with a unique neighborhood radius t(l)i . When
t is large (e.g., t=3), the contributions from close (e.g., in
1-hop) and distant neighbors (e.g., in 3-hop) have little dif-
ference (shown as the relatively similar color shading across
different hops). When t is small (e.g., t=1), the contributions
from close neighbors are much more significant than from
distant neighbors (shown as dark color concentrated around
center).

Conventional GNNs use the pre-
determined neighborhood radius for
feature propagation. GDC proposes
to use different neighborhood radius
t for different datasets by hand-tuning
the values. The above method furthers
this direction by automatically learn-
ing the radius t from the given graph.
This implies that one t for one dataset,
that is, the same t for all GNN layers
and all feature channels (dimensions).

Adaptive diffusion convolution
(ADC). The natural question arises
here is whether we can have a unique
t for each layer and channel, making
them adaptive for the final learning
objective. The obstacle that prevents
previous models from achieving
this lies in the infeasible challenge
of hand-tuning or grid-searching
the propagation function separately
for each feature channel and GNN
layer, given that as the number
of parameters increases, the time
complexity increases exponentially. However, the aforementioned strategy for updating t during the
training of the model empowers us to adaptively learn specific t for all layers and all feature channels.

Straightforwardly, we have the adaptive diffusion convolution (ADC) by extending the feature
propagation function in Eq. 7 for each layer and channel, that is, from t to t(l)i ,

γ(l)(Ĥ, G)i =

∞∑
k=0

e−t
(l)
i

(t
(l)
i )

k

k!
TkĤi (12)

where t(l)i denotes the neighborhood radius t for the l-th layer and i-th channel, Ĥi represents the i-th
column of the hidden feature Ĥ, i.e., the feature on channel i, and γ(l)i denotes the feature propagation
function on the l-th layer and i-th channel. This feature propagation function enables the GNN to
train a separate t for each feature channel and layer, which is illustrative in Figure 2. In addition,
Figure 1 (black lines) also shows that there is no overfitting caused by the increase of the number of
hyperparameters (t).

Generalized adaptive diffusion convolution (GADC). By now, we introduce the adaptive diffusion
convolution based on heat kernel. Without loss of generality, we can have ADC extended to a
generalized ADC (GADC), that is, not limiting the weight coefficients θk as heat kernel. Therefore,
we have the feature propagation of GADC as:

γ(l)(Ĥ, G)i =

∞∑
k=0

θ
(l)
ki T

kĤi (13)
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Table 1: Dataset Statistics [29]

CORA CiteSeer PubMed Coauthor CS Amazon Computers Amazon Photo

#Nodes 2485 2110 19717 18333 13381 7487
#Edges 5069 3668 44324 81894 245778 119043

#Classes 7 6 3 15 10 8
#Training-Nodes 140 120 60 300 200 160

#Validation-Nodes 1360 1380 1440 4700 1300 1340
#Test-Nodes 985 610 18217 13333 11881 5987

CORA
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81
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None
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None
GDC
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Figure 3: Semi-supervised node classification accuracy, on original model or improved with GDC or
our trainable heat kernel. Our improvement surplus GDC in most datasets and models.

where θ(l)ki denotes the weight coefficient for k-hop neighbors on l-th layer and i-th channel. We
restrict

∑∞
k=0 θ

(l)
ki = 1 during training.

Implementation Details. As we operate differently on each channel, whether we propagate before
or after the feature transformation function actually matters. Empirically, we find that propagating
on the input channels generates better results than propagating on the output channels (Cf. Figure 7
for details). Therefore, we swap the propagation and transformation steps in the original message
passing networks from Eq. 1 to:

H(l) = ϕ(l)(γ(l)(H(l−1), G)) (14)

Additionally, calculating e−Lt directly is infeasible for large graphs. Practically, we need to use
the top-K truncation to approximate the heat kernel, making ADC (Eq. 12) and GADC (Eq.13)
respectively updated as:

γ(l)(Ĥ, G)i =

K∑
k=0

e−t
(l)
i

(t
(l)
i )

k

k!
TkĤi, γ(l)(Ĥ, G)i =

K∑
k=0

θ
(l)
ki T

kĤi (15)

Similar to GDC, ADC and GADC are flexible components that can be directly plugged into existing
GNN models, enabling them to adaptively learn the neighborhood radius for feature aggregation.
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Figure 4: (a) Fixing t to the initialization value. (b) Training one t for all layers. (c) Training one t
for each layer. (d) Training a unique t for each feature channel and layer. (a) can be seen as GDC
without sparsification. Results show that after removing sparsification in GDC, training t from data
always helps improve performance.

4 Experiments

4.1 Experimental setup

We follow the standard procedure to conduct experiments and report results. Same as GDC, each
result is averaged across 100 random data splits and initializations. All baseline GNNs use the same
hyperparameters as GDC’s baseline model. We only compare with the heat kernel version of GDC.
We set the learning rate of t equals to the learning rate of other parameters, which is 0.01. All results
are calculated as averages with 95% confidence via bootstrapping.

The prediction task is focused on semi-supervised node classification. We use widely-adopted datasets
including CORA, CiteSeer [28], PubMed [25], Coauthor CS, Amazon Computers and Amazon Photo
[29]. Statistics of datasets are listed in Table 1. Same as GDC, we only use their largest connected
components. The data is split to a development and test set. Development set contains 1500 nodes
except Coauthor CS that contains 5000 nodes. The development set is split to a training set containing
20 nodes for each class and a validation set with remaining nodes.

We implement ADC and GADC on three models: GCN [19], JKNet [38] and ARMA [5]. We only
replace original model’s feature propagation function with ADC or GADC and preserve feature
transformation function. The expansion step (K in Eq.15) is set to 10. We use early stopping with
patience of 100 epochs. Different from GDC, we don’t use GAT [32] or GIN [37], because GAT uses
learned attention matrix instead of adjacency matrix and GDC’s experiments show that GIN performs
much worse than other models.

4.2 Results

Figure 3 reports the main results when applying GDC and the proposed ADC on GCN, ARMA, and
JKNet. It shows that ADC significantly improves base GNNs and outperforms GDC on most cases.
Compared to GADC, which has K× more hyperparameters than ADC, ADC can match and achieve
comparable or even better results.

In addition, we observe that the runs with low stopping epochs (less than 300) often perform worse
than those with more stopping epochs. Forcing early stopping inactive in low epochs could help
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Figure 5: Influence of the number of training nodes. X-axis denotes the number of nodes per class
in training set. We fix the total number of development set (train + valid) to be the same. ADC
constantly performs better than GDC and the original model (GCN) in most cases. This indicates that
the advantage of ADC is not due to training more parameters on a large validation set.
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Figure 6: Influence of the number of Taylor expansion steps on the trainable heat kernel in ADC.
Increasing step number helps increase the accuracy in most cases.

increase the performance by a little. This suggests that the neighborhood radius t may need more
training epochs, however, this contradicts with the early stopping strategy, which means high stopping
epochs may cause w to overfitting. To make a straightforward and fair comparison, we do not use
this training trick in our experiments.

Ablation study. The ablation studies on different diffusion setting are summarized in Figure 4. GDC
can be seen as fixing t heat kernel with sparsification. The results suggest that GDC’s performance is
partly due to its sparsification on propagation matrix, because if we remove sparsification, training
t for each feature channel and layer always performs better than fixing t to its initialization value.
Figure 4 also shows that by comparing the improvements brought by training t at different levels,
training t for each channel and layer contributes the most to the performance improvements on the
node classification task.

Cora Citeseer Pubmed Coauthor
CS

AMZCMP AMZPHO70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

in channel
out channel

Figure 7: Comparing propagating before
or after feature transformation function
on ADC + GCN, which means learn a
separate propagation t for each input or
output feature channel. Result shows
that learning separate t on input channels
performs better.

The influence of rate between training and validation
set. Because ADC trains a large number of hyperpa-
rameters on validation set, this may cause concerns about
whether the improvement is due to overuse of the vali-
dation set. To verify that, we do the same experiment
of Figure 3 on different rates between training and vali-
dation sets, with same settings. We fix the total number
of nodes of the development set and change the number
of nodes per class in training set. As stated before, the
development set contains 1500 nodes except Coauthor CS
which has 5000 nodes. Results in Figure 5 show that ADC
constantly performs better than GDC and the original base
GNN model (GCN) in most cases. This demonstrates that
the advantage of ADC does not come from training more
parameters on a large validation set.

The influence of expansion step. Do the long-distance
neighbor nodes really help? K in Eq. 15 denotes the
expansion step or truncation step of Taylor expansion.
By changing K, we could examine whether neighbors
further than K step away really matter. Figure 6 shows
that increasing the step of Taylor expansion (K) often helps to increase accuracy. Nodes further than
ten step away don’t carry valuable information.
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The influence of propagation before or after transformation. As we discuss in Eq.14, different
from GCN, propagation before or after transformation does matter in our model, because this means
learning unique t for each input feature channel or each output feature channel. Figure 7 shows that
propagation before transformation performs better than propagation after transformation. This is
probably because input feature’s channel carries more diverse information.

5 Related Work

Bruna et al. [6] first propose a spectral graph convolutional network, using back propagation
to learn the kernel filter. Later, ChebyNet [12] is proposed to leverage Chebyshev expansion to
avoid the Laplacian eigendecomposition, which has high computational complexity. The graph
convolutional network (GCN) [19] go one step further by simplifying the kernel filter to the first-order
of Chebyshev expansion. The graph attention networks (GAT) [32] utilize self-attention layers
to learn the importance of different nodes in neighborhood. GraphSAGE [15] generalizes graph
convolution from transductive tasks to inductive tasks. Different types of feature propagation model
have been proposed and used in practice [20, 13, 33, 7, 16].

In Chung et al.’s book [10], the properties of heat kernel in graph have been discussed thoroughly.
David et al. [31] generalize windowed Fourier to graph with heat kernel. After GCN emerged, some
graph convolution models integrating heat kernel have been proposed. GraphHeat [36] leverages heat
kernel to enforce smoothness in the signal variation on graph, which acts as a low-pass filter. GDC
[21] utilizes heat kernel as a special case of graph diffusion. In ProNE [39], Chebyshev expansion is
proposed to approximate heat kernel.

Using learned coefficients of k-hops neighbors instead of hand-tuned has already been discussed in
some other graph learning tasks. AdaDIF [4] proposes a class-specific adaptive diffusion method
on label propagation. AGF [8], also in label propagation, uses adaptive graph filters to form a
global decision by combining decisions from multiple graph filters. In node embedding tasks, an
attention-based model [1] proposes to learn the length of random walk via backpropagation. PERDIF
[26] learns a personalized diffusion over item models for top-n recommendation. AptRank [18]
utilizes an adaptive diffusion method for protein function prediction. A recent work, GPR-GNN
[9], utilizes adaptive generalized PageRank, but focusing on handle heterophily and over-smoothing.
None of the previous methods calculates gradients on validation set to prevent overfitting or treat
each feature channel and layer separately.

6 Conclusion and Discussion

In this work, we propose to learn the neighborhood radius for the feature aggregation process in
GNNs. Traditionally, the neighborhood radius is either pre-determined, e.g., GCN, or hand-tuned,
e.g., GDC. To make it practically applicable to real-world problem settings, we present a general
GNN plugin ADC that can automatically learn the neighborhood radius for each GNN layer and
each feature channel. Similar to GDC, ADC is able to enhance any graph-based model, particularly
GNNs. By directly plugging ADC into existing GNNs, the experiments and ablation studies show
that learning unique neighborhood radius for each feature channel in each GNN layer consistently
and significantly improves the performance for downstream graph mining tasks.

Notwithstanding the promising results, future works might lie in improving the training procedure, as
we notice that the neighborhood radius sometimes requires more epochs to train than other parameters.
One possible direction is to study how to automatically balance this with early stopping strategy.

In terms of societal impacts, the proposed technique ADC shares the same promises and potential
issues with the general GNN research. Graphs are naturally used for abstracting and modeling
relational and structured data, such as social networks, and graph neural networks, as a powerful
tool for modeling graphs, may suffer from the privacy issues faced by the original social platforms
or graph datasets. However, in general, we do not see ethical concerns or potential harms of the
proposed technique.

For reproducibility, both the code and datasets (publicly available) used for experiments are included
in the supplementary document.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In the first part of section 4.2,
we discuss our training procedure still has a lot to improve and when it will have poor
performance.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
in conclusion section.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The only

assumption we make is that by using heat kernel, we assume the feature propagation
on graphs follow Newton’s law of cooling. See equation 4.

(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include all
the codes needed for reproduction in supplemental material. The hyperparameters are
listed in appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 4.1 and appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Our figure 3 contains error bars. Results in tabular form
are presented in appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] They are all public datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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