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Abstract. Event-based social networks (EBSN), such as meetup.com and plan-
cast.com, have witnessed increased popularity and rapid growth in recent years.
In EBSN, a user can choose to join any events such as a conference, house party,
or drinking event. In this paper, we present a novel model—Event2Vec, which
explores how representation learning for events incorporating spatial-temporal
information can help event recommendation in EBSN. The spatial-temporal in-
formation represents the physical location and the time where and when an event
will take place. It typically has been modeled as a bias in conventional recommen-
dation models. However, such an approach ignores the rich semantics associated
with the spatial-temporal information. In Event2Vec, the spatial-temporal influ-
ences are naturally incorporated into the learning of latent representations for
events, so that Event2Vec predicts user’s preference on events more accurately.
We evaluate the effectiveness of the proposed model on three real datasets; our
experiments show that with a proper modeling of the spatial-temporal informa-
tion, we can significantly improve event recommendation performance.

1 Introduction

Event-based social network (EBSN) is a new type of social network that has experi-
enced increasing popularity and rapid growth. For instance, Meetup1, one of the largest
online social networks for facilitating offline group meetings, has attracted 30 million
registered users who have created nearly 270,000 Meetup groups. Douban2, a Chinese
social networking service, has more than 200 million registered users and has hosted
about 590,000 offline groups. These EBSN websites allow members to find and join
groups unified by a common interest, such as politics, books, games, movies, health,
careers or hobbies, and schedule a time to meet up together offline, which results in
very interesting user behavior data combining both online and offline social interac-
tions [9]. One challenging issue on these EBSN websites is how to keep users actively
joining new events. Recommendation plays a critical role [11].

In contrast to conventional online social networks that mainly contain user’s online
interactions, users in EBSN can choose to join the event according to their interest in
the event (based on the event content) and their availability (based on the event loca-
tion and availability at the schedule time). Therefore, user’s mobile behaviors presented

1 https://meetup.com
2 https://douban.com
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in EBSN are explored typically in several important aspects, including event content,
spatial influence [8] and temporal effect [5].

Many recent studies have exploited different factors to improve recommendation
effectiveness. For instance, some efforts have been made to explicitly model the spatial
information as in [15][20]. Some others exploit temporal cyclic effect to provide spa-
tial or/and temporal novel recommendation like [18]. However, they lack an integrated
analysis of the joint effect of all factors in a unified effective way and no previous work
has explicitly modeled user’s preference on both spatial and temporal factors to improve
the recommendation performance.

In this work, we stand on the recent advances in embedding learning techniques
and propose an embedding method—Event2Vec to encode events in a low-dimension
latent space which integrates the spatial and temporal influence. In specific, we learn
representations for three factors—the event, the location and the time simultaneously
using the event sequential data attended by users. We propose to use multitask learning
settings to model and predict user’s preference on three factors naturally. The technique
of shared embeddings are utilized in our proposed model to improve the efficiency.

In addition, our approach leverages the interactive influence between spatial and
temporal factors presented in user’s behaviors by modeling the combination of spatial-
temporal information. In specific, events held at the same location could have very dif-
ferent topics at different time periods, thus attract varying groups of user. For instance,
an urban park usually holds events like “picnic” in the afternoon while holds events
like “jogging” at night. In the course of this paper, we will present how our embedding
model exploits such joint and interactive influences of spatial and temporal factors in a
natural way.

Finally, we propose a recommendation algorithm based on a similarity metric in
the latent embedding space which is proved to be effective in our experiments. Com-
pared with state-of-the-art recommendation frameworks, we can achieve a significant
improvement.

2 Problem Definition

In this section, we will first clarify some terminology used in this paper, and then ex-
plicitly present our problem.

User behaviors are formulated as a set of four tuple {(u, e, l, τ) : u ∈ U, e ∈ E, l ∈
L, t ∈ T}, where each means user u attended event e at location l, at time slot t. U is
a set of users and E is a set of events, L 3 is a set of locations and T is a set of time
slots discretized from continuous timestamps. We use the notation | · | to denote the
cardinality of a set — for example, |L| indicates of the number of locations in set L.

For each user u, we create a user profile Du = {(ei, li, ti), i = 1 . . . nu}, which is
a sequence of events user u attended in chronological order.

Input: The input of our problem is an event-based social network G = (U,E,L, T ),
and a set of user profiles D = {Du : u ∈ U}.

3 The location l can be represented as a pair (longitude, latitude) or a specific address (e.g.,
“Wine Bar at MIST”).
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Fig. 1. Architectures of the three Event2Vec models

Goal: Given a querying user u, our goal is to recommend upcoming events based on
historical preferences of the user .

3 The Proposed Approach

In this section, we present the details of the proposed model—Event2Vec.
To incorporate different types of information, we learn latent representations for

each event, location and time. Then, we model and predict user’s preferences on the
three factors explicitly to improve the recommendation accuracy.

In specific, the three factors are related to each other: for instance inferring user’s
preference on the location helps the inference of user’s preference on the time. Predict-
ing one helps in predicting the other one, and three factors altogether decides user’s
tendencies and behaviors. Therefore, we propose to take the perspective of multitask
learning settings to naturally leverage the useful information contained in user’s prefer-
ences on different factors which are related to each other. We set up three single tasks
for predicting user’s preference on the event, the location and the time respectively. We
propose to use shared parameters (i.e., shared embeddings) in all three different tasks to
learn latent representations which integrate different points of view. Shared embeddings
are also important for the efficiency and generalization of low-dimensional representa-
tion learning in our proposed model.

We derive three different model architectures each with different target variables to
implement the proposed model.

In the first model (Event2Vec-1, Fig. 1(a)), we learn the embeddings for each event,
location and time by learning to predict the next event user would attend, and the asso-
ciated location and time simultaneously.

In the second model (Event2Vec-2, Fig. 1(b)), we learn the embeddings for each
event and spatial-temporal pair (i.e., (l, t)) to further capture the interactive influences
between spatial and temporal factors.

In the third model (Event2Vec-3, Fig. 1(c)), we propose a compromise between
Event2Vec-1 and Event2Vec-2. We reserve distinct embeddings for each location and
time but predict the spatial-temporal pair as a combination.

In the remainder of this section, we will describe the three models in more detail.
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3.1 Our Models
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Fig. 2. The joint model with three target variables in which three similar networks are trained per
each target variable. At serving, a nearest neighbor lookup is performed to generate a set of event
recommendations.

Event2Vec-1 . Event2Vec-1 learns low dimensional embeddings for each event, lo-
cation and time in a fixed vocabulary and feeds these embeddings into a feedforward
neural network. The purpose of the neural network is to predict user’s next behavior
including the event to attend, the location and the time to go, using his/her historical
behaviors. A user’s history is represented by a variable-length sequence of sparse event,
location and time IDs which are mapped to dense vector representations via the embed-
dings. However the network requires fixed-sized dense inputs. We find averaging the
embeddings performed best among several strategies (sum, component-wise max, etc.).

More formally, we describe the proposed model starting with a single network of
predicting the next event. Given a user profile Du = {(ej , lj , tj), j = 1 . . . nu}, to pre-
dict users’ preferences on the event, the input is a sequence of {(e1, l1, t1) . . . (ei, li, ti)}
and the target is ei+1, where i ranges from 1 to n − 1. we feed the sequence into the
neural network, which are represented by three one-hot vectors for the event, location
and time respectively. The entry is set to one if it exists in the sequence, zero other-
wise. In the embedding layer, we look up the embeddings from three embedding ma-
trices, i.e., Ce ∈ R|E|×de , Cl ∈ R|L|×dl and Ct ∈ R|T |×dt , where de, dl and dt are
the dimensions of the event, location and the time representations. By averaging, three
fixed-sized vectors −−→eavg ,

−−→
lavg and

−−→
tavg are obtained. Then they are concatenated into a

flat vector −→vin which is fed as the input of the following fully-connected layers, with
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|−→vin| = de + dl + dt. We use one fully-connected layer parameterized by W1 in our
model.

The output of the fully-connected layer, denoted as −→oe ∈ Rde , encodes the user’s
historical behaviors and thus can be used to predict the upcoming events user will at-
tend. Let ei denotes the target event, given the encoded historical behaviors −→oe , our
model formulates the conditional probability Pr(ei | −→oe) using a softmax function in
Eq. 1.

Pr(ei | −→oe) =
exp(−→ei T · −→oe)∑

e′∈E exp(
−→
e′ T · −→oe)

(1)

where −→ei and
−→
e′ are row vectors of Ce. In order to make the model efficient for learn-

ing, the techniques of hierarchical softmax and negative sampling are used as proposed
in Skip-Gram [6]. Similar to the single network of predicting the event, the other two
neural networks with target variables of the location and time are built and output the
probabilities of Pr(li | −→ol ) and Pr(ti | −→ot ). Therefore, the objective of Event2Vec-1 is
to minimize three cross entropy losses simultaneously. Fig. 1(a) illustrates the architec-
ture of Event2Vec-1 model.

At serving time we need to recommend top k events to the user. Our recommen-
dation algorithm is based on the user-event cosine similarity in the embedding space.
Since both spatial and temporal factors play important roles in event recommendation,
so we utilize all output vectors of the neural networks to make recommendations.

In specific, we feed all user’s historical behaviors into the neural networks and ob-
tain the predicted vectors −→oe , −→ol and −→ot by forward propagation. We build user’s pref-
erence −→vu by concatenating them all together, i.e., −→vu = −→oe‖−→ol ‖−→ot , where ‖ is the
concatenation operation. For each candidate event ei associated with location li and
time ti, we get its final representation as −→vei = −→ei ‖

−→
li ‖
−→
ti , where the embeddings are

looked up in the embedding matrices—Ce, Cl and Ct.
Given a user u, for each event ei which has not been attended by u, we compute its

ranking score using Eq. 2, and select top k events with highest scores to recommend to
the user.

S(u, ei) =
−→vuT · −→vei (2)

Fig. 2 demonstrates our proposed joint model with three target variables in which
three similar networks are trained per each target variable. The trainable parameters in-
clude three embedding matrices, Ce, Cl and Ct, and the weight matrices of the fully
connected layer, W1, W2 and W3. Please note that parameters of the embedding ma-
trices are shared and trainable in all three neural networks, while parameters of weight
matrices are only updated through the associated neural network.

Event2Vec-2 . The combination of the location and the time contain richer semantic
information, however Event2Vec-1 doesn’t consider such interactive influence between
the spatial and temporal factors. A location usually holds different semantics at different
time, and these semantics should have discriminative vectors. Therefore, Event2Vec-2
learns embeddings for each spatial-temporal pair. The spatial-temporal embedding ma-
trice is denoted as Ct

l ∈ R|L×T |×dt
l , where dtl means the dimension of spatial-temporal

representation and L× T means the Cartesian product of L and T .
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The architecture of Event2Vec-2 is illustrated in Fig. 1(b). There are two neural
networks predicting the next event and the next spatial-temporal pair respectively. When
making recommendations, the user preference is represented as −→vu = −→oe‖

−→
otl ; and the

candidate event ej is represented as −→vei = −→ei ‖
−→
lti , where −→ei and

−→
lti are row vectors of

Ce and Ct
l .

Event2Vec-3 . Since Event2Vec-2 divides the occurrences of each location into multi-
ple time slots, the learning of embeddings suffer from the sparsity issue. In an attempt
to alleviate the problem, we propose a new model—Event2Vec-3 to provide a trade-off
between the discrimination and sparsity.

Event2Vec-3 reserves distinct embeddings for each event, location and time. How-
ever slightly different from Event2Vec-1, the location and the time are predicted as a
combination. Each spatial-temporal pair (l, t) is represented by concatenating their dis-
tinct vectors

−→
l and

−→
t into a flat vector (

−→
l ‖−→t ) ∈ Rdl+dt . The corresponding output

−→
otl has the same length of dl + dt. The outputs of two neural networks are Pr(ei | −→oe)
and Pr((li, ti) |

−→
otl ) as shown in Fig. 1(c), where Pr((li, ti) |

−→
otl ) is calculated as in

Eq. 3

Pr((li, ti) |
−→
otl ) =

exp((
−→
li ||
−→
ti )

T ·
−→
otl )∑

(l′,t′)∈L×T exp((
−→
l′ ||
−→
t′ )T ·

−→
otl )

(3)

It’s worthy of noting that the embeddings of each location and time are shared among
all spatial-temporal pairs (l, t).

4 Experiments

In this section, we evaluate the proposed model for the task of event recommenda-
tions. We first examine the performance of Event2Vec models compared with related
models in Section 4.2. Then we examine the importance of spatial-temporal factors
in Section 4.3; and finally different temporal patterns are compared and discussed in
Section 4.4.

4.1 Experimental Setup

Datasets. We use three datasets in real-world domains, two from Douban and one from
Meetup, for our experiments.

– Meetup. We collected the first dataset Meetup by crawling real events hosted in
New York from meetup.com in 2016. For each event, we retrieved its geographic
location, start time, and a list of users who attended. To reduce noise, we selected
events that are attended by at least 20 users, and users who have attended at least
20 events. In the end, the Meetup dataset contains 4722 users and 5064 events.
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– Douban [19]. We collected two datasets Douban-bej and Douban-sha by crawling
events hosted in 2012 from douban.com located at Beijing and Shanghai respec-
tively. For each event, we also retrieved its geographic location, start time, and a
list of registered users who attended. Then we removed users who attended fewer
than 20 events, and events attended by fewer than 20 users. We have 222795 at-
tendances by 6513 users, 5326 events in the Douban-bej dataset; 6964 users, 4189
events and 241093 attendances in the Douban-sha dataset.

Data Preprocessing. To normalize the locations of events, we split the city into even
grid cells according to coordinates, and each resultant location (gird) spans 0.13km. The
numbers of locations in the Meetup, Douban-bej and Douban-sha dataset are 1569, 813
and 626 respectively.

To capture the temporal characteristics in user’s behaviors, we design a time dis-
cretizing scheme to smoothly map a continuous timestamp to a time slot. The prefer-
ence variance exists in three time scales generallly: hours of a day, different days in
a week (or a month), and different months in a year, which is observed in (Gao et al.
2013) but not modeled. By experiments, we propose to divide the continuous time space
into time slots using a weekday-hour pattern, such as “4 (day of the week), 1:00-2:00
(hour of the day)”. Therefore, we can get at most 7*24 discretized time slots on all three
datasets. Other temporal patterns are compared and discussed in Section 4.4.

Comparison Methods. We compare our model with the following methods represent-
ing the state-of-the-art event-based recommendation techniques.

– SVDFeature. SVDFeature [3] is a machine learning toolkit designed to solve the
feature-based matrix factorization. To compare with our model fairly, we imple-
ment it by incorporating more side information including the location and the time.

– IRenMF. IRenMF [10] is based on Weighted Matrix Factorization (WMF). IRenMF
considers the influence of neighboring locations while modeling user’s preferences.

– Rank-GeoFM. Rank-GeoFM [7] is a ranking based factorization method, which
includes spatial influence in a latent model.

– Event2Vec. Our proposed methods for event recommendation, which incorporate
spatial-temporal information using the embedding learning methods.

In summary, SVDFeature models the spatial-temporal information as simple bias,
while both IRenMF and Rank-GeoFM model geographic influences as latent vectors
using Matrix Factorization techniques.

For each individual user in the dataset, we sort his behaviors in time order and then
mark off the last 10% events he attended for testing, while use the previous 90% histor-
ical events for training. In the experiments, we use a validation set to find the optimal
hyper-parameters, and finally set de, dl and dt to 200, (we use the same dimension for
simplicity, but they are not necessarily equal in practice). For implementation, we deve-
lope the model based on Tensorflow [1]. We use stochastic gradient descent (SGD) for
optimization, and gradients are calculated using the back-propagation algorithm. We
run each recommendation method for 5 times and report the average performances in
Table 1.



8 Yan Wang and Jie Tang

Evaluation Metrics. We compare the performances through precision, recall, and f1-
score as they are generally used in recommendation systems. We denote these metrics
at top-k recommendation as p@k, r@k, f1@k respectively. Formally, if we define ER

u
as recommended events sorted by score in descending order and ET

u as the true events
attended by user u,

p@k =
1

|U |
∑
u∈U

|ET
u ∩ ER

u [: k]|
k

r@k =
1

|U |
∑
u∈U

|ET
u ∩ ER

u [: k]|
|ET

u |

f1@k =
2 · p@k · r@k

p@k + r@k

(4)

4.2 Results

Table 1 shows the experimental results. We find Event2Vec models outperform other
baselines significantly on all metrics, among which Event2Vec-2 achieves the best per-
formance. The standard deviation of the performance from each method is less than
4× 10−4, confirming the reliability of our comparison results.

Baselines vs. Our Models. Several observations are made by comparing baselines and
our models from the results. (1) Rank-GeoFM and IRenMF achieve a higher recom-
mendation accuracy than SVDFeature on all metrics of performance, showing the ben-
efits brought by factorizing the spatial-temporal influences into latent vectors instead
of scalar bias used by SVDFeature. (2) Event2Vec models outperform other competi-
tor methods by 4%-9% in terms of p@10 on three datasets. It shows the advantages of
the proposed multitask learning framework and shared embeddings in modeling differ-
ent related factors. Moreover, the proposed Event2Vec models explicitly predict user’s
preferences on three factors using the historical data. Therefore, we can see a significant
improvement over other baseline methods in Table 1.

Event2Vecs. The performance of three Event2Vec models are very different and re-
flect their characteristics. (1) Event2Vec-2 achieves the best performance. Event2Vec-2
outperforms Event2Vec-1 by 0.9%-2.7% in terms of f1-score. The most possible reason
is, Event2Vec-2 discriminates different location-time combinations and learn distinct
representations for each of them to capture more accurate semantics. For example, the
representation of “cafe-morning” learned by Event2Vec-2 could encode concrete and
discriminative semantics probably like “breakfast”, while in Event2Vec-1 it’s repre-
sented by concatenating the vectors of “cafe” and “morning” which may introduce the
noises. From the results, we can conclude that in Event2Vec-2, the effectiveness of
modeling interactive influence between the spatial and temporal factors is more signifi-
cant than the issue caused by sparsity, thus Event2Vec-2 achieves the best performance.
(2) The performance of Event2Vec-3 drops behind the other two Event2Vec methods,
this is probably because during the back propagation, the updates on embeddings of the
location and the time will influence each other, for that the boundary of the embeddings
are blurred because of concatenating operation. Therefore it makes the representation
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Table 1. Performance Comparison

Dataset Meetup

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0085 0.0131 0.013 0.0023 0.0188 0.0371 0.0192

IRenMF 0.0209 0.0234 0.0243 0.006 0.0335 0.0698 0.0360

Rank-GeoFM 0.0209 0.0278 0.0273 0.0058 0.0387 0.0763 0.0403

Event2Vec-1 0.1778 0.1237 0.0922 0.0463 0.1581 0.2312 0.1318

Event2Vec-2 0.2006 0.1350 0.1014 0.0514 0.1715 0.2522 0.1447
Event2Vec-3 0.1561 0.1099 0.0829 0.0403 0.1401 0.2097 0.1188

Dataset Douban-bej

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0382 0.0296 0.026 0.0073 0.0267 0.0468 0.0334

IRenMF 0.0323 0.0311 0.0297 0.0069 0.0287 0.0502 0.0373

Rank-GeoMF 0.0344 0.0353 0.0326 0.007 0.0318 0.0543 0.0407

Event2Vec-1 0.244 0.1658 0.1275 0.0409 0.1284 0.1866 0.1515

Event2Vec-2 0.2572 0.1748 0.1312 0.0451 0.1431 0.2055 0.1602
Event2Vec-3 0.1154 0.0772 0.0571 0.0226 0.0726 0.1031 0.0735

Dataset Douban-sha

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0456 0.0328 0.0269 0.0183 0.0631 0.1009 0.0425

IRenMF 0.0656 0.0533 0.0436 0.0284 0.1031 0.1568 0.0683

Rank-GeoFM 0.0692 0.0567 0.0452 0.0297 0.1063 0.1596 0.0704

Event2Vec-1 0.1721 0.0988 0.0718 0.054 0.1342 0.1825 0.1031

Event2Vec-2 0.2245 0.1215 0.0884 0.0763 0.1825 0.2516 0.1308
Event2Vec-3 0.1124 0.0653 0.0459 0.0419 0.1108 0.1479 0.07

learning of the location and the time less distinguishable and results in a worse perfor-
mance than other Event2Vec models.

4.3 Impact of Different Factors

To explore the benefits of incorporating spatial and temporal influences into Event2Vec
models respectively, we compare our Event2Vec model with two variants—Event2Vec-
loc and Event2Vec-time. All three original Event2Vec models will reduce to the same
architecture when only including one factor of the location or the time.

Event2Vec-time is the first simplified version where we ignore the spatial informa-
tion in Event2Vec models.

Event2Vec-loc ignores the temporal information in Event2Vec models.
Event2Vec-2 is our best model by learning embeddings for spatial-temporal pairs.
We show the results on three datasets in Fig. 3. From Fig. 3, we first observe that

Event2Vec-2 consistently outperforms the other two variants on all metrics, indicating
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Fig. 3. The effect of different factors

Table 2. Comparison of Temporal Patterns

Dataset Meetup Douban-bej Douban-sha

Metric p@10 r@10 f1@10 p@10 r@10 f1@10 p@10 r@10 f1@10

Weekday-Hour 0.1045 0.2627 0.1495 0.1312 0.2055 0.1602 0.0884 0.2516 0.1308

Day-Hour 0.0929 0.2355 0.1332 0.1037 0.1649 0.1274 0.0856 0.2575 0.1285

Month-Weekday-Hour 0.0893 0.2258 0.128 0.1208 0.19 0.1477 0.0901 0.2641 0.1343

Month-Day-Hour 0.0881 0.2239 0.1264 0.1129 0.1812 0.1391 0.086 0.2593 0.1292

that Event2Vec-2 takes advantage of both spatial and temporal influences simultane-
ously. Moreover, it’s observed that the contributions of two factors to performance im-
provement are different. By comparing Event2Vec-time and Event2Vec-loc, we find that
spatial influence is more significant than temporal influence for event recommendation.

4.4 Exploring Various Temporal Patterns

Our model recommends events to a user by taking advantage of the temporal influence.
So far, we have evaluated its recommendation performance using a weekday-hour pat-
tern, while its recommendation ability is not limited to one specific temporal pattern.
By taking different definitions of temporal state, some other temporal patterns can be
used for event recommendation with our model. For example, apart from the weekly
pattern, we could also define the temporal state as daily pattern (day of the month);
monthly pattern (month of the year); and their combinations. The only change made
to our model is to divide time slots using different strategies. Table 2 shows the rec-
ommendation results of our model using different temporal patterns. The results show
that the weekday-hour pattern achieves the best overall performance. By comparing the
weekday-hour pattern and day-hour pattern, we observe that day of the week is more
informative than day of the month, which indicates human behaviors exhibit stronger
temporal cyclic patterns in a week than in a month (like working purpose on weekdays
and entertainment purpose at weekends). However, the month-weekday-hour pattern
and the month-day-hour pattern perform slightly worse than the weekday-hour pattern
and the day-hour pattern on Meetup and Douban-bej dataset. Possible reasons could be
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that user’s behaviors don’t have strong patterns at month level and that adding monthly
pattern additionally causes the sparsity issue to representation learning in time space.

5 Related Work

Event-based social networks (EBSN) have attracted much attention from research com-
munity. A great deal of research has been conducted on EBSNs. For example, Brown
et al. [2] suggested that geographical closeness could influence the formation of online
communities. Liu et al. [9] observed that 81.93% of event participations by a user are
within 10 miles of his/her home location. Pham et al. [13] presented a graph-based
model for event recommendation and Cheng et al. [4] developed a particular loca-
tion recommendation method based on user preferences. Zhang et al. [20] used the
location-based features for group recommendations in EBSN. Qiao et al. [15] proposes
an approach to combine the heterogeneous social relationships, geographical features of
events and implicit rating data from users to recommend events to users. However, most
of these methods simply consider the spatial information as a bias factor and ignore the
location-related semantic information.

From an algorithmic perspective, embedding techniques has been applied in a quan-
tity of works such as network embedding [12], user profiling [16], social media predic-
tion tasks [17], E-commerce product recommendation [14], and many other works. The
embedding methods based on representing entries in low dimensional vector space,
while preserving their properties, have been proved useful in multiple machine learn-
ing tasks such as classification, prediction and so on. However, no previous works have
employed the representation learning methods in EBSN scenario where spatial and tem-
poral factors have significant influences on user’s behaviors.

6 Conclusion

In this paper, we study the recommendation problem in event-based social networks
(EBSN). We proposed Event2Vec, a new embedding method that incorporates the spatial-
temporal information jointly. We embed the event, location and time into low dimen-
sional space based on event sequential data by taking advantages of the multitask learn-
ing and parameter sharing techniques. Different variants of Event2Vec are exploited to
leverage the interactive influence between the spatial and temporal information.

We conducted extensive experiments to evaluate the performance of Event2Vec
model on real-world datasets. The results showed superiority of our proposed model
over other competitor methods. Moreover, we analyzed the effectiveness of spatial-
temporal influences and compared different temporal patterns in user’s behaviors in
experiments.
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