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Abstract. In this paper, we propose POLAR, an attention-based CNN
combined with one-shot learning for personalized article recommenda-
tion. Given a query, POLAR uses an attention-based CNN to estimate
the relevance score between the query and related articles. The atten-
tion mechanism can help significantly improve the relevance estimation.
For example, on AMiner, this can help achieve a +5.0% improvement
in terms of NDCG@3. One more challenge in personalized article rec-
ommendation is how to collect statistically sufficient training data for a
recommendation model. POLAR combines a one-shot learning function
into the recommendation model, which further gains significant improve-
ments. For example, on AMiner, with only 1.6 feedbacks on average, PO-
LAR achieves 2.7% improvement by NDCG@3. We evaluate the proposed
POLAR on three different datasets: AMiner, Patent, and RARD. Ex-
perimental results demonstrate the effectiveness of the proposed model.
Recently, we have successfully deployed POLAR into AMiner as the rec-
ommendation engine for article recommendation, which further confirms
the effectiveness of the proposed model.

Keywords: Personalized recommendation · Term weighting · CNN ·
One-shot learning

1 Introduction

Nowadays the amount of academic articles has been quite large and increases
dramatically every year. According to the statistics from NCSES1, global pub-
lication output per year in science and engineering grew at an average annual
rate of 6% from 2004 to 2014. How to recommend to users the articles they are
most interested in has become a key problem for digital library service providers.
Many academic search sites provide article recommendation on the information
page of a specific article to help users find related articles. However, these rec-
ommendations are often based on keyword similarity between the current article
and candidates, which doesn’t contain any form of personalization.

Typically, an article covers several different topics. For example, this paper,
as the keywords show, covers Personalized Recommendation, Term Weighting,

1 https://www.nsf.gov/statistics/

https://www.nsf.gov/statistics/
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CNN and One-shot Learning. Users with different backgrounds and interests
may prefer articles related to different topics. Recommendation results which
ignore personalization don’t take user diversity into account, and cannot satisfy
most users.

Good personalization can be challenging. For academic search sites, many
users are cold-start users, whose profiles are incomplete or missing and cannot
provide much helpful information. Methods based on user feedback are typically
preferred. However, the user feedback can be quite sparse and implicit. For new
users only implicit feedback from the same session is available. Therefore, it is
difficult to apply the traditional recommendation methods such as Content-based
Recommendation [21] or Collaborative Filtering [2].

We define the personalized article recommendation problem as follows.

Definition 1. Let D = {d1, d2, · · · , dN} denote the set of candidate articles,
where N is the candidate size. The input of our problem is a query article dq,

and a support set S = {(d̂i, ŷi)}Ti=1 related to user u, where d̂i is a support

article and ŷi represents the user feedback for d̂i. The output is a totally ordered
set R(dq, S) ⊂ D with |R| = k, which is the top-k recommendation for u with
respect to dq.

Text similarity, which plays a key role in recommender systems and informa-
tion retrieval, poses another challenge. The bag-of-words model, on which most
traditional methods are based, discards the information about word order and
cooccurrence. Therefore these methods cannot capture the matching signals in
phrase or higher levels. Recently, due to the development of word embeddings
and neural networks, many neural similarity models that can directly deal with
word sequences are proposed [20] [29], but they often treat all the words in an
article indiscriminately. Therefore, they cannot distinguish important parts of
an article from stereotyped expressions such as the paper describes and we find
that.

Our contributions To address these challenges, in this paper, we propose
POLAR (PersOnaLized Article Recommendation framework), to combine the
attention-based CNN with one-shot learning. Our main contributions can be
summarized as follows:

1. We define the personalized article recommendation problem and show that
it can be tackled in the framework of one-shot learning [14]. By transferring
the method for classification to the ranking problem, we can overcome the
sparsity of user feedback and improve the performance.

2. Based on the matching matrix in [20], we propose the attention matrix for
text similarity, in which the importance of a term is calculated as the com-
bination of the local and global weights.

3. Inspired by the success of convolutional neural network(CNN) [13] in image
recognition, we build a CNN on the matching matrix and the attention
matrix to capture the text similarity from word level to article level.
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4. We conduct experiments on datasets of different sources and scales. Empir-
ical results show that our framework can perform stably and significantly
better than other comparative methods.

Organization The rest of the paper is organized as follows: Section 2 reviews
related work. Section 3 is devoted to our POLAR framework. Section 4 presents
experimental results and Section 5 concludes the paper.

2 Related Work

Personalized Recommendation Personalized recommender systems aim to
recommend the most relevant items to a particular user in a given context.
Content-based methods [21] compare item descriptions to the user profile to de-
termine what to be recommend. Collaborative filtering methods [2] make rating
prediction utilizing the past ratings of current user or similar users [16, 22], or
the combination of these two [5]. To combine the advantages of the former two
groups of methods, hybrid methods [15] are further proposed to improve the user
profile modeling.
One-shot Learning One-shot learning is important for classification in cases
where few examples are available. The method in [14]models the knowledge
learned in other classes as a prior probability function w.r.t. the model parame-
ters. Given an exemplar of a novel class, they update the knowledge and generate
a posterior density to recognize novel instances. In [10], a Siamese network is
learned with several convolutional layers used before the fully-connected layers
and the top-level energy function. Matching Nets [28] take as input not only
the new sample, but a small support set which contains labeled examples. Em-
bedding functions are implemented by an LSTM with read-attention over the
support set. While all these models perform on image tasks, we take a step
further and propose a one-shot learning framework to recommend articles.
Text Similarity Traditional methods for measuring the similarity between two
articles, such as BM25 [23] and TF-IDF [25], are based on the bag-of-words
model. These methods often take as the similarity score the sum of weights
of matched words in two articles. They don’t perform well on identifying the
matching of phrases and sentences.

Models based on neural networks can be categorized into two groups. The first
group, called representation based models, get the distributed semantic represen-
tation of an article with neural networks and then take as the similarity score
the similarity (often cosine similarity) between distributed representations of
two articles. This group include DSSM [8],LSTM-RNN [19] and MV-LSTM [29].
However, these models often lack the ability to identify the specific matching
signals. The second group of models, called interaction based models, use neural
networks to learn the patterns in the word-level interaction of two articles, usu-
ally based on word embeddings, such as MatchPyramid [20] and K-NRM [31].
The DRMM [7] uses a multilayer perceptron over a histogram of word similar-
ities to get the similarity score of two articles. These models lack the explicit
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Fig. 1: The architecture of the overall framework. The articles are transformed
into sequences of word embeddings through the embedding layer. The attention
matrix and matching matrix are computed and sent to the CNN. The matching
scores are combined with the support set to get the final scores.

expressions of word weights but rather depend on the characteristics of word
embeddings. Representation based models and interaction based models have
been combined in Duet [18] to improve the performance.

3 Approach

3.1 Framework with One-shot Learning

To get the ordered set R, for each article di in D our model computes a score
s(di|dq, S), and k articles in D with the largest scores are selected as the top-k
recommendation.

The recommendation problem for a specific user u can be considered as iden-
tifying whether u will accept an article or not and converted into binary classi-
fication. For each (d̂, ŷ) ∈ S, ŷ is binary(1 for relevant and 0 for irrelevant). S

can be seen as the training set for classification, where d̂ is a training instance
and ŷ is the corresponding label. It is probable to make an analogy between one-
shot learning and our problem because S is of very limited size or even empty.
Inspired by [28], our model computes s(di|dq, S) as follows:

s(di|dq, S) =

c(dq, di) S = ∅
c(dq, di) + 1

|S|
∑

(d̂,ŷ)∈S
c(d̂, di)ŷ S 6= ∅ (1)

where c(·, ·) is our attention-based CNN for text similarity, which will be dis-
cussed in the following part. The first part of s is the matching score with the
query article. The second part, the personalized score, is the normalized linear
combination of the feedback in S with text similarity as coefficients, and equals
zero when S is empty. The whole framework is illustrated in Figure 1.
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3.2 Matching Matrix and Attention Matrix

Each article di is a sequence of li terms [ti1, ti2, · · · , tili ] (We use term instead
of word to show that the article has gone through preprocessing including tok-
enization and removal of stopwords). The matching matrix of article dm and dn,
M (m,n) ∈ Rlm×ln , is defined as follows:

M
(m,n)
i,j =

wT
mi ·wnj

‖wmi‖ · ‖wnj‖
(2)

where wmi and wnj are the word embeddings of term tmi and tnj . Since the
cosine similarity of word embeddings can capture the semantic similarity [17],

M
(m,n)
i,j is the similarity between tmi and tnj .
Since all terms are treated equally in the matching matrix without any

weighting, the matching matrix cannot reflect the term importance. Therefore
the matching matrix cannot distinguish the matching signals of important terms
from those of structural, unimportant terms.

Table 1: Attention mechanisms in CNN
Method Description

Object Parts Selection

In fine-grained classification [30], image patches which
contain parts of certain objects are selected through a
supervised process to extract discriminative features.

Attention Matrix
In [32], an attention matrix is employed to give different
attention weights to units in a feature map.

Configurable Convolution

For visual question answering task [4], configurable con-
volutional kernels are generated by transforming the ques-
tion embeddings from the semantic space into the visual
space, which implements the question-guided attention.

To add the attention mechanism, we go over several applications of the at-
tention mechanism in CNN in Table 1. We think the attention matrix, which
can represent the importance of units in the feature map, quite suitable for our
problem. The attention matrix, A(m,n) ∈ Rlm×ln is defined as follows.

A
(m,n)
i,j = rmi · rnj (3)

where rmi and rnj are the weights of term tmi and tnj . M
(m,n) and A(m,n) are

combined as the input of CNN.

3.3 Local Weight and Global Weight

Traditional methods for texts similarity often combine two types of term weights:
the local weight, which depends on the specific document where the term occurs,
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and the global weight, which relies on the property of the whole corpus. Take
the TF-IDF [25] method as an example. The TF (term frequency, how many
times the term occurs in the given document) is the local weight and the Inverse
DF (document frequency, how many documents the term occurs in) is the global
weight.

We also combine the two weights in our model. The final weight of a term is
the product of its local and global weights:

rij = µij · υij (4)

where µij and υij are respectively the local and global weights of the term tij .

Local Weight: How relevant is the term to the subject of the docu-
ment? The local weight measures the relevance of a term to the subject of the
document. For example, in the following text [6]:

Example 1. We propose a low-complexity audio-visual person authentication
framework based on multiple features and multiple nearest-neighbor classifiers.
The proposed MCCN method delivers a significant separation between the scores
of client and impostors as observed on trials run on a unique database.

nearest-neighbor, classifier and features are obviously more important than com-
plexity and database, and should have higher local weights, because they are more
related to the topic of the text: audio-visual authentication.

Traditionally, the local weight is a math function of the frequency that the
term occurs in a document, such as term frequency (TF) in TF-IDF [25] or the
latter part in BM25 [23] ranking function:

BM25(d, q) =

n∑
i=1

IDF(qi) ·
TF(qi, d)(k1 + 1)

TF(qi, d) + k1(1− b+ b |d|avgdl )
(5)

where qi is the i-th term of the query, TF (qi, d) is the term frequency of qi in d
and avgdl is the average length of documents. k1 and b are free parameters.

The basic idea of these methods is that the more important for a document a
term is, the more frequently it occurs in the document. This is not always true.
In Example 1, the important terms such as authentication and classifier occur
only once, while the terms that occur more than once are stopwords like of and
on. Therefore, a better mechanism for local weights is needed.

Local Weight Network Inspired by [34], we propose a local weight network
based on distributed word representations. The basic idea is that, because of the
linearity of word embeddings, the subject of a document can be expressed as
the mean of vectors of its terms. The difference between the mean vector and
term vector can be seen as the semantic difference between the document and
the term.
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Fig. 2: A two-dimensional example of the feature vectors for local weights

To compute the local weight µij , the feature vector xij is the difference
between the word vector wij and the mean vector of di:

xij = wij −wi (6)

where

wi =
1

ni

ni∑
k=1

wik (7)

Figure 2 gives an illustration of the feature vector.
We employ a feed forward network to learn the patterns in the feature vector

xij and produce the local weight. The network is a multilayer perceptron(MLP)
with multiple hidden layers and gives outputs within an interval.

u
(0)
ij = xij (8)

u
(l)
ij = ReLU(BN(W (l−1) · u(l−1)

ij + b(l−1))), l = 1, 2, · · · , L (9)

µij = σ(W (L) · u(L)
ij + b(L)) + α (10)

where L is the number of hidden layers in the feed forward network, BN is Batch
Normalization [9] between the affine transformation and ReLU non-linearity and
σ is the Sigmoid function. α is a nonnegative hyperparameter to set a lower
bound and avoid giving a term a local weight close to 0. The ratio of maximum
value to minimum value of local weights is 1 + 1

α . It indicates that the smaller
α is, the wider the range of local weights is.

Global Weight: How distinctive is the term in the whole corpus? The
global weight measures how distinctive and specific a term is. It is independent
of the specific document, but depends on the whole corpus. For example, in a
set of papers on computer science, computer and software are less specific than
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medicine and neural and should be given lower global weights. But in a medical
document corpus, it may just be the reverse.

The most widespread form of global weights is the inverse document fre-
quency (IDF). The idea is that the specificity of a term can be quantified as an
inverse function of its document frequency. There are a whole family of inverse
functions, and the most common one is:

IDF(t) = log(
N

nt
) (11)

where t is the aim term, nt is the document frequency of t and N is the total
number of documents in the corpus.

Since the IDF measure has long been used and the use of other measures
such as PageRank didn’t lead to better results, here we also employ IDF as the
measure of global weights. But to narrow the range of global weights and control
the effect, instead of the raw IDF values, we use:

υij = [IDF(tij)]
β (12)

where β is a hyperparameter within the interval (0,1). The smaller β is, the
narrower the range of global weights is.

3.4 Convolutional Neural Network

The matching matrix and attention matrix are combined by element-wise mul-
tiplication and sent to a CNN, which consists of several convolutional layers and
max-pooling layers:

Z(0,0) = M ⊗A (13)

Z(l+1,k′)
x,y = ReLU(BN(

cl−1∑
k=0

rk−1∑
i=0

rk−1∑
j=0

w
(l+1,k)
i,j · z(l,k)x+i,y+j + b(l+1,k)))

k′ = 0, 1, · · · , cl, l = 0, 2, 4, · · · ,
(14)

Z(l+1,k)
x,y = max

0≤i<dk
max

0≤j<dk
z
(l,k)
x·dk+i,y·dk+j , l = 1, 3, 5, · · · , (15)

Similar to CNNs in image recognition [33], the filters in low-level convolu-
tional layers can capture different matching signals between phrases, while the
filters in high-level convolutional layers can capture the matching signals be-
tween sentences and paragraphs. The max-pooling layers can downsample the
signals and reduce the spatial size of feature maps.

The output of the last max-pooling layer is then turned into a vector and
passed through an MLP with several hidden layers, as described in Equation 9.
In this paper, we use only one hidden layer. For the final output, a single unit
is connected to all the units of the last hidden layer.
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3.5 Optimization and Training

The entire model, including the CNN and the local weight network, is trained
end-to-end on the target task.

The hinge loss is used as the objective function for training. Given the triples

{(d(i)q , d
(i)
+ , d

(i)
− )}

N

i=1
, where article d

(i)
+ is ranked higher than article d

(i)
− with

respect to query article d
(i)
q , the loss is:

Loss =

N∑
i=1

max(0, 1− c(d(i)q , d
(i)
+ ) + c(d(i)q , d

(i)
− )) (16)

where c(dq, d) denotes the predicted matching score between dq and d.
Since the size of some datasets we use is relatively small, for experiments on

these datasets we train the model on a classifying task called citation prediction.
Given the abstracts of two papers, the model needs to classify them as having
citation relationship or not. Obviously, to complete the task, the model also
needs to compute the relevance of two articles. In this case the loss function is

the cross entropy. Given the triples {(d(i)1 , d
(i)
2 , y(i)}

N

i=1, the loss is:

Loss = −
N∑
i=1

y(i) log(p(i)) + (1− y(i)) log(1− p(i))

p(i) =
1

1 + e−c(d
(i)
1 ,d

(i)
2 )

(17)

where p(i) is the predicted probability that the i-th instance is positive and y(i)

is the label of the i-th instance.
The optimization is done through standard backpropagation [24] and stochas-

tic gradient descent method with mini-batches. For regularization, we use dropout
[26] in the output of every hidden layer and early stopping strategy [3] to avoid
over-fitting.

4 Experiments

In this section, to evaluate the proposed model, we conduct experiments on the
article recommendation problem based on three datasets, in comparison with
traditional methods and neural models.

4.1 Experiment Setup

Comparison Methods The following are several traditional methods.

– TF-IDF [25]: The similarity score between a query and a document is
computed by summing the weights of the query’s terms which also occur
in the document. The weight of a term is the product of its TF and IDF
weights.
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– Doc2Vec [12]: We get the distributed representation of each article via
Paragraph Vector model. The similarity score between two articles is pro-
duced by the cosine similarity of their representations.

– WMD [11]:The Word Mover’s Distance (WMD) is the minimum distance
required to transport words from one document to another based on the
word embeddings.

The following are several neural matching models.

– MV-LSTM [29]:The interactions between different positional sentence rep-
resentations generated by a Bi-LSTM form a similarity matrix to generate
the matching score.

– MatchPyramid [20]: A CNN is built on the standard matching matrix to
get the matching score.

– DRMM [7]:The matching between the terms in the query and the document
is expressed as a histogram, where only the counts of the matching score in
different intervals are reserved. The histogram is sent to an MLP to get the
matching score.

– Duet [18]:An interaction-based model and a representation-based model
are combined to get the matching score of two articles.

Parameter Setting In the Local Weight Network there are two hidden layers,
with 64 and 32 hidden units respectively. The CNN has three convolutional layers
and three max-pooling layers. The first and second convolutional layers both
have 32 filters and the third convolutional layer has 16 filters. All convolutional
filters are set to 3× 3 and all max-pooling kernels are set to 2× 2. The number
of hidden units in the full-connected layer is set to 256. For the hyperparameters
α and β, we set α = 1 and β = 1

4 , which is discussed in Section 4.3.
The word embeddings in all the models above are 256 dimensions trained

on Wikipedia via the skip-gram model, using hierarchical softmax and negative
sampling [17].

Dataset We evaluate the performance of the proposed model with two small,
manually labeled datasets and a large-scale dataset based on user click.

The first dataset is based on papers from AMiner [27] and consists of 188
query papers with 10 candidate papers for each query. The second dataset is
based on documents of patents coming from the Patent Full-Text Databases of
the United States Patent and Trademark Office2 and consists of 67 queries with
20 candidates for each query. In each dataset, we gather relevance judgments
from college students or experts on patent analysis as the ground truth. The
relevance is simply expressed as binary: relevant or irrelevant. Abstracts of the
papers or the patent documents are used as texts and texts longer than 96 terms
are truncated.

2 http://patft.uspto.gov/

http://patft.uspto.gov/
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Table 2: Results of relevance ranking(%). NG stands for NDCG

AMiner Patent RARD
Method NG@3 NG@5 NG@10 NG@3 NG@5 NG@10 NG@1 NG@3 NG@5

TF-IDF 74.3 81.8 87.5 51.8 56.4 63.4 37.6 39.8 46.3
Doc2Vec 60.0 65.8 79.1 44.6 45.6 53.5 28.4 34.0 40.0
WMD 73.0 76.3 86.2 57.4 58.5 61.9 23.4 38.2 46.8

MV-LSTM 56.2 61.2 76.2 60.2 59.0 65.0 22.2 30.7 39.3
Duet 66.6 74.4 82.6 54.5 57.5 64.6 22.3 31.1 39.8

DRMM 75.0 79.9 87.1 55.0 56.2 64.7 33.1 36.3 40.6
MatchPyramid 73.5 80.0 86.8 56.4 61.4 64.4 29.1 36.2 42.8

POLAR 80.3 85.2 90.1 67.8 69.5 73.6 42.8 46.3 51.5

Since the sizes of two datasets are relatively small, we train the models on
the citation prediction task, which is described in Section 3.5, for all comparison
methods. The dataset for training is the Citation Network Dataset in AMiner
[27].

The third dataset is Related-Article Recommendation Dataset(RARD) [1]
from Sowiport, a digital library of social science articles that displays related
articles to its users. The dataset contains 63923 distinct queries with user click
log. Each query article has an average of 9.1 articles displayed. The displayed
documents are generated by a recommender-as-a-service provider Mr. DLib, so
they are of high relevance to the query. We choose 800 queries that have the
most clicks for test and other queries are used for training. Since the abstracts
of some articles are missing, the titles and the abstracts of articles are combined
as texts. Texts longer than 64 terms are truncated.

4.2 Performance Comparison

Table 2 shows the ranking accuracy of different methods in terms of NDCG. For
the fairness of comparison, all models don’t involve user feedback, which will be
discussed in Section 4.3.

From the evaluation results, we can observe that our proposed model POLAR
can perform better than all the baselines. POLAR can outperform the best
baselines 6.9%-13.2% on NDCG@3 and 3.3%-20.3% on NDCG@5. The average
improvements of NDCG on each dataset are respectively 3.8%, 8.1% and 6.4%.

Among the traditional ranking models, TF-IDF is the most competitive one,
in some cases even outperforming the best neural baselines by 5.5%. But we
can also find that TF-IDF performs not very well on the patent dataset. The
reason might be that documents of patents are often written by non-academic
researchers and terms on the same topic might vary from person to person. Only
taking the exact matching signals into account, TF-IDF might be unsuitable for
such situation, while the methods based on word embeddings can perform better.
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As for the neural ranking models, we can see that interaction based models,
including DRMM and MatchPyramid, perform slightly better than representa-
tion based models. Although the Duet combines the interaction-based model
and the representation-based model, it doesn’t perform better than individual
interaction-based models.

4.3 Analysis and Discussion

How one-shot learning can help We utilize the datasets in the previous part
to simulate the personalization problem. We select those queries that have more
than one positive-labeled candidate. For every query, we randomly divide the
labeled documents into two parts. The first part is used as the support set and
the second part is used as the candidate set to recommend. Then we compare
the proposed one shot framework (called POLAR-OS) with the best model that
ignores support sets in the previous part (called POLAR-ALL). The support set
is quite sparse compared with the size of candidates. For example, in the RARD
dataset, the average size of support set for each query is only 1.5. In the AMiner
dataset, the size of support set is only 1 for 45% queries and 2 for 47%. In the
patent dataset, the sizes of support sets of 75% queries are no greater than 3.

The result is shown in table 3. We can see that the performance can be
improved with a small amount of feedback data. On average, POLAR-OS can
outperform POLAR-ALL by 7.0% on NDCG@1 and 5.7% on NDCG@3.

Table 3: Performance for the model with one shot learning and without.

AMiner Patent RARD
Method NDCG@1 NDCG@3 NDCG@1 NDCG@3 NDCG@1 NDCG@3

POLAR-ALL 76.1 79.2 52.3 66.2 36.5 36.5
POLAR-OS 79.1 81.9 57.1 69.7 39.4 39.2

How the attention matrix can help To illustrate the improvements dif-
ferent parts of the attention matrix bring, we compare three versions of the
proposed model with different attention matrices. To compute the attention ma-
trix, POLAR-LOC uses only the local weights and POLAR-GLO uses only the
global weights. POLAR-ALL uses both local weights and global weights. The
performance in terms of NDCG@3 is shown in Figure 3.

In most cases, POLAR-LOC, the model with the local weight network, per-
formsa better than POLAR-GLO. The reason might be that the local weight
network is trainable, with greater ability to learn the importance of terms. IDF
is only a statistical way to get approximate values. The complete model, POLAR-
ALL, which combines the two weights, performs significantly better than either
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of texts. The brighter the pixel is, the larger value it has. The text pair is as
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T2:new delay dependent stability criteria (for) neural networks (with) time vary-
ing delay.

of them. This confirms that the local and global weights are complementary to
each other.

To have a better understanding of how local and global weights work, we
show the pixel images of four matrices in Figure 4. From the images we can find
that the local weights of most terms are low while the global weights of most
terms are high. The statistical analysis of the local and global weights in Table
4 also supports this idea. Therefore, we can conclude that the global weights
function by deemphasizing unimportant terms in the corpus with low weights,
while the local weights function by highlighting key terms in specific articles.

Sensitivity Analysis of Hyperparameters Since there are two hyperparam-
eters α and β to control the effect of the local and global weights in our proposed
model, we further study the effect of different choices of α and β. The result is
shown in figure 5 In general, the variance in β has greater effect than that in α.
In our model the global weights are predefined values which couldn’t be changed
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Table 4: The statistical analysis of the local and global weights

Weight Max Min Mean Std

Local 2.00 1.00 1.20 0.15

Global 1.96 1.08 1.86 0.08
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Fig. 5: Performance comparison for POLAR-LOC with different α and POLAR-
GLO with different β on the AMiner dataset

once β is chosen, while the local weights are calculated by the local weight net-
work, which can automatically adapt to different choices of α. Therefore it is
important to choose the value of β. When β is close to 1, the global weights are
equal to IDF values, which vary so greatly that the model will ignore the effect of
cosine similarity. When β is close to 0, the global weights are almost uniform and
have little effect.But the model with the value of α equal to 0 cannot perform
well either, because the local weight network can have too strong effect and be
troubled by over-fitting.

5 Conclusion

In this paper, we study the problem of personalized article recommendation. We
define the problem and propose a novel model POLAR to solve it. We utilize
the framework of one shot learning to deal with the sparse user feedback and
propose an attention based CNN model for text similarity. Experimental results
show that the proposed model significantly outperforms both the traditional and
the state-of-art neural baselines. The model has been used in AMiner to provide
recommendation of similar papers.

For further work, we would like to combine our model with reinforcement
learning (RL), to train a deeper and more powerful model in the online environ-
ment. We may also compare the performance of different attention mechanisms
in CNN.



Attention-based CNN for One-shot Personalized Article Recommendation 15

References

1. Beel, J., Carevic, Z., Schaible, J., Neusch, G.: Rard: The related-article recommen-
dation dataset [data] (2017). https://doi.org/10.7910/DVN/HA8EAH

2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: UAI. pp. 43–52 (1998)

3. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping. In: NIPS. pp. 381–387 (2000)

4. Chen, K., Wang, J., Chen, L., Gao, H., Xu, W., Nevatia, R.: ABC-CNN: an at-
tention based convolutional neural network for visual question answering. CoRR
abs/1511.05960 (2015)

5. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personaliza-
tion: Scalable online collaborative filtering. In: WWW. pp. 271–280 (2007).
https://doi.org/10.1145/1242572.1242610

6. Das, A.: Audio visual person authentication by multiple nearest neighbor classifiers.
In: ICB. pp. 1114–1123 (2007). https://doi.org/10.1007/978-3-540-74549-5 116

7. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc
retrieval. In: CIKM. pp. 55–64 (2016). https://doi.org/10.1145/2983323.2983769

8. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: CIKM. pp.
2333–2338 (2013). https://doi.org/10.1145/2505515.2505665

9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448–456 (2015)

10. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop. vol. 2 (2015)

11. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to
document distances. In: ICML. pp. 957–966 (2015)

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML. pp. 1188–1196 (2014)

13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998).
https://doi.org/10.1109/5.726791

14. Li, F., Fergus, R., Perona, P.: One-shot learning of object cate-
gories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006).
https://doi.org/10.1109/TPAMI.2006.79

15. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: A scalable two-
stage personalized news recommendation system. In: SIGIR. pp. 125–134 (2011).
https://doi.org/10.1145/2009916.2009937

16. Marlin, B., Zemel, R.S.: The multiple multiplicative factor model for collaborative
filtering. In: ICML. pp. 73– (2004). https://doi.org/10.1145/1015330.1015437

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS. pp. 3111–3119
(2013)

18. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and dis-
tributed representations of text for web search. In: WWW. pp. 1291–1299 (2017).
https://doi.org/10.1145/3038912.3052579

19. Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R.:
Deep sentence embedding using long short-term memory networks: Analysis and
application to information retrieval. IEEE/ACM Trans. Audio, Speech and Lang.
Proc. 24(4), 694–707 (2016). https://doi.org/10.1109/TASLP.2016.2520371

https://doi.org/10.7910/DVN/HA8EAH
https://doi.org/10.1145/1242572.1242610
https://doi.org/10.1007/978-3-540-74549-5_116
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1145/2009916.2009937
https://doi.org/10.1145/1015330.1015437
https://doi.org/10.1145/3038912.3052579
https://doi.org/10.1109/TASLP.2016.2520371


16 Z. Du et al.

20. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image
recognition. In: AAAI. pp. 2793–2799 (2016)

21. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: The Adap-
tive Web, Methods and Strategies of Web Personalization. pp. 325–341 (2007).
https://doi.org/10.1007/978-3-540-72079-9 10

22. Rendle, S.: Factorization machines. In: ICDM. pp. 995–1000 (2010).
https://doi.org/10.1109/ICDM.2010.127

23. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi
at TREC-3. In: TREC. pp. 109–126 (1994)

24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

25. Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun.
ACM 26(11), 1022–1036 (1983). https://doi.org/10.1145/182.358466

26. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1),
1929–1958 (2014)

27. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extrac-
tion and mining of academic social networks. In: SIGKDD. pp. 990–998 (2008).
https://doi.org/10.1145/1401890.1402008

28. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: NIPS. pp. 3630–3638 (2016)

29. Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for
semantic matching with multiple positional sentence representations. In: AAAI.
pp. 2835–2841 (2016)

30. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The ap-
plication of two-level attention models in deep convolutional neural net-
work for fine-grained image classification. In: CVPR. pp. 842–850 (2015).
https://doi.org/10.1109/CVPR.2015.7298685

31. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neu-
ral ad-hoc ranking with kernel pooling. In: SIGIR. pp. 55–64 (2017).
https://doi.org/10.1145/3077136.3080809

32. Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional
neural network for modeling sentence pairs. TACL 4, 259–272 (2016)

33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: ECCV. pp. 818–833 (2014). https://doi.org/10.1007/978-3-319-10590-1 53

34. Zheng, G., Callan, J.: Learning to reweight terms with distributed representations.
In: SIGIR. pp. 575–584 (2015). https://doi.org/10.1145/2766462.2767700

https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1145/182.358466
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1109/CVPR.2015.7298685
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1145/2766462.2767700

	POLAR: Attention-based CNN for One-shot Personalized Article Recommendation 

