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Motivation

The publication output is growing every year
(data source: DBLP)
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Related-Article Recommendation

Figure: An example from AMiner.org
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Challenge

How to provide personalized and non-personalized
recommendation?

How to overcome the sparsity of user feedback?

How to utilize representative texts of articles effectively?
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Problem Definition

Definition

One-shot Personalized Article Recommendation Problem

Input: query article dq
candidate set D = {d1, d2, · · · , dN}
support set S = {(d̂i , ŷi )}Ti=1 related to user u

Output: a totally ordered set R(dq,S) ⊂ D with |R| = k
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One-shot Learning

Image Classification1

ŷ =
k∑

i=1

a(x̂ , xi )yi

Article Recommendation

Query article dq

Support set{(di , yi )}Ti=1

ŝi = c(dq, d̂i ) + 1
T

∑T
j=1 c(d̂i , dj)yj

the matching to the query
article

the matching to the user
preference(maybe missing)

1Vinyals et al., Matching Networks for One Shot Learning.
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Architecture

Embedding
Layer

Candidate

kw⃗dld

kw⃗d2
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· · ·

Query
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ŷT

Matching
Score

Personalized
Score

One Shot
Matching

7 / 20



Introduction & Problem Definition Approach Experiments & Analysis

Architecture

Embedding
Layer

Candidate

kw⃗dld

kw⃗d2

kw⃗d1

· · ·

Query

kw⃗qlq

kw⃗q2

kw⃗q1

· · ·

Matching
Matrix

Attention
Matrix

Feature
Map

Conv
Input

Convolution and
Max-Pooling

Hidden State

Full-Connected
Layer

Support Set

d̂1

ŷ1
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Matching Matrix and Attention Matrix

Matching Matrix:(dm, dn)→ Rlm×ln

the similarity between the words of two articles.

M(m,n)
i ,j =

~wT
mi · ~wnj

‖~wmi‖ · ‖~wnj‖

Attention Matrix:(dm, dn)→ Rlm×ln

the importance of the matching signals

A(m,n)
i ,j = rmi · rnj
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Local Weight and Global Weight

The word weight rt is the product of its local weight and global
weight.

Global Weight: The importance of a word in the
corpus(shared among different articles)

υij = [IDF(tij)]β

The local weight is a little more complicated. . .
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Local Weight

Local Weight: The importance of a word in the article

A neural network is employed to compute the local weight.

The feature vector for
word tij

~xij = ~wij − ~w i
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The triangular points denote the
vectors of the words in two texts

The circular points denote the
mean vectors of the texts.

The lines with arrows
denote the feature vectors
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Local Weight Network

The feature vector ~xij represents the semantic difference
between the article and the term.

Let ~u
(L)
ij be the output of the last linear layer, the output of

the local weight network is

µij = σ(W (L) · ~u (L)
ij + b(L)) + α

α sets a lower bound for local weights.
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CNN & Training

The matching matrix and attention matrix are combined by
element-wise multiplication and sent to a CNN.

Matching
Matrix

Attention
Matrix

Feature
Map

Conv
Input

Convolution and
Max-Pooling

Hidden State

Full-Connected
Layer

Matching
Score

The entire model, including the local weight network, is
trained on the target task.
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Dataset

AMiner: papers from ArnetMiner1

Patent: patent documents from USPTO

RARD (Related Article Recommendation Dataset2):from
Sowiport, a digital library service provider.

1Tang et al. ArnetMiner: Extraction and Mining of Academic Social
Networks. In SIGKDD’2008.

2Beel et al. Rard: The related-article recommendation dataset (2017)
13 / 20
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Experimental Results

Table: Results of recommendation without personalization(%).

AMiner Patent RARD
Method NG@3 NG@5 NG@10 NG@3 NG@5 NG@10 NG@1 NG@3 NG@5

TF-IDF 74.3 81.8 87.5 51.8 56.4 63.4 37.6 39.8 46.3
Doc2Vec 60.0 65.8 79.1 44.6 45.6 53.5 28.4 34.0 40.0

WMD 73.0 76.3 86.2 57.4 58.5 61.9 23.4 38.2 46.8

MV-LSTM 56.2 61.2 76.2 60.2 59.0 65.0 22.2 30.7 39.3
Duet 66.6 74.4 82.6 54.5 57.5 64.6 22.3 31.1 39.8

DRMM 75.0 79.9 87.1 55.0 56.2 64.7 33.1 36.3 40.6
MatchPyramid 73.5 80.0 86.8 56.4 61.4 64.4 29.1 36.2 42.8

POLAR 80.3 85.2 90.1 67.8 69.5 73.6 42.8 46.3 51.5

1For the fairness of comparison, all models don’t involve personalization.
2NG stands for NDCG. 14 / 20
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How One-shot Personalization Can Help

Randomly divide the labeled articles into the support set and
the candidate set to recommend.

POLAR-OS is the proposed one-shot framework and
POLAR-ALL the best model that ignores support sets in the
previous part.

Table: Performance for the model with and without personalization.

AMiner Patent RARD
Method NDCG@1 NDCG@3 NDCG@1 NDCG@3 NDCG@1 NDCG@3

POLAR-OS 79.1 81.9 57.1 69.7 39.4 39.2
POLAR-ALL 76.1 79.2 52.3 66.2 36.5 36.5
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How Local and Global Weights Can Help

When computing the attention matrix, POLAR-LOC only uses
local weights while POLAR-GLO only global weights.
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Figure: The performance of different attention matrices
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Case Study: How Local and Global Weights work?
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Figure: The visualization result of four matrices used in the matching of a
pair of texts. The brighter the pixel is, the larger value it has.
T1:novel robust stability criteria (for) stochastic hopfield neural networks
(with) time delays.
T2:new delay dependent stability criteria (for) neural networks (with)
time varying delay
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Case Study: How Local and Global Weights work?

Table: The statistical analysis of the local and global weights

Weight Max Min Mean Std

Local 2.00 1.00 1.20 0.15

Global 1.96 1.08 1.86 0.08
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Sensitivity Analysis of Hyperparameters
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Figure: Performance comparison for POLAR-LOC with different αs and
POLAR-GLO with different βs on the AMiner dataset
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Conclusion

We define the problem of one-shot personalized article
recommendation.

We utilize the framework of one-shot learning to deal with the
sparse user feedback and propose an attention-based CNN for
text similarity.

We conduct experiments, whose results prove the effectiveness
of the proposed model.
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Any Questions?
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