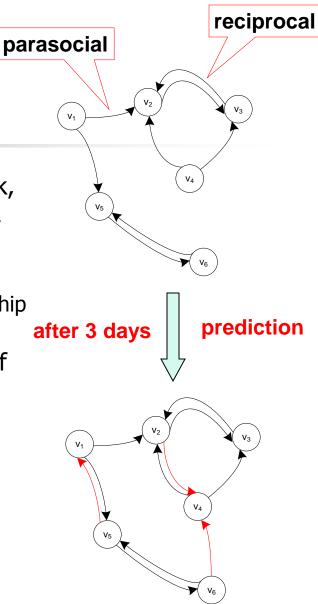
Who Will Follow You Back? Reciprocal Relationship Prediction*

¹John Hopcroft, ²Tiancheng Lou, ³Jie Tang ¹Department of Computer Science, Cornell University, ²Institute for Interdisciplinary Information Sciences, Tsinghua University ³Department of Computer Science, Tsinghua University

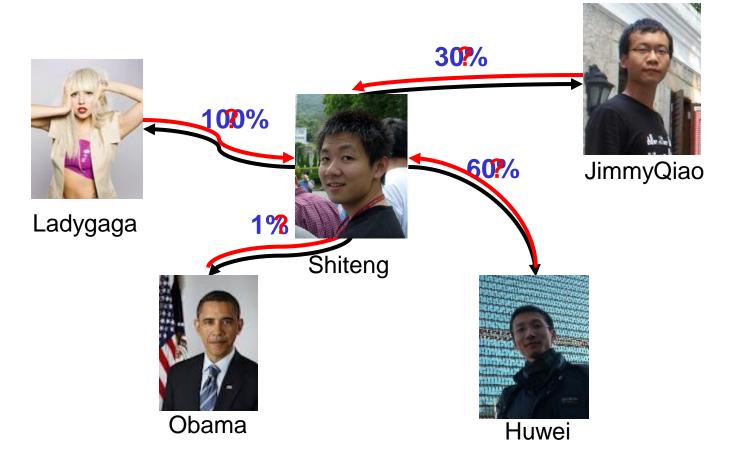
Motivation

- Two kinds of relationships in social network,
 - one-way(called parasocial) relationship and,
 - two-way(called reciprocal) relationship
- Two-way(reciprocal) relationship
 - usually developed from a one-way relationship
 - more trustful.
- Try to understand(predict) the formation of two-way relationships
 - micro-level dynamics of the social network.
 - underlying community structure?
 - how users influence each other?



Example : real friend relationship

On Twitter : Who Will Follow You Back?

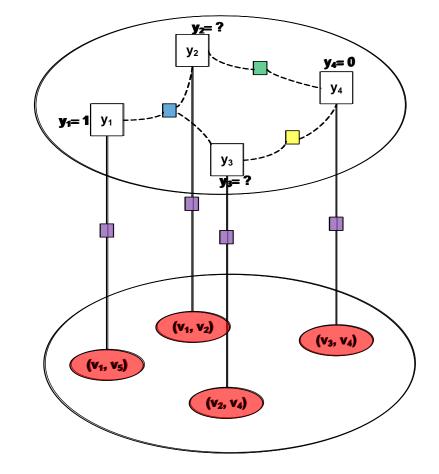


Several key challenges

- How to model the formation of two-way relationships?
 - SVM & CRF
- How to combine many social theories into the prediction model?

 V_4

► (V₆



Outline

- Previous works
- Our approach
- Experimental results
- Conclusion & future works

Link prediction

- Unsupervised link prediction
 - Scores & intution, such as preferential attachment [N01].
- Supervised link prediction
 - supervised random walks [BL11].
 - logistic regression model to predict positive and negative links [L10].
- Main differences:
 - We predict a directed link instead of only handles undirected social networks.
 - Our model is dynamic and learned from the evolution of the Twitter network.

Social behavior analysis

- Existing works on social behavior analysis:
 - The difference of the social influence on difference topics and to model the topic-level social influence in social networks. [T09]
 - How social actions evolve in a dynamic social network? [T10]
- Main differences:
 - The proposed methods in previous work can be used here
 - but the problem is fundamentally different.

Twitter study

- The twitter network.
 - The topological and geographical properties. [J07]
 - Twittersphere and some notable properties, such as a non-power-law follower distribution, and low reciprocity. [K10]
- The twitter users.
 - Influential users.
 - Tweeting behaviors of users.
- The tweets.
 - Utilize the real-time nature to detect a target event. [S10]
 - TwitterMonitor, to detect emerging topics. [M10]

Outline

- Previous works
- Our approach
- Experimental results
- Conclusion & future works

Factor graph model

- Problem definition
 - Given a network at time t, i.e., G^t = (V^t, E^t, X^t, Y^t)
 - Variables y are partially labeled.
 - Goal : infer unknown variables.
- Factor graph model
 - $P(Y | X, G) = P(X, G|Y) P(Y) / P(X, G) = C_0 P(X | Y) P(Y | G)$
 - In P(X | Y), assuming that the generative probability is conditionally independent,
 - $P(Y | X, G) = C_0 P(Y | G) \Pi P(x_i | y_i)$
 - Model them in a Markov random field, by the Hammersley-Clifford theorem,
 - $P(x_i|y_i) = 1/Z_1 * \exp \{ \Sigma \alpha_j f_j (x_{ij}, y_i) \}$
 - $P(Y|G) = 1/Z_2 * \exp \{\Sigma_c \Sigma_k \mu_k h_k(Y_c)\}$
 - Z₁ and Z₂ are normalization factors.

Maximize likelihood

- Objective function
 - $O(\theta) = \log P_{\theta}(Y \mid X, G) = \sum_{i} \sum_{j} \alpha_{j} f_{j} (x_{ij}, y_{i}) + \sum \mu_{k} h_{k}(Y_{c}) \log Z$
- Learning the model to
 - estimate a parameter configuration $\theta = \{ \alpha \ , \mu \}$ to maximize the objective function :
 - that is, the goal is to compute $\theta^* = \operatorname{argmax} O(\theta)$

Learning algorithm

- Goal : θ^* = argmax O(θ)
- The gradient of each μ_k with regard to the objective function.
 - $d\theta/d\mu_k = E[h_k(Y_c)] E_{P\mu^k(Y_c|X, G)}[h_k(Y_c)]$
- A similar gradient can be derived for parameter α_i
- One challenge : how to calculate the marginal distribution $P_{\mu k}(Y_c|X, G)$.
 - Approximate algorithms : Loopy Belief Propagation and Meanfield.
 - LBP : easy for implementation and effectiveness.

Learning algorithm(TriFG model)

Input : network G^t, learning rateη Output : estimated parametersθ

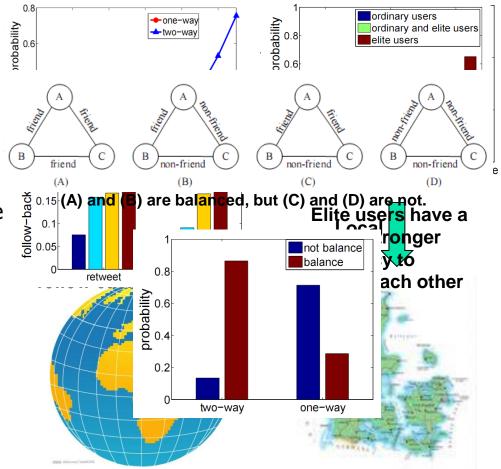
```
Initalize \theta = 0;
```

Repeat

Perform LBP to calculate marginal distribution of unknown variables P(y_i|x_i, G); Perform LBP to calculate marginal distribution of triad c, i.e. P(y_c|X_c, G); Calculate the gradient of μ_k according to : $d\theta/d\mu_k = E[h_k(Y_c)] - E_{P\mu^k(Y_c|X,G)}[h_k(Y_c)]$ Update parameter θ with the learning rate η : $\theta_{new} = \theta_{old} + \eta d \theta$ Until Convergence;

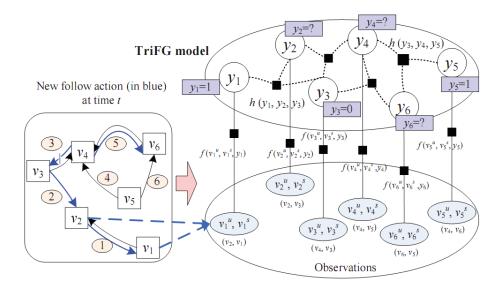
Prediction features

- Geographic distance
 - Global vs Local
- Homophily
 - Link homophily
 - Status homophily
- Implicit structure
 - Retweet or reply
 - Retweeting seems to be more helpful
- Structural balance
 - Two-way relationships are balanced (88%),
 - But, one-way relationships are not (only 29%).



Our approach : TriFG

- TriFG model
 - Features based on observations
 - Partially labeled
 - Conditional random field
 - Triad correlation factors



Outline

- Previous works
- Our approach
- Experimental results
- Conclusion & future works

Data collection

- Huge sub-network of twitter
 - 13,442,659 users and 56,893,234 following links.
 - Extracted 35,746,366 tweets.
- Dynamic networks
 - With an average of 728,509 new links per day.
 - Averagely 3,337 new follow-back links per day.
 - 13 time stamps by viewing every four days as a time stamp

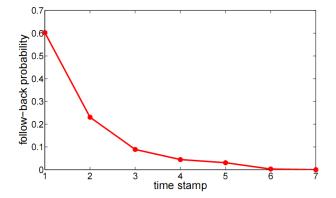
Prediction performance

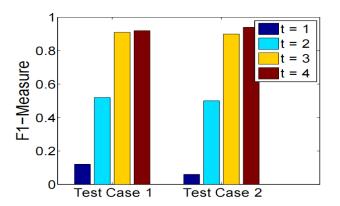
- Baseline algorithms
 - SVM & LRC & CRF
- Accurately infer 90% of reciprocal relationships in twitter.

Data	Algotithm	Precision	Recall	F1Measure	Accuracy
Test Case 1	SVM	0.6908	0.6129	0.6495	0.9590
	LRC	0.6957	0.2581	0.3765	0.9510
	CRF	1.0000	0.6290	0.7723	0.9770
	TriFG	1.0000	0.8548	0.9217	0.9910
Test Case 2	SVM	0.7323	0.6212	0.6722	0.9534
	LRC	0.8333	0.3030	0.4444	0.9417
	CRF	1.0000	0.6333	0.7755	0.9717
	TriFG	1.0000	0.8788	0.9355	0.9907

Effect of Time Span

- Distribution of follow back time
 - 60% for next-time stamp.
 - 37% for following 3 time stamps.
- Different settings of the time span.
 - Performance drops sharply when two or less.
 - Acceptable for three time stamps.





Outline

- Previous works
- Our approach
- Experimental results
- Conclusion & future works

Conclusion

- Reciprocal relationship prediction in social network
- Incorporates social theories into prediction model.
- Several interesting phenomena.
 - Elite users tend to follow each other.
 - Two-way relationships on Twitter are balanced, but one-way relationships are not.
 - Social networks are going global, but also stay local.

Future works

- Other social theories for reciprocal relationship prediction.
- User feedback.
- Incorporating user interactions.
- Building a theory for different kinds of networks.

- Thanks!
- Q & A

Reference

- [BL11] L.Backstrom and J.Leskovec. Supervised random walks : predicting and recommending links in social networks. In WSDM'11
- [C10] D.J.Crandall, L.Backstrom, D. Cosley, S.Suri, D.Huttenlocher, and J. Kleinberg. Inferring social ties from geographic coincidences. PNAS, Dec. 2010
- [W10] C.Wang, J. Han, Y.Jia, J.Tang, D.Zhang, Y. Yu and J.Guo. Mining advisor-advisee relationships from research publication networks. In KDD'10.
- [N01]M.E.J. Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E, 2001
- [L10] J.Leskovec, D.Huttenlocher, and J.Kleinberg. Predicting positive and negative links in online social networks. In WWW10.
- [T10] C.Tan, J. Tang, J. Sun, Q.Lin, and F.Wang. Social action tracking via noise tolerant time-varying factor graphs. In KDD10
- [T09] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. In KDD09.

Reference

- [J07]A. Java, X.Song, T.Finin, and B.L. Tseng. Why we twitter : An analysis of a microblogging community. In KDD2007.
- [K10]H. Kwak, C.Lee, H.Park, and S.B. Moon. What is twitter, a social network or a news media? In WWW2010.
- [M10]M.Mathioudakis and N.Koudas. Twittermonitor : trend detection over the twitter stream. In SIGMOD10.
- [S10]T. Sakaki, M. Okazaki, and Y.Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In WWW10.