Learning to Infer Social Ties in Large Networks

Wenbin Tang, Honglei Zhuang, Jie Tang
Dept. of Computer Science
Tsinghua University

Real social networks are complex...

- Nobody exists only in one social network.
 - Public network vs. private network
 - Business network vs. family network
- However, existing networks (e.g., Facebook and Twitter) are trying to lump everyone into one big network
 - FB tries to solve this problem via lists/groups
 - However...
- Google+

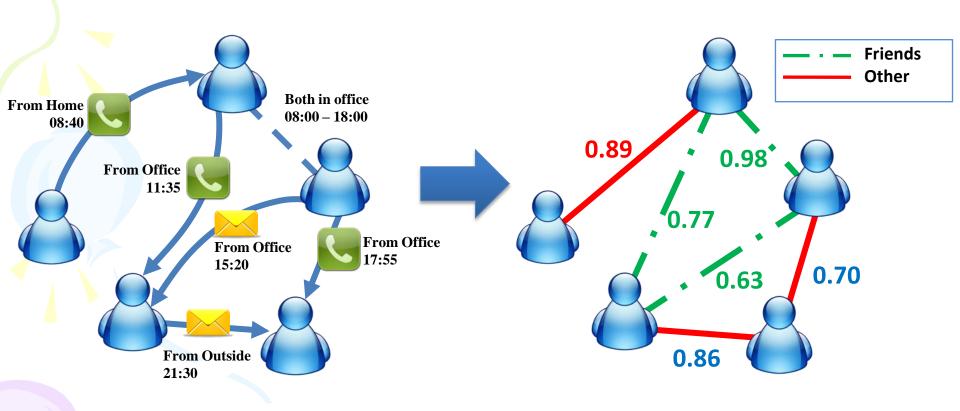
which circle? Users do not take time to create it.

Even complex than we imaged!

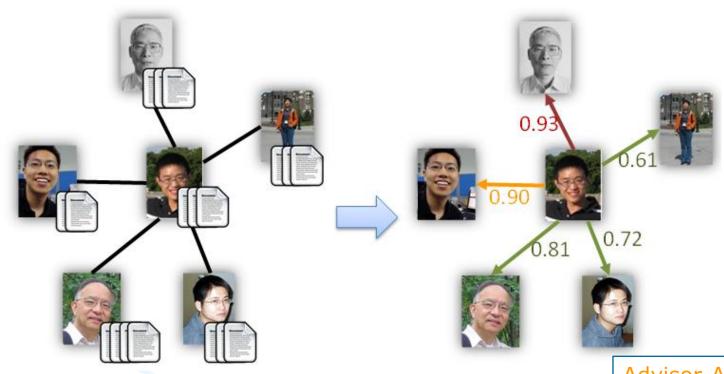
- Only 16% of mobile phone users in Europe have created custom contact groups
 - users do not take the time to create it
 - users do not know how to circle their friends

 The fact is that our social network is black-white...

Example: Mobile network



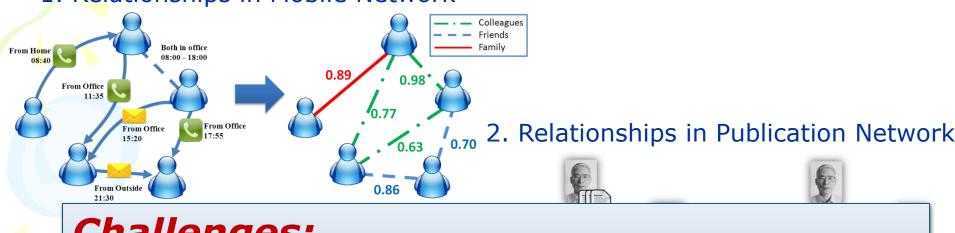
Example: Coauthor networks



Advisor-Advisee Advisee-Advisor Coauthor

Challenges

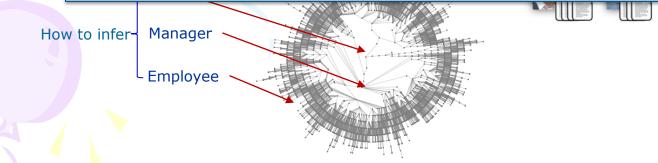
1. Relationships in Mobile Network



Challenges:

3.

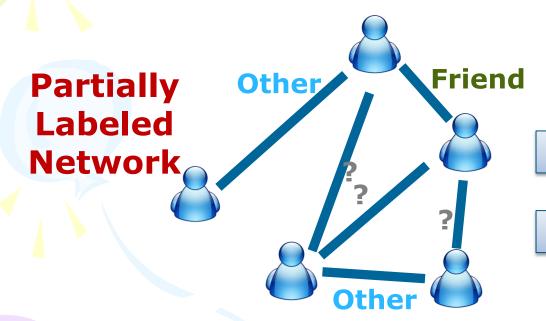
- A generalized framework for inferring social ties?
- A scalable, efficient method?



Advisor-Advisee Advisee-Advisor Coauthor

Problem Formulation

Input: $G = (V E^{L})(R^{L})(R^{L})(W)$



V: Set of Users

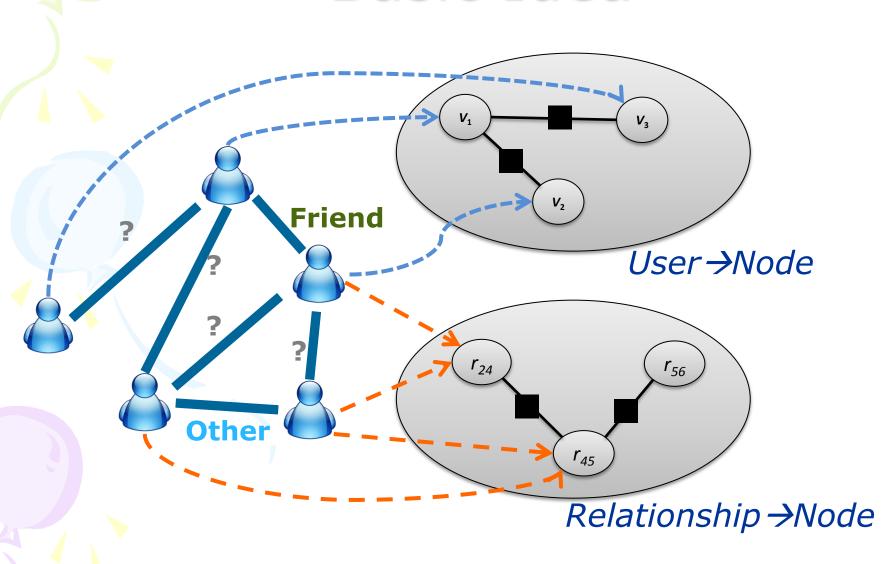
 E^L , R^L : Labeled relationships

E^U: Unlabeled relationships

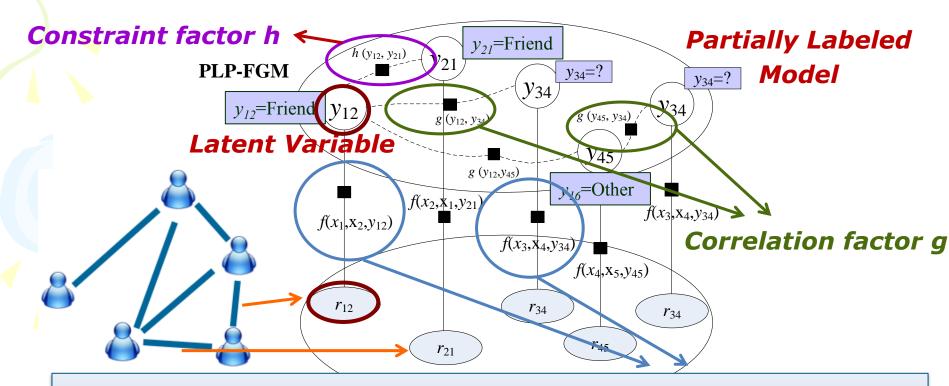
Input: $G=(V,E^L,E^U,R^L,W)$

Output: $f: G \rightarrow R$

Basic Idea



Partially Labeled Pairwise Factor Graph Model (PLP-FGM)



Problem:

Ma

For each relationship, identify which type has the highest probability?

Solutions_(con't)

- Different ways to instantiate factors
 - We use exponential-linear functions
 - Attribute Factor:

$$f(y_i, \mathbf{x}_i) = \frac{1}{Z_{\lambda}} \exp\{\lambda^T \Phi(y_i, \mathbf{x}_i)\}\$$

Correlation / Constraint Factor:

$$g(y_i, G(y_i)) = \frac{1}{Z_{\alpha}} \exp\{\sum_{y_j \in G(y_i)} \alpha^T \mathbf{g}(y_i, y_j)\}$$

$$h(y_i, H(y_i)) = \frac{1}{Z_{\beta}} \exp\{\sum_{y_i \in H(y_i)} \beta^T \mathbf{h}(y_i, y_j)\}\$$

$$- \quad \theta = [\lambda, \alpha, \beta], s = [\Phi^T, g^T, h^T]^T$$

Log-Likelihood of labeled Data:

$$\mathcal{O}(\theta) = \log \sum_{Y|Y^L} \exp\{\theta^T \mathbf{S}\} - \log \sum_{Y} \exp\{\theta^T \mathbf{S}\}$$

Learning Algorithm

Maximize the log-likelihood of labeled relationships

Input: learning rate η

Output: learned parameters θ

Initialize θ ;

repeat

Calculate $\mathbb{E}_{p_{\theta}(Y|Y^L,G)}$ S using LBP;

Calculate $\mathbb{E}_{p_{\theta}(Y|G)}\mathbf{S}$ using LBP;

Calculate the gradient of θ according to Eq. 7:

$$\nabla_{\theta} = \mathbb{E}_{p_{\theta}(Y|Y^{L},G)} \mathbf{S} - \mathbb{E}_{p_{\theta}(Y|G)} \mathbf{S}$$

Update parameter θ with the learning rate η : Expectation Computing

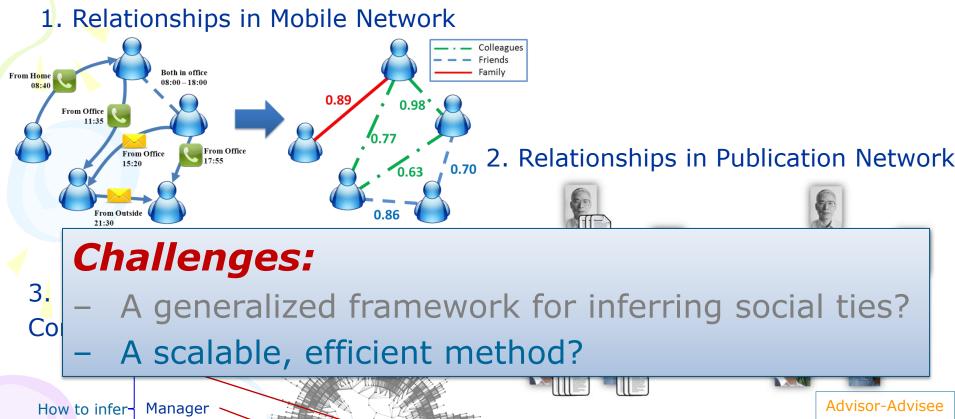
 $\theta_{\text{new}} = \theta_{\text{old}} - \eta \cdot \nabla_{\theta}$ Loopy Belief Propagation

until Convergence;

Algorithm 1: Learning PLP-FGM.

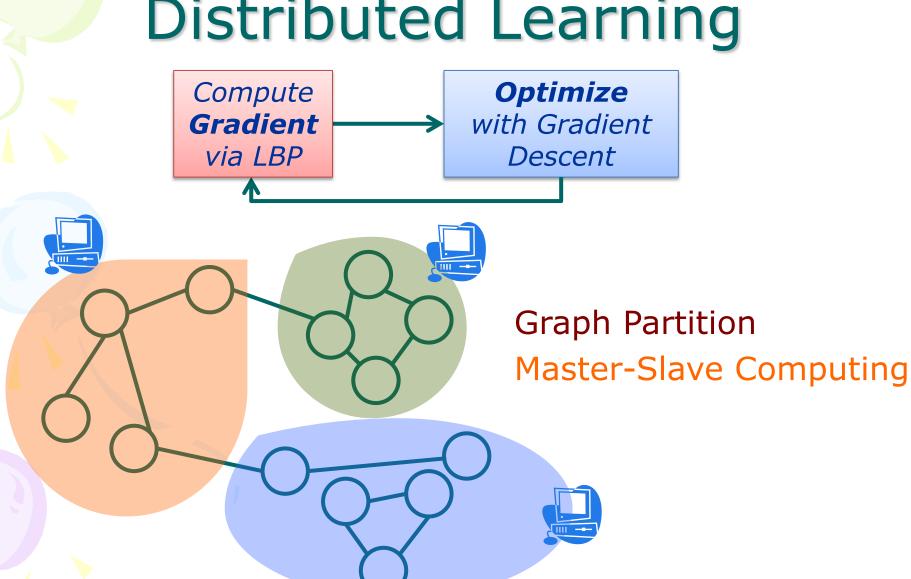
Gradient Decent Method

Challenges



How to infer
Employee

Advisor-Advisee Advisee-Advisor Coauthor



Data Sets

- Coauthor Network (Publication)
 - To infer Advisor-Advisee relationship
 - Papers from DBLP
- Email Network (Email)
 - To infer Manger-Subordinate relationship
 - Using Enron Email Dataset
- Mobile Network (Mobile)
 - To infer Friendship
 - 107 users (ten-month). Published by MIT

Data Set	Users	Unlabeled Relationships	Labeled Relationships
Publication	1,036,990	1,984,164	6,096
Email	151	3,424	148
Mobile	107	5,122	314

Baselines

Baselines:

- SVM:
 - Use the same feature defined in our model to train a classification model

- TPFG:

- An unsupervised method to identify advisor-advisee relationships
- PLP-FGM-S
 - Do not use partially-labeled property
 - Train parameters on the labeled sub-graph

Performance Analysis

Data Set	Method	Precision	Recall	F ₁ -score
	SVM	72.5	54.9	62.1
Publication	TPFG	82.8	89.4	86.0
Publication	PLP-FGM-S	77.1	78.4	77.7
	PLP-FGM	91.4	87.7	89.5
	SVM	79.1	88.6	83.6
Email	PLP-FGM-S	85.8	85.6	85.7
	PLP-FGM	88.6	87.2	87.9
	SVM	92.7	64.9	76.4
Mobile	PLP-FGM-S	88.1	71.3	78.8
	PLP-FGM	89.4	75.2	81.6

SVM: Use the same feature to train a classification model

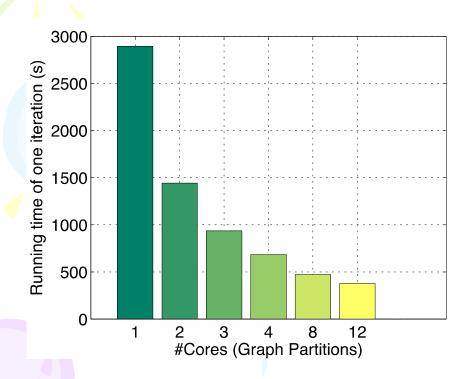
TPFG: An unsupervised method to identify advisor-advisee relationships

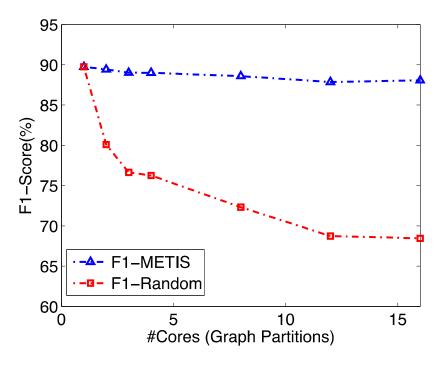
PLP-FGM-S: Train PLP-FGM model on the labeled sub-graph

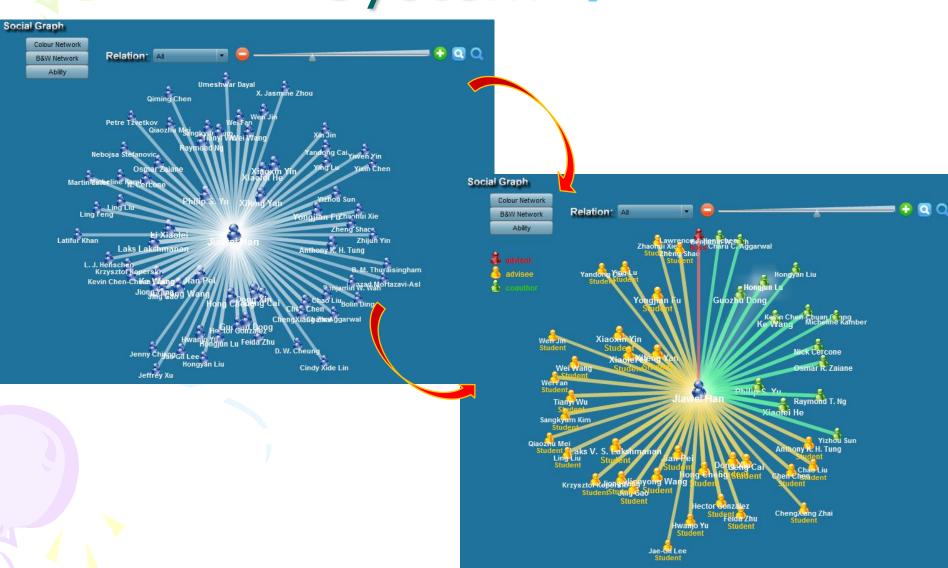
Factor Contribution Analysis

Data Set	Factor used	F ₁ -score	
	Attributes	64.9	
Publication	+Co-advisor	75.0(+10.1%)	
Publication	+Co-advisee	74.7(+9.8%)	
	All	89.5(+24.6%)	
	Attributes	80.3	
	+Co-recipient	80.6(+0.3%)	
Email	+Co-manager	83.2(+2.9%)	
	+Co-subordinate	85.0(+4.7%)	
	All	87.9(+7.6%)	
	Attributes	80.2	
Mobile	+Co-location	80.4(+0.2%)	
Mobile	+Related-call	80.2(+0.0%)	
	All	81.6(+1.4%)	

Distributed Learning Performance







Conclusion

- Formulate the problem of inferring the types of social ties
- Propose the PLP-FGM model to solve this problem, and present a distributed learning algorithm
- Validate the approach in different real data sets

Future work

- Make online social networks colorful
 - How to involve user into learning process?
 - Connect with social theories?

Thank you!

Any Questions?

Correlation Definition

- Mobile Dataset:
 - Co-location
 - 3 users in the same location.
 - Related-call
 - A Make a call to B&C at the same place/time
- For more information, please refer to the paper

Feature Definition

Publication Paper count $ P_i , P_j $ Publication Coauthor ratio $ P_i / P_j $ Conference coverage The proportion of the conferences which both v_i a tended among conferences v_j attended. First-paper-year-diff The difference in year of the earliest publication of the conference v_j attended.	v_j at-			
Publication Coauthor ratio $ P_i \cap P_j / P_i $, $ P_i \cap P_j / P_j $ Conference coverage The proportion of the conferences which both v_i a tended among conferences v_j attended.	nd v_j at-			
Conference coverage The proportion of the conferences which both v_i attended among conferences v_j attended.	$\operatorname{nd} v_j$ at-			
tended among conferences v_j attended.	nd v_j at-			
First-paper-year-diff The difference in year of the earliest publication of				
	The difference in year of the earliest publication of v_i and			
$ v_j $	$ v_j $.			
Sender Recipients Include				
v_i v_j				
Email Traffics v_j v_i				
v_i v_k and not v_j				
v_j v_k and not v_i				
v_k v_i and not v_j				
v_k v_j and not v_i				
v_k v_i and v_j				
#voice calls The total number of voice call logs between two us	ers.			
" "	Number of messages between two users.			
	The proportion of calls at night (8pm to 8am).			
Mobile	The total duration time of calls between two users.			
#proximity The total number of proximity logs between two	The total number of proximity logs between two			
users.				
working hours (8am to 8pm).				

Existing Methods...

- [Diehl:07] try to identify the relationships by learning a ranking function in Email network.
- Wang et al. [Wang:10] propose an unsupervised algorithm for mining the advisor-advisee relationships from the Publication network.
- Both algorithms focus on a specific domain
 - not easy to extend to other problems.