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We study how links are formed in social networks. In particular, we focus on investigating how a reciprocal
(two-way) link, the basic relationship in social networks, is developed from a parasocial (one-way)
relationship and how the relationships further develop into triadic closure, one of the fundamental processes
of link formation.

We first investigate how geographic distance and interactions between users influence the formation of
link structure among users. Then we study how social theories including homophily, social balance, and social
status are satisfied over networks with parasocial and reciprocal relationships. The study unveils several
interesting phenomena. For example, “friend’s friend is a friend” indeed exists in the reciprocal relationship
network, but does not hold in the parasocial relationship network.

We propose a learning framework to formulate the problems of predicting reciprocity and triadic closure
into a graphical model. We demonstrate that it is possible to accurately infer 90% of reciprocal relationships in
a Twitter network. The proposed model also achieves better performance (+20–30% in terms of F1-measure)
than several alternative methods for predicting the triadic closure formation.
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1. INTRODUCTION

Online social networks (e.g., Twitter, Facebook, Myspace) significantly enlarge our
social circles. The structure of the networks governs the dynamics of the networks
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(e.g., information propagation and users’ behavior changes). In a social network with
directed links such as Twitter, the relationship between users often starts by one user
(A) creating a “follow” (parasocial) relationship to another user (B). User B can choose
to “follow” A back, which results in a reciprocal relationship between them. On the
other hand, if A follows B, and continues to follow B’s followee C, then (A, B, C) forms
a directed closure triad. This phenomenon is also referred to as “link copying” [Romero
and Kleinberg 2010].

In social science, relationships between individuals are classified into two cate-
gories: one-way (called parasocial) relationships and two-way (called reciprocal) re-
lationships [Horton and Wohl 1956]. The most common form of the former are one-way
relationships between celebrities and fans, while the most common form of the latter
are two-way relationships between close friends. Twitter and Facebook are respectively
typical examples of the two types of social relationships. Relationship is the basic ob-
ject in social network analysis [Weber 1991]. It forms the basis of the social structure.
Understanding the formation of social relationships can give us insights into the mi-
crolevel dynamics of the social network, such as how an individual user influences
her/his friends through different types of social ties [Tang et al. 2009], how friend-
ships have been created across different networks [Tang et al. 2012b], and how a user’s
opinion spreads in the social network [Tan et al. 2011].

Two interesting questions arise: How is a reciprocal relationship developed from
a parasocial relationship and how do pairwise relationships further develop into a
triadic closure? Employing Twitter as the basis of our analysis, we try to answer these
questions. In particular, when you follow a user on Twitter, how likely is it that the user
will follow you back? Some users only follow back those who are real “friends” in their
physical world, while some other users (even some top users with tens of thousands of
followers) will follow everyone back.1 This problem also implicitly exists in other social
networks such as Facebook and LinkedIn: when you send a friend request to somebody,
how likely will she/he confirm your request? How likely will two connected pairwise
friendships finally form a closure triad?

Previous research on social relationships can be classified into three categories: link
prediction [Liben-Nowell and Kleinberg 2007; Romero and Kleinberg 2010; Leskovec
et al. 2010; Backstrom and Leskovec 2011], relationship type inferring [Eagle et al.
2009; Crandall et al. 2010; Wang et al. 2010; Tang et al. 2011], and social behavior
prediction [Backstrom et al. 2008; Tan et al. 2010; Yang et al. 2010]. Backstrom and
Leskovec [2011] propose an approach called supervised random walk to predict and
recommend links in social networks. Crandall et al. [2010] investigate the problem of
inferring social ties between people from co-occurrence in time and space. Wang et al.
[2010] propose an unsupervised algorithm to infer advisor-advisee relationships from
a publication network. However, little research systematically studies how two-way
relationships are developed from one-way relationships. Tang et al. [2012a] develop a
framework for inferring social ties by learning across heterogeneous networks. Romero
and Kleinberg [2010] study the triadic closure process on Twitter. However, they do not
give a principled model for predicting the formation of a closure triad. More importantly,
what are the fundamental factors that essentially influence the formation of reciprocal
relationships and directed triadic closure? And how can existing social theories (e.g.,
structural balance theory and homophily) be connected to the link formation process?

In this article, we try to conduct a systematic investigation on the problem of pre-
dicting reciprocity and triadic closure formation. We precisely define the problem and
propose a Triad Factor Graph (TriFG) model. The TriFG model incorporates social the-
ories into a semisupervised learning model, where we have some labeled training data

1http://socialnewswatch.com/top-twitter-users/.
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Fig. 1. Motivating example. (a) is the input of our problem: a following network, where the blue arrows
indicate new following relationship created at time t. (b) is the output network with follow back relationships,
where green dash arrows indicate the follow back relationships developed at time (t + 1). (c) is the network
with a closure triad, where a new follow relationship denoted as a red dash arrow is created at time (t + 2)
which forms a directed closure triad.

(reciprocal relationships) but with low reciprocity [Kwak et al. 2010]. For reciprocity
prediction, given a historic log of users following actions from time 1 to t, we try to
learn a predictive model to infer whether user A will add a follow-back link to user B
at time (t + 1) if user B creates a new follow link to user A at time t. For triadic closure
prediction, we try to infer, when A follow back B at time t, whether user A will add a
new follow link to B’s followee C at time (t + 1). Figure 1 shows an illustrative example
of the addressed problem. Figure 1(a) is the input of our problem: a following network,
where the blue arrows indicate new following relationship created at time t. Figure 1(b)
is the network with follow-back relationships, where green dash arrows indicate the
follow-back relationships developed at time (t + 1). Figure 1(c) is the network with a
closure triad, where a new follow relationship is created at time (t + 2) which forms a
(directed) closure triad among users v4, v5, and v6. Our goal in this work is to infer the
formation of the new links in Figures 1(b) and 1(c) based on the available information
at the previous timestamp.

Results. We evaluate the proposed model on a Twitter data consisting of 13,442,659
users and their profiles, tweets, following behaviors (new following or follow-back links)
for nearly two months. We show that incorporating social theories into the proposed fac-
tor graph model can significantly improve the performance (+22–27% by F1-measure)
for predicting reciprocity and (+20–28%) for predicting triadic closure compared with
several alternative methods. Our study also reveals several interesting phenomena.

(1) Elite users (opinion leader) tend to follow each other. The likelihood of an elite user
following back another elite user is nearly 8 times higher than that of two ordinary
users and 30 times that of an elite user and an ordinary user.

(2) Reciprocal relationships on Twitter are balanced, but parasocial relationships are
not. More than 88% of social triads (groups of three people) with reciprocal re-
lationships satisfy the social balance theory, while parasocial relationships are
unbalanced (only 29% of them satisfy the balance theory).

(3) Social networks are going global, but also stay locally. No matter how far a user is
from one by geospatial distance, the likelihood that she/he will follow one back is
almost the same, while on the other hand, the number of reciprocal relationships
between users within the same time zone is 20 times higher than the number of
users from different time zones.
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(4) Elite users play an important role for developing triadic closure. The likelihood to
form a closure triad when an elite user follows back an ordinary user is 10 times
higher than that of an ordinary user following back an elite user.

Organization. Section 2 formulates the problem. Section 3 introduces the dataset
and our analyses on the dataset. Section 4 explains the proposed model and describes
the algorithm for learning the model. Section 5 presents experimental results that
validate the effectiveness of our methodology. Finally, Section 6 reviews the related
work and Section 7 concludes this work.

2. PROBLEM DEFINITION

In this section, after presenting several definitions, we formally define the targeted
problem in this work. We formulate the problem in the context of Twitter to keep
things concrete, though adaptation of this framework to other social network settings
is straightforward.

The Twitter network can be modeled as a directed graph G = {V, E}, where V =
{v1, v2, . . . , vn} is the set of users, and E ⊆ V × V is the set of directed links between
users. For easy explanation in the model, we write each edge as ei with its two end-users
as vs

i and vu
i . Each directed link ei ∈ E indicates that user vs

i follows user vu
i . Usually,

we also call vs
i as the follower of vu

i and vu
i as the followee.

The Twitter network is dynamic in nature, with links added and removed over time.
Our preliminary statistics on a large Twitter dataset show that users tend to add new
links much more frequently than to remove existing links (e.g., 95% of changes to links
are adding new links). That is to say, adding new links seems to be a more important
behavior in forming the structure of the Twitter network. A new link results when a
user performs a behavior of following another user in Twitter. Particularly, we define
two types of link behaviors.

Definition 2.1. New Follow and Follow Back. Suppose at time t, user vi creates a
link to v j , who has no previous link to vi, then we say vi performs a new-follow behavior
on v j . When user vi creates a link to v j at time t, who already has a link to vi before
time t, we say vi performs a follow-back behavior on v j .

The new-follow and follow-back behaviors respectively correspond to the one-way
(parasocial) relationship and the two-way (reciprocal) relationship in sociology. In this
work, we focus on investigating the formation of follow-back behaviors. For simplicity,
let yt

i = 1 denote that user vs
i follows back vu

i at time t and yt
i = 0 denote user vs

i does
not follow back. We are concerned with the following prediction problem.

Problem 1 (Follow Back Prediction). Let < 1, . . . , t > be a sequence of timestamps
with a particular time granularity (e.g., day, week, etc.). Given Twitter networks from
time 1 to t, {Gt = (V t, Et, Y t)}, where Y t is the set of follow-back behaviors at time t,
the task is to find a predictive function

f : ({G1, . . . , Gt}) → Y (t+1),

such that we can infer the follow-back behaviors at time (t + 1).

We further define the triadic closure prediction problem.

Problem 2 (Triadic Closure Prediction). Given Twitter networks from time 1 to t,
{Gt = (V t, Et, Xt, Y t)}, where Xt is the set of follow-back behaviors, for example, vi → v j
at time t, the task is to find a predictive function f to infer whether vi will create a
new-follow link yik ∈ Y (t+1) to v j ’s followee vk at time (t + 1) such that (vi, v j, vk) forms
a closure triad structure.
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It bears pointing out that our problem is very different from existing social tie in-
ferring [Diehl et al. 2007; Eagle et al. 2009; Crandall et al. 2010; Leskovec et al. 2010;
Tang et al. 2011, 2012a], link prediction [Liben-Nowell and Kleinberg 2007; Romero
and Kleinberg 2010; Backstrom and Leskovec 2011], and social action prediction prob-
lems [Tan et al. 2010; Yang et al. 2010]. First, as the Twitter network is evolving over
time, it is infeasible to collect a complete network at time t. Thus it is important to de-
sign a method that could take into consideration the unlabeled data as well. Second, it
is unclear what are the fundamental factors that influence the formation of follow-back
relationships. Finally, one needs to incorporate the different factors (e.g., social theo-
ries, statistics, and our intuitions) into a unified model to better predict the follow-back
relationship.

3. DATA AND OBSERVATIONS

3.1. Data Collection

We aim to find a large set of users and a continuously updated network among these
users, so that we can use the dataset as the gold standard to evaluate different ap-
proaches for our prediction. To begin the collection process, we select the most popular
user on Twitter, that is, “Lady Gaga”, and randomly collect 10,000 of her followers. We
take these users as seed users and use a crawler to collect all followers of these users by
traversing following edges. We continue the traversing process, which produces in total
13,442,659 users and 56,893,234 following links, with an average of 728,509 new links
per day. The crawler monitors the change of the network structure from 10/12/2010
to 12/23/2010. We also extract all tweets posted by these users and in total there are
35,746,366 tweets.

In our analysis, we consider the geographic location of each user. Specifically, we
first extract the location from the profile of each user2, and then feed the location
information to the Google Map API to fetch its corresponding longitude and latitude
values. In this way, we obtain the longitude and latitude of about 59% of users in our
dataset. More detailed analysis, source-code, and an online demonstration are publicly
available. http://reciprocal.aminer.org/

3.2. Observations

We first engage in some high-level investigation of how different factors influence the
formation of reciprocity and triadic closure, since one major motivation of our work is to
find the underlying factors and their influence to this task. In particular, we study the
interplay of the following factors with the formation of follow-backs (or triadic closure).

—Geographic distance. Do users have a higher probability to follow each other when
they are located in the same region?

—Homophily. Do similar users tend to follow each other? We make the analysis for
both follow-back and triadic closure predictions.

—Implicit network. How does the following network on Twitter correlate with other
implicit networks, for example, retweet and reply network?

—Social balance. Does the reciprocal relationship network on Twitter satisfy the social
balance theory [Easley and Kleinberg 2010]? To which extent?

Geographic distance. Figure 2 shows the correlation between geographic distance
and the probability that two users create a reciprocal relationship. Interestingly, it
seems that online social networks indeed go global: Figure 2(a) shows the likelihood
of a user following another user back when they are from the same time zone or from

2For example, Lady Gaga’s location information is: “Location: New York, NY”.
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Fig. 2. Geographic distance correlation. x-axis: time zone difference (0 indicates that users are located in
the same time zone); y-axis: (a) probability that one user follows back another user, conditioned on the time
zone difference of the two users. (b) number of reciprocal relationships among users from the same time zone
or different time zones.

different time zones. Clearly, the geographic distance is already not a major issue
to stop users from developing a (reciprocal) relationship. Figure 2(b) shows another
statistic which indicates a different perspective that the Twitter network (in some
sense) still stays local: the average number of reciprocal relationships between users
from the same time zone is about 50 times higher than the number between users with
a distance of three time zones.

Homophily. The principle of homophily [Lazarsfeld and Merton 1954] suggests that
users with similar characteristics (e.g., social status, age) tend to associate with each
other. In particular, we study two kinds of homophilies on the Twitter network: link
homophily and status homophily. For the link homophily, we test whether two users
who share common links (followers or followees) will have a tendency to associate with
each other. Figure 3 clearly shows that the probability of two users following back
each other when they share common neighbors is much higher than usual. When the
number of common neighbors with two-way relationships increases to 3, the likelihood
of two users following back each other also triples. The effect is more pronounced when
the number increases to 10. But it is worth noting that this only works for reciprocal
relationships and does not hold for the parasocial relationship (as indicated in Figure 3).

For the status homophily, we test whether two users with similar social status are
more likely to associate with each other. We categorize users into two groups (elite
users and ordinary users) by three different algorithms: PageRank [Page et al. 1999]3,
#degree, and (α, β) algorithm [He et al. 2011]4. Specifically, with PageRank, we esti-
mate the importance of each user according to the network structure, and then select
top 1% users5 who have the highest PageRank scores as elite users and the rest as
ordinary users; while with #degree, we select top 1% users with the highest number of
indegree as elite users and the rest as ordinary users. For (α, β), we input the size of the
core community as 200, and after running the algorithm, we use users selected in the
core community as elite users and the rest as ordinary users. Then, we examine the dif-
ference of follow-back behaviors among the two groups of users. Figure 4 clearly shows

3PageRank is an algorithm to estimate the importance of each node in a network.
4(α, β) algorithm is designed to find core members (elite users) in a social network.
5Statistics have shown that less than 1% of the Twitter users produce 50% of its content [Wu et al. 2011].
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Fig. 3. Link homophily. y-axis: probability that two users follow back each other, conditioned on the number
of common neighbors of two-way (reciprocal) relationships or one-way (parasocial) relationships.
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Fig. 4. Status homophily by different algorithms. y-axis: probability that two users follow back each other,
conditioned on whether the two users are from the same group of elite/ordinary users or from different
groups. #Degree, PageRank, and (α, β) are three algorithms to distinguish elite users from ordinary users.

that, though the three algorithms present different statistics, “elite” users have a much
stronger tendency to follow each other: the likelihood of two elite users following back
each other is nearly 8 times higher than that of ordinary users (by the (α, β) algorithm).
The (α, β) algorithm seems able to better distinguish elite users from ordinary users
in our problem setting. This is because besides the global network structure, the (α, β)
algorithm also considers the community structure among elite users.

Implicit structure. On Twitter, besides the explicit network with following links,
there are also some implicit network structures that can be induced from the textural
information. For example, user Amay mention user B in her tweet, that is, “@B”, which
is called a reply link; user A may forward user B’s tweet, which results in a retweet
link. We study how the implicit links correlate with the formation of the follow-back
relationship on Twitter. Figure 5 clearly shows that when users A and B retweet or
reply to each other’s tweets, the likelihood of their following back each other is higher
(3 times higher than chance). Another interesting phenomenon is that compared with
replying to someone’s tweet, retweeting (forwarding) her tweet seems to be more helpful
(15% versus. 9%) to win her follow-back.

Structural balance. Now, we connect our work to a basic social psychological the-
ory: structural balance theory [Easley and Kleinberg 2010]. Let us first explain the
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Fig. 6. Illustration of structural balance theory. (A) and (B) are balanced, while (C) and (D) are not balanced.
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Fig. 7. Structural balance correlation. y-axis: probability that a triad creates two-way (reciprocal) relation-
ships, conditioned on whether the resultant structure is balanced or not.

structural balance property. For every group of three users (called triad), the balance
property implies that either all three of these users are friends or only one pair of them
are friends. Figure 6 shows such an example. To adapt the theory to our problem, we can
map either the reciprocal relationship or the parasocial relationship on the friendship.
Then we examine how the Twitter network (only reciprocal relationships or parasocial
relationships) satisfies the structural balance property. More precisely, we compare the
probabilities of the resultant triads that satisfy the balance theory based on reciprocal
relationships and parasocial relationships on Twitter. Figure 7 clearly shows that it is
much more likely (88%) for users to be connected with a balanced structure of recipro-
cal relationships, while with parasocial relationships, the resultant structure is very
unbalanced. This is because two users are very likely to follow a same movie star, but
they do not know each other, which results in a unbalanced triad (Figure 6(c)).
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(a) triadic status correlation

(b) illustration of triadic code (010, 100, 001)

Fig. 8. Triadic status correlation. y-axis: probability of triadic closure, conditioned on the social status of
the three users (A, B, and C). The three digits on x-axis represent the status of the three users (A, B, and
C, with 1 indicating elite user and 0 indicating ordinary user) and y-axis represents the probabilities of
different categories of users who formed triadic closure.

We now present some observations of the formation of triadic closure. We focus on
studying how users’ status and activity influence the formation of the triadic closure.

Triadic status. We examine the correlation between users’ social status and triads
associated with them. We divide users into two categories (elite users and ordinary
users). For simplicity, we select the top 200 users with the highest indegree as elite
users, and the others as ordinary users. Then we study the probability of A creating a
new follow link to B’s followee C, when A follows back B, conditioned on the status of A,
B, and C. Figure 8 shows the analysis result. The three digits on the x-axis represent
the status of the three users (A, B, and C, with 1 indicating elite user and 0 indicating
ordinary user) and y-axis represents the probabilities of different categories of users
who formed triadic closure. We find a striking pattern that the highest probability is
resulted by 101 (high status, low status, high status), which means that it is very likely
a high-status user spends time investigating whom a low-status user follows, when
she/he follows back the low-status user, and finally follows some high-status followees
of the low-status user. The likelihood is almost ten times higher than chance. Another
interesting phenomenon is that when a low-status user A follows back another low-
status user B, the likelihood of A following a low-status followee of B is very low (about
0.005%), while the likelihood of A following a high-status followee of B is much higher
(4 times higher). Some other interesting patterns can be summarized as follows.

—P(1XX) > P(0XX). Elite users play a more important role to form the triadic closure.
The average probability of 1XX is three times higher than that of 0XX. Here X
indicates any status (ether high status or low status).
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Fig. 9. Number of midpoints correlation. y-axis: probability that relationship can be established, conditioned
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—P(X0X) > P(X1X). Low-status users act as a bridge to connect users so as to form a
closure triad. The likelihood of X0X is 2.8 times higher than X1X.

—P(XX1) > P(XX0). The rich get richer. This result validates the mechanism of pref-
erential attachment [Newman 2001].

Link homophily. Similar to the analysis to follow-back, we test whether users who
share common links (followers or followees) will have a tendency to form a closure
triad. Figure 9 shows the probability of user A following user C, conditioned on the
number of common neighbors. It clearly shows that when the number is one or zero, the
probability is very low, while there is a sharp increase when the number becomes two.
After that, the sublinear behavior takes over. The deviation at 0, 1, 2 can be seen as a
slight “S-shaped” effect: the plots mainly show sublinear increase, while we observe a
superlinear between 1 and 2.

In summary, according to the preceding statistics, we have the following observations.

(1) Geographic distance has a pronounced effect on the number of reciprocal relation-
ships created between users, but little effect on the likelihood of users following
back each other.

(2) Users with common friends (reciprocal relationships) tend to follow each other.
(3) Elite users have a much stronger tendency (status homophily) to follow each other

than ordinary users.
(4) The implicit networks of retweet or reply links have a strong correlation with the

formation of two-way (reciprocal) relationships.
(5) The network of reciprocal relationships on Twitter is balanced (88% of triads satis-

fying the structural balance property), while the network of parasocial relationships
is unbalanced (71% are unbalanced).

(6) Elite users play an important role for developing triadic closure. The probability of
an elite user developing a closure triad is almost ten times higher than chance.

4. MODEL FRAMEWORK

In this section, we propose a novel Triad Factor Graph (TriFG) model to incorporate all
the information within a single entity for better modeling and predicting the formation
of reciprocal relationships and triadic closure.

For an edge ei ∈ E, if user vs
i follows vu

i at time t, our task is to predict whether
user vu

i will follow vs
i back, that is, yi = 1 or 0. For the follow-back prediction task, we

assume that vs
i follows vu

i at time t, and our task is to predict whether vu
i will follow

vs
i back at time (t + 1). Based on the observations in Section 3, we define a number of
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Fig. 10. Graphical representation of the TriFG model. The left figure shows the follow network at time t.
Blue arrows indicate new-follow actions, black arrows indicate previously existing follow links, and blue �

indicates user vu
i does not follow user vs

i back. The right figure is the TriFG model derived from the following
graph. Each gray eclipse indicates relationship (vu

i , vs
i ) between users and each white circle indicates the

hidden variable yi . f (vs
i , v

u
i , yi) represents an attribute factor function and h(.) represents a triad factor

function.

attributes for each edge, denoted as xi. The |E| × d attribute matrix X describes edge-
specific characteristics, where d is the number of attributes. For example, on Twitter,
an attribute can be defined as whether two end-users are from the same time zone. An
element xij in the matrix X indicates the jth attribute value of edge ei. For the triadic
closure prediction task, we assume that vs

i follows back vu
i at time t, and our task is to

predict whether vu
i will follow vs

i ’s followees at time (t + 1). For easy explanation, we
will mainly use the follow-back prediction in our explanation and the extension to the
triadic closure prediction is straightforward.

4.1. The Proposed Model

The name of the Triad Factor Graph (TriFG) model is derived from the idea that we
incorporate social theories (structural balance and homophily) over triads into the
factor graph model.

Figure 10 shows the graphical structure of the TriFG model. The left figure shows the
following network of six users at time t. Blue arrows indicate new-follow actions, black
arrows indicate follow actions performed before time t, and blue � indicates user vu

i
does not follow user vs

i back at time t. The right figure is the factor graph model derived
from the left input network. Each gray ellipse indicates a relationship (vu

i , vs
i ) between

users and each white circle indicates the hidden variable yi, with yi = 1 representing
vu

i performs a follow-back action, yi = 0 not, and yi =? unknown, which actually is the
variable we need to predict. Factor h(.) represents a balance factor function defined
on a triad; and f (vs

i , v
u
i , yi) (or f (xi, yi)) represents a factor to capture the information

associated with edge ei.
Given a network at time t, that is, Gt = (V t, Et, Xt) with some known variables

y = 1 or 0 and some unknown variables y =?, our goal is to infer values of those
unknown variables. For simplicity, we remove the superscript t if there is no ambiguity.
We begin with the posterior probability of P(Y |X, G), according to Bayes’ theorem, we
have

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 2, Article 5, Publication date: July 2013.



TKDD0702-05 ACM-TRANSACTION July 11, 2013 17:55

5:12 T. Lou et al.

P(Y |X, G) = P(X, G|Y )P(Y )
P(X, G)

∝ P(X|Y ) · P(Y |G), (1)

where P(Y |G) denotes the probability of labels given the structure of the network and
P(X|Y ) denotes the probability of generating the attributes X associated with each
edge given their label Y . Assuming that the generative probability of attributes given
the label of each edge is conditionally independent, we get

P(Y |X, G) ∝ P(Y |G)
∏

i

P(xi|yi), (2)

where P(xi|yi) is the probability of generating attributes xi given the label yi. Now, the
problem is how to instantiate the probabilities P(Y |G) and P(xi|yi). In principle, they
can be instantiated in different ways. In this work, we model them in a Markov random
field, and thus by the Hammersley-Clifford theorem [Hammersley and Clifford 1971],
the two probabilities can be instantiated as

P(xi|yi) = 1
Z1

exp

⎧⎨
⎩

d∑
j=1

α j f j(xij, yi)

⎫⎬
⎭ , (3)

P(Y |G) = 1
Z2

exp

{∑
c

∑
k

μkhk(Yc)

}
, (4)

where Z1 and Z2 are normalization factors. Eq. (3) indicates that we define a feature
function f j(xij, yi) for each attribute xij associated with edge ei and α j is the weight of
the jth attribute; while Eq. (4) represents that we define a set of correlation feature
functions {hk(Yc)}k over each triad Yc in the network. Here μk is the weight of the kth

correlation feature function.
Based on Eqs. (2)–(4), we define the following log-likelihood objective function O(θ ) =

logPθ (Y |X, G).

O(θ ) =
|E|∑
i=1

d∑
j=1

α j f j(xij, yi) +
∑

c

∑
k

μkhk(Yc) − logZ (5)

Here Yc is a triad derived from the input network, Z = Z1 Z2 is a normalization factor,
and θ = ({α}, {μ}) indicates a parameter configuration. One example of factor decom-
position is shown in Figure 10. There are six edges, three with known variables (two
y = 1 and one y = 0) and three with unknown values (y =?). We have four triads (e.g.,
Yc = (y1, y2, y3)) based on the structure of the input network. For each edge, we define
a set of factor functions f (vs

i , v
u
i , yi) (also written as f (xi, yi)).

We now briefly introduce possible ways to define the factor functions f j(xij, yi) and
hk(Yc). f j(xij, yi) is an attribute factor function. It can be defined as either a binary
function or a real-valued function. For example, for the implicit network feature, we
simply define it as a binary feature, that is if user vs

i forwarded (retweeted) vu
i ’s tweet

before time t and user vu
i follows user vs

i back, then a feature f j(xij = 1, yi = 1) is
defined and its value is 1; otherwise 0. (Such a feature definition is often used in
graphical models such as conditional random fields [Lafferty et al. 2001]. For the
triad factor function h(Yc), we define four features, two balanced and two unbalanced
factor functions, as depicted in Figure 6.) The triad function is defined as a binary
function, that is, if a triad satisfies the structural balance property, then the value of a
corresponding triad factor function is 1, otherwise 0. More details of the factor function
definition are given in the Appendix.
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4.2. Model Learning and Prediction

We now address the problem of estimating the free parameters and inferring users’
follow-back behaviors. Learning the TriFG model is to estimate a parameter con-
figuration θ = ({α}, {μ}) to maximize the log-likelihood objective function O(θ ) =
logPθ (Y |X, G), that is,

θ� = arg max O(θ ). (6)

To solve the objective function, we adopt a gradient descent method (or a Newton-
Raphson method). We use μ as the example to explain how we learn the parameters.
Specifically, we first write the gradient of each μk with regard to the objective function
(Eq. (5))

O(θ )
μk

= E[hk(Yc)] − EPμk (Yc|X,G)[hk(Yc)], (7)

where E[hk(Yc)] is the expectation of factor function hk(Yc) given the data distribution
(essentially it can be considered as the average value of the factor function hk(Yc)
over all triads in the training data); and EPμk (Yc|X,G)[hk(Yc)] is the expectation of factor
function hk(Yc) under the distribution Pμk(Yc|X, G) given by the estimated model. A
similar gradient can be derived for parameter α j .

One challenge here is that the graphical structure in the TriFG model can be ar-
bitrary and may contain cycles, which makes it intractable to directly calculate the
marginal distribution Pμk(Yc|X, G). A number of approximate algorithms can be con-
sidered, such as Loopy Belief Propagation (LBP) [Murphy et al. 1999] and mean-field
[Xing et al. 2003]. We chose Loopy Belief Propagation due to its ease of implementation
and effectiveness. Specifically, we approximate the marginal distribution Pμk(Yc|X, G)
using LBP. With the marginal probabilities, the gradient can be obtained by summing
over all triads. It is worth noting that we need to perform the LBP process twice in
each iteration, one time for estimating the marginal distribution of unknown variables
yi =? and the other time for estimating the marginal distribution over all triads. In this
way, the algorithm essentially performs a semisupervised learning over the complete
network. This idea was first proposed in Tang et al. [2011] for learning to categorize
social relationships. In this work, we extend it for learning the TriFG model. Finally
with the obtained gradient, we update each parameter with a learning rate η. The
learning algorithm is summarized in Algorithm 1.

ALGORITHM 1: Learning algorithm for the TriFG model.
Input: network Gt, learning rate η
Output: estimated parameters θ

Initialize θ ← 0;
repeat

Perform LBP to calculate marginal distribution of unknown variables P(yi|xi, G);
Perform LBP to calculate the marginal distribution of triad c, i.e., P(yc|Xc, G);
Calculate the gradient of μk according to Eq. 7 (for α j with a similar formula):

O(θ )
μk

= E[hk(Yc)] − EPμk (Yc |X,G)[hk(Yc)]

Update parameter θ with the learning rate η:

θnew = θold + η · O(θ )
θ

until Convergence;
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Predicting follow-back. With the estimated parameters θ , we can predict the label
of unknown variables {yi =?} by finding a label configuration which maximizes the
objective function, that is, Y ∗ = argmaxO(Y |X, G, θ ). It is still intractable to obtain the
exact solution. Again, we utilize the loopy belief propagation to approximate the solu-
tion, that is, to calculate the marginal distribution of each relationship with unknown
variable P(yi|xi, G) and finally assign each relationship with a label of the maximal
probability.

Predicting triadic closure. The proposed TriFG model is flexible and can be easily ex-
tended to predict triadic closure. The main difference from reciprocity prediction is the
feature definition. Section 7 gives the feature definition for triadic closure prediction.
Based on the defined features, we can learn a factor graph model using the proposed
TriFG model. In the prediction, we first select candidate triads, that is, those triads
where A follows back B at time t, then A, B, and B’s followee C form a candidate triad.
Then analogous to the follow-back prediction, with the learned parameters, we can
predict the label of unknown variables {yi =?} by finding a label configuration which
maximizes the objective function. We again utilize the loopy belief propagation to cal-
culate the marginal distribution of each relationship with unknown variable P(yi|xi, G)
and finally assign the label (1-follow or 0-not follow) with the maximal probability to
those candidate triads.

5. EXPERIMENTS

In this section, we first describe our experimental setup. We then present the perfor-
mance results for different approaches in different settings. Next, we present several
analyses and discussions. Finally, we use a case study further to demonstrate the
advantage of the proposed model.

5.1. Experimental Setup

Prediction setting. We use the dataset described in Section 3 in our experiments.
To quantitatively evaluate the effectiveness of the proposed model and compare with
other alternative methods, we carefully select a dynamic network which consists of
a completely historic log of link formation information among users, that is, each
user is associated with a complete list of followers and followees at each timestamp.
The network is comprised of 112,044 users, 468,238 following links among them, and
2,409,768 tweets. On average, there are 40,943 new-follow links and 3,337 new-follow-
back links per day. We divide the subnetwork into 13 timestamps by viewing every four
days as a timestamp.

Our general task is to predict whether a user will follow another user back (or follow
another user’s followee so as to form a closure triad) at the next timestamp when
she follows back the user. By a more careful study, however, we find that it is very
challenging if we restrict the prediction just for the next timestamp. Figure 11 shows
the distribution of time span in which a user performs the follow-back action, which
indicates that 60% of follow-backs are performed in the next timestamp though 37%
of the follow-backs would be still performed in the following three timestamps. For the
triadic closure formation, it is the similar case, that is, 59% of formed triadic closure
happens in the next timestamp and 37% in the following three timestamps. A further
data analysis shows that active users often either perform an immediate follow-back (at
the next timestamp) or reject to follow back; while some other (inactive) users may not
frequently login into Twitter, thus the time span of follow-backs varies a lot. According
to this observation, in our first experiment, we use a network of the first 8 timestamps
for training and predicate follow-back actions in the following 4 (9th–12th) timestamps
(Test Case 1). Then we incrementally add the network of the 9th timestamp into the
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Fig. 11. Follow-back probability for different timestamps.

training data and again use the following 4 (10th–13th) timestamps for prediction (Test
Case 2). We respectively report the prediction performance of different approaches for
the two test cases.

Comparison methods. We compare the proposed TriFG model with the following
methods:

SVM. It uses the same attributes associated with each edge as features to train a
classification model and then employs the classification model to predict edges’ label
in the test data. For SVM, we employ SVM-light.

LRC. It uses the same attributes associated with each edge as features to train a
logistic regression classification model [Leskovec et al. 2010] and then predicts edges’
labels in the test data.

CRF-balance. It trains a conditional random field [Lafferty et al. 2001] model with
attributes associated with each edge. The difference of this method from our model is
that it does not consider structural balance factors.

CRF. It trains a conditional random field model with all factors (including attributes
and structural balance factors) and predicts edges’ labels in the test data.

TriFG. The proposed model trains a factor graph model with unlabeled data and all
factors we defined in Section 4.

Weak TriFG (wTriFG). The difference of wTriFG from TriFG is that we do not con-
sider status homophily and structural balance here. We use this method to evaluate
how social theories can help this task.

In the six methods, SVM and CRF-balance only consider attribute factors; wTriFG
further considers unlabeled data. CRF considers all factors we defined, but does not
consider unlabeled data. Our proposed TriFG model considers all factors as well as the
unlabeled data.

Evaluation measures. We evaluate the performance of different approaches in terms
of precision (Prec.), recall (Rec.), and F1-measure (F1).

All algorithms are implemented in C++, and all experiments are performed on a
PC running Windows 7 with Intel(R) Core(TM) 2 CPU 6600 (2.4 GHz) and 4GB mem-
ory. The proposed algorithm has the tractable running times on networks of 112,044
size/order of magnitude. Our reciprocity predictions required 2 to 5 minutes, and triadic
closure predictions required 2 to 18 minutes.
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Table I. Follow-Back Prediction Performance of Different Methods in the
Two Test Cases

Data Algorithm Prec. Rec. F1

Test Case 1

SVM 0.6908 0.6129 0.6495
LRC 0.6957 0.2581 0.3765

CRF-balance 0.9968 0.5161 0.6801
CRF 1.0000 0.6290 0.7723

wTriFG 0.9691 0.5483 0.7004
TriFG 1.0000 0.8548 0.9217

Test Case 2

SVM 0.7323 0.6212 0.6722
LRC 0.8333 0.3030 0.4444

CRF-balance 0.9444 0.5151 0.6667
CRF 1.0000 0.6333 0.7755

wTriFG 0.9697 0.5697 0.7177
TriFG 1.0000 0.8788 0.9355

Test Case 1: predicting follow-back actions in the 9th–12th timestamps;
and Test Case 2 for the 10th–13th timestamps.

5.2. Reciprocity Prediction Performance

We now describe the performance results for the different methods we considered.
Table I shows the results in the two test cases (prediction performance for the 9th–
12th timestamps and that for the 10th–13th timestamps).

It can be clearly seen that our proposed TriFG model significantly outperforms the
four comparison methods. In terms of F1-measure, TriFG achieves a +27% improve-
ment compared with the (SVM). Comparing with the other three graph-based methods,
TriFG also results in an improvement of 22–25%. The advantage of TriFG mainly comes
from the improvement on recall. One important reason here is that TriFG can detect
some difficult cases by leveraging the structural balance correlation and homophily
correlation. For example, without considering the two kinds of social correlations, the
performance of wTriFG decreases to 70–72% in terms of F1-measure in the two test
cases. Another advantage of TriFG is that it makes use of the unlabeled data. Es-
sentially, it further considers some latent correlations in the dataset, which cannot be
leveraged with only the labeled training data.

Now, we perform several analyses to examine the following aspects of the TriFG
model: (1) contribution of different factors in the TriFG model; (2) convergence property
of the learning algorithm; (3) effect of different settings for the time span; and (4) effect
of different algorithms for elite user finding.

Factor contribution analysis. In TriFG, we consider five different factor functions:
Geographic distance (G), link homophily (L), status homophily (S), implicit network
correlation (I), and structural balance correlation (B). Here we examine the contribu-
tion of the different factors. We first rank the individual factors by their predictive
power6, and then remove them one by one in reversing order of their prediction power.
In particular, we first remove structural balance correlation denoted as TriFG-B, fol-
lowed by further removing the implicit network correlation denoted as TriFG-BI, sta-
tus homophily denoted as TriFG-BIS, and finally removing link homophily denoted as
TriFG-BISL. We train and evaluate the prediction performance of the different ver-
sions of TriFG. Figure 12 shows the average F1-measure score of the different versions
of the TriFG model. We can observe a clear drop on the performance when ignoring

6We did this by respectively removing each particular factor from our model and evaluated the decrease of
the prediction performance by the TriFG model. A larger decrease means a higher predictive power.
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Fig. 12. Factor contribution analysis. TriFG-B stands for ignoring structural balance correlation. TriFG-BI
stands for ignoring both structural balance correlation and implicit network correlation. TriFG-BIS stands
for further ignoring status homophily and TriFG-BISL stands for further ignoring link homophily.
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Fig. 13. Convergence analysis of the learning algorithm.

each of the factors. This indicates that our method works well by combining the dif-
ferent factor functions and each factor in our method contributes improvement in the
performance.

Convergence property. We conduct an experiment to see the effect of the number of
the loopy belief propagation iterations. Figure 13 illustrates the convergence analysis
results of the learning algorithm. We see on both test cases, the learning algorithm
can converge in less than 200 iterations. After 120 learning iterations, the prediction
performance of TriFG on both test cases becomes stable. This suggests that the learning
algorithm is very efficient and has a good convergence property.

Effect of time span. Figure 11 already shows the distribution of follow-backs in dif-
ferent time stamps. Now, we quantitatively examine how different settings for the
time span will affect the prediction performance. Figure 14 lists the average prediction
performance of TriFG in the two test cases with different settings of the time span.
It shows that when setting the time span as two or less timestamps, the prediction
performance of TriFG drops sharply; while when setting it as three timestamps, the
performance is acceptable. The results are consistent with the statistics in Figure 11:
more than 90% of follow-back actions are performed in the first three timestamps, and
only about 80% of the follow-back actions are in the first two timestamps.

Effect of different algorithms for elite user finding. The status homophily factor
depends on results of elite user finding. We use three different algorithms, that is,
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Fig. 14. Follow-back prediction for different timestamps.

Table II. Follow-Back Prediction Performance of TriFG with
Three Different Algorithms (#degree, PageRank and (α, β))

for Finding Elite Users from Ordinary Users

Data Algorithm Prec. Rec. F1

Test Case 1
(α, β) 1.0000 0.8548 0.9217

#degree 1.0000 0.7903 0.8829
pagerank 1.0000 0.7581 0.8624

Test Case 2
(α, β) 1.0000 0.8788 0.9355

#degree 1.0000 0.8363 0.9109
pagerank 1.0000 0.8181 0.9000

PageRank, #degree, and (α, β) algorithm, to find elite users. Now we examine how
the different algorithms would affect the prediction performance. Table II shows the
prediction performance of TriFG with different elite user finding algorithms in the
two test cases. Interestingly, though TriFG with the (α, β) algorithm achieves the best
performance, the difference of performance among the three algorithms, especially in
the second test case, is not that pronounced (with a difference of 1%–4% in terms of
F1-measure score). This confirms the effectiveness and generalization of incorporating
the status homophily factor into our TriFG model.

5.3. Triadic Closure Prediction Performance

We now turn to discuss the performance of triadic closure prediction by the different
methods we considered. Table III shows the results in the two test cases (prediction
performance for the 9th–12th timestamps and that for the 10th–13th timestamps). In
the task of triadic closure prediction, the labeled data is very unbalanced (a large por-
tion of instances are negative instances, i.e., A follows B back, but does not follow B’s
followees), thus it is more difficult than the reciprocity prediction task. Even the best
performance of the baseline methods on the first test case is only 10% by F1 and 22%
on the second test case. Our proposed TriFG significantly improves the performance
(+18.6% in terms of F1-score). The situation is similar on the second test case. Compar-
ing with the other three graph-based methods, TriFG also results in an improvement
of 23–34%. The advantage of TriFG mainly comes from the improvement on precision.

Factor contribution analysis. For the triadic closure prediction, we mainly consider
three factor functions: structural balance correlation (B), status homophily (S), and
link homophily (L). Here we examine the contribution of the different factors defined
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Table III. Triadic Closure Prediction Performance of Different Methods
in the Two Test Cases

Data Algorithm Prec. Rec. F1

Test Case 1

SVM 0.0870 0.1429 0.1081
LRC 0.0536 0.1304 0.0759

CRF-balance 0.0208 0.0436 0.0282
CRF 0.1111 0.0870 0.0976

wTriFG 0.3333 0.0373 0.0671
TriFG 0.4545 0.2174 0.2941

Test Case 2

SVM 0.2000 0.2222 0.2105
LRC 0.1071 0.1667 0.1304

CRF-balance 0.0909 0.0556 0.0690
CRF 0.2222 0.2222 0.2222

wTriFG 0.5000 0.0556 0.1000
TriFG 0.8571 0.3333 0.4800

Test Case 1: predicting triadic closure in the 9th–12th timestamps;
and Test Case 2 for the 10th–13th timestamps.
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Fig. 15. Factor contribution analysis. TriFG-B stands for ignoring structural balance correlation. TriFG-BS
stands for ignoring both structural balance correlation and status homophily, and TriFG-BSL stands for
further ignoring link homophily.

in our model. Again, we first rank the individual factors by their predictive power,
and then remove them one by one in reversing order of their prediction power. In
particular, we remove structural balance correlation denoted as TriFG-B, followed by
further removing the status homophily denoted as TriFG-BS, and finally removing link
homophily denoted as TriFG-BSL. We train and evaluate the prediction performance
of the different versions of TriFG. Figure 15 shows the average F1-measure score of the
different versions of the TriFG model. We can observe a clear drop on the performance
when ignoring each of the factors.

5.4. Qualitative Case Study

Now we present a case study to demonstrate the effectiveness of the proposed model.
Figure 16 shows an example generated from our experiments. It represents a portion of
the Twitter network from the 10th–13th timestamps. Black arrows indicate following
links created 4 timestamps (we use 4 timestamps as the time span for prediction)
before. Blue arrows indicate new-following link in the past 4 timestamps. Dash arrows
indicate follow-back links in our dataset (a), predicted by SVM (b), and predicted by
our model TriFG (c), with green color denoting a correct one and red color denoting
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Fig. 16. Case study. Portion of the Twitter network during the 10th–13th timestamps. The two numbers
associated with each user are respectively the number of followees and that of followers. Black arrows
indicate following links created 4 timestamps (we use 4 timestamps as the time span for prediction) before.
Blue arrows indicate new-following link in the past 4 timestamps. Dash arrows indicate follow-back links
in our dataset (a), predicted by SVM (b), and predicted by our model TriFG (c), with green color denoting
a correct one and red color denoting a mistake one. Red colored � indicates there should be a follow-back
link, which the approach did not predict.

a mistake one. Red colored � indicates there should be a follow-back link, but the
approach does not detectit.

We look at specific examples to study why the proposed model can outperform the
comparison methods. “A”, “B”, and “C” are three elite users identified using the (α, β)
algorithm [He et al. 2011]. SVM correctly predicts that there is a follow-back link
from “C” to “B”, but misses predicting the follow-back link from “C” to “A”. Our model
TriFG correctly predicts both the follow-back links. This is because TriFG leverages
the structural balance factor. The resultant structure among the three users by SVM
is unbalanced. TriFG leverages the structural balance factor and tends to result in a
balanced structure.

It is also worth looking at the situation of users 9 and 10. TriFG made a mistake here:
it does not predict the follow-back link, while the link is correctly predicted by SVM.
Users 9 and 10 have a similar social status (similar indegree) and also they are from
the same time zone, thus SVM successfully predicts the follow-back link. However, as
the resulting structure is unbalanced, TriFG make a compromise and finally results in
a mistaken prediction.

5.5. Prototype System

We have developed and deployed a Web application for reciprocal prediction based on
the proposed TriFG model7. Figure 17 shows a screenshot of the reciprocity prediction
system. The system trains a TriFG model offline using all the follow and follow-back
relationships in our dataset. When a user wants to know how likely another user will
follow him back, he first inputs his Twitter ID and the other user’s ID. Then the system
analyzes his social circle and the other user’s social circle, and extracts features defined
in our approach. Next, it makes the prediction based on the trained TriFG model (refer

7http://reciprocal.aminer.org.
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Fig. 17. A screenshot of the reciprocity prediction system.

to Section 4.2). As the example in Figure 17 shows, the user “jian pei” has a probability
of 92% to follow back user “jietang”.

6. RELATED WORK

In this section, we review related work on link prediction and Twitter study in social
networks.

Social tie analysis. There are several works on inferring the meanings of social re-
lationships. Diehl et al. [2007] try to identify the manager-subordinate relationships
by learning a ranking function. Wang et al. [2010] propose an unsupervised probabilis-
tic model for mining the advisor-advisee relationships from the publication network.
Crandall et al. [2010] investigate the problem of inferring friendship between people
from co-occurrence in time and space. Tang et al. [2011] propose a learning framework
based on partially labeled factor graphs for inferring the types of social relationships
in different networks. Zhuang et al. [2012] further propose using active learning to
enhance the inferring performance. Eagle et al. [2009] present several patterns discov-
ered in mobile phone data, and try to use these patterns to infer the friendship network.
Tang et al. [2012a] study the problem of inferring social ties across heterogeneous net-
works. However, these algorithms cannot be directly applied to infer the follow-back
relationships and they do not consider the problem of triadic closure prediction.

Another type of related work is social behavior analysis. Tang et al. [2009] study
the difference of the social influence on different topics and propose Topical Affinity
Propagation (TAP) to model the topic-level social influence in social networks and
develop a parallel model learning algorithm based on the map-reduce programming
model. Tan et al. [2010] investigate how social actions evolve in a dynamic social
network and propose a time-varying factor graph model for modeling and predicting
users’ social behaviors. The proposed methods in these works can be utilized in the
problem defined in this work, but the problem is fundamentally different.

In our previous work [Hopcroft et al. 2011], we study the problem of reciprocal
relationship prediction. In this work, we extend this work from the following aspects.
First, we further investigate how closure triads are formed from pairwise relationships,
and how the formation is correlated with factors such as link homophily and social
status. Second, we extend the factor graph model to infer the triadic closure formation.
Last, we evaluate the proposed model on the dataset Twitter.

Link prediction. Our work is related with link prediction, which is one of the core
tasks in social networks. Existing work on link prediction can be broadly grouped into
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two categories based on the learning methods employed: unsupervised link prediction
and supervised link prediction. Unsupervised link predictions usually assign scores
to potential links based on the intuition that the more similar the pair of users are,
the more likely they are linked. Various similarity measures of users are considered,
such as preferential attachment [Newman 2001], and the Katz measure [Katz 1953].
Lichtenwalter et al. [2010] present a flow-based method for link prediction. A survey
of unsupervised link prediction can be found in Liben-Nowell and Kleinberg [2007].

There are also a number of works which employ supervised approaches to pre-
dict links in social networks, such as Wang et al. [2007], Lichtenwalter et al. [2010],
Backstrom and Leskovec [2011], and Leskovec et al. [2010]. Backstrom and Leskovec
[2011] propose a supervised random walk algorithm to estimate the strength of social
links. Leskovec et al. [2010] employ a logistic regression model to predict positive and
negative links in online social networks. The main differences between existing work on
link prediction and our work are about two aspects. First, existing work handles undi-
rected social networks, while we address the directed nature of the Twitter network
and predict a directed link between a pair of users given an existing link in another
direction. Second, most existing models for link prediction are static. In contrast, our
model is dynamic and learned from the evolution of the Twitter network. Moreover,
we combine social theories (such as homophily and structural balance theory) into a
semisupervised learning model.

Twitter study. There is little doubt that Twitter has intrigued worldwide netizens,
and research communities alike. Existing Twitter study is mainly centered around
the following three aspects: (1) the Twitter network. Java et al. [2007] study the topo-
logical and geographical properties of the Twitter network. Their findings verify the
homophily phenomenon that users with similar intentions connect with each other.
Kwak et al. [2010] conduct a similar study on the entire Twittersphere and they ob-
serve some notable properties of Twitter, such as a nonpower-law follower distribution,
a short effective diameter, and low reciprocity, marking a deviation from known char-
acteristics of human social networks. (2) the Twitter users. Work of this category mainly
focus on identifying influential users in Twitter [Weng et al. 2010; Cha et al. 2010; Kwak
et al. 2010] or examining and predicting tweeting behaviors of users [Huberman et al.
2009; Tan et al. 2010]. (3) the Tweets. Sakaki et al. [2010] propose to utilize the real-
time nature of Twitter to detect a target event, while Mathioudakis and Koudas [2010]
present a system, TwitterMonitor, to detect emerging topics from the Twitter content.

Triadic closure formation. There are a few works on triadic closure analysis. Romero
and Kleinberg [2010] study the problem of the triadic closure process and develop a
methodology based on preferential attachment, for studying the directed triadic closure
process. Backstrom et al. [2008] propose a partitioning on the data that selects for active
communities of engaged individuals.

7. CONCLUSION

In this article, we study the novel problem of predicting reciprocity and triadic closure
in social networks. We formally define the two subproblems and propose a Triad Factor
Graph (TriFG) model, which incorporates social theories into a semisupervised learning
model. We evaluate the proposed model on a large Twitter network. We show that with
the proposed factor graph model it is possible to accurately infer 90% of reciprocal
relationships in a dynamic network. We also demonstrate that the proposed model
significantly improves the performance (+22%–27% by F1-measure) for triadic closure
prediction comparing with several alternative methods. Our study also reveals several
interesting phenomena.
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The general problem of understanding the structure of networks represents a novel
research direction in social network analysis. There are many potential future di-
rections of this work. First, what are the fundamental differences of the structure
between different networks? Can we classify the networks into different categories?
Second, some other social theories can be further explored and validated for reciprocal
relationship prediction. Looking farther ahead, it is also interesting to develop a real
friend suggestion system based on the proposed method. We can further study theo-
retical methodologies for improving the predictive performance by incorporating user
interactions. Finally, building a theory of why and how users create relationships with
each other in different kinds of networks is an intriguing direction for further research.

APPENDIX: FACTOR FUNCTION DEFINITION

A.1. Feature Definition for Reciprocity Prediction

This section depicts how we define the factor functions in our experiments of reciprocal
relationship prediction. In total, we define 26 features of five categories: geographic
distance, link homophily, status homophily, structural balance, and implicit network
correlation.

Geographic distance. We use Google Map API to get the exact locations (longitude
and latitude) of some users. Based on the two values, we define the following three
features: the absolute distance and the time zone difference between two users, and
whether or not the two users are from the same country.

Link homophily. First, we treat each link as an undirected link, and define the follow-
ing four features: the number of common neighbors, percentage of common neighbors
of the two users (respectively), and the average percentage.

Then we consider directed links and define another three features: the number
of common reciprocal links, number of common followers, and number of common
followees.

Status homophily. We also test whether two users have similar social status, and
define the following four features: whether or not the two users are both elite users
(two features), an ordinary and an elite, and both ordinary users.

Implicit network correlation. We consider the interaction between user A and user
B, and define the following four features that respectively represent the number of
retweets (replies) from A to B and from B to A.

Structural balance. Based on the structural balance theory, as in Figure 6, we define
eight features capturing all situations of structural balance theory for each triad.

A.2. Feature Definition for Triadic Closure Prediction

This section depicts how we define the factor functions in our experiments of triadic
closure prediction. In total, we define 46 features of four categories: geographic distance,
link homophily, status homophily, and structural balance.

Geographic distance. We use Google Map API to get the exact locations (longitude
and latitude) of some users. Based on the two values, we define the following 9 features
(three features for each pair among the three users): the absolute distance and the
time zone difference between two users, and whether or not the two users are from the
same country.

Link homophily. First, we treat each link as an undirected link, and define the
following 12 features (four features for each pair among the three users): the number
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of common neighbors, percentage of common neighbors of the two users (respectively),
and the average percentage.

Then we consider directed links and define another 9 features (three features for
each pair among the three users): the number of common reciprocal links, number of
common followers, and number of common followees.

Status homophily. We also test whether each pair of users have similar social status,
and define the following 12 features (four features for each pair among the three
users): whether or not the two users are both elite users, an ordinary and an elite (two
features), and both ordinary users.

Structural balance. Based on structural balance theory, as in Figure 6, we define
four features capturing all situations of structural balance theory for each triad.
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