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Networks are prevalent in many areas and are often collected from multiple sources. However, due to the
veracity characteristics, more often than not, networks are incomplete. Network alignment and network
completion have become two fundamental cornerstones behind a wealth of high-impact graph mining
applications. The state-of-the-art have been addressing these two tasks in parallel. That is, most of the existing
network alignment methods have implicitly assumed that the topology of the input networks for alignment are
perfectly known a priori, whereas the existing network completion methods admit either a single network (i.e.,
matrix completion) or multiple aligned networks (e.g., tensor completion). In this paper, we argue that network
alignment and completion are inherently complementary with each other, and hence propose to jointly
address them so that the two tasks can mutually benefit from each other. We formulate the problem from the
optimization perspective, and propose an effective algorithm (iNeAt) to solve it. The proposed method offers
two distinctive advantages. First (Alignment accuracy), our method benefits from the higher-quality input
networks while mitigates the effect of the incorrectly inferred links introduced by the completion task itself.
Second (Alignment efficiency), thanks to the low-rank structure of the complete networks and the alignment
matrix, the alignment process can be significantly accelerated. We perform extensive experiments which show
that (1) the network completion can significantly improve the alignment accuracy, i.e., up to 30% over the
baseline methods; (2) the network alignment can in turn help recover more missing edges than the baseline
methods; and (3) our method achieves a good balance between the running time and the accuracy, and scales
with a provable linear complexity in both time and space.
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1 INTRODUCTION
Networks are prevalent and naturally appear in many areas. More often than not, in the big data era,
networks in many high-impact applications are collected from multiple sources (i.e., variety), such
as social networks from different social platforms, protein-protein interaction (PPI) networks from
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multiple tissues, transaction networks from multiple financial institutes, etc. In order to integrate
the considerable information associated with multiple networks, network alignment is of key
importance to find the node correspondence across networks. For example, by aligning the same
users in different transaction networks, the transaction patterns of users can be comprehended
to enhance the financial fraud detection. However, real-world networks are often incomplete (i.e.,
veracity) due to, for instance, the difficulties in data collections. As such, network completion
(e.g., to infer the missing links) has become another key task which benefits many graph mining
applications by providing higher-quality networks if handled properly.

Although the multi-sourced and incomplete characteristics often co-exist in many real networks,
the state-of-the-arts have been largely addressing network alignment and network completion
problems in parallel. For example, most of the existing network alignment methods based on
topological consistency have implicitly assumed that the topology of the input networks for
alignment are perfectly known a priori [16, 42]. On the other hand, the existing network completion
methods aim to infer the missing links in either a single network (e.g., by matrix completion [27])
or multiple networks that are aligned beforehand (e.g., by tensor completion [24]). How can we
align two input incomplete networks when missing edges are unobserved in them?
A natural choice could be completion-then-alignment. That is, we first separately complete the

missing edges in the input networks by some existing network completion methods, followed by the
alignment across the resulting complete networks. However, there exist some fundamental limits of
this strategy on the alignment performance. First (Alignment accuracy), the promise of this strategy
lies in that by inferring the missing links of each input network, it would provide higher-quality
input networks for the alignment task. However, the completion task itself might introduce noise
(e.g., truly nonexistent edges), which might compromise, or even prevail the benefits of the correctly
inferred missing links for the alignment task. Second (Alignment efficiency), the network alignment
alone is already computationally costly. Most of the existing methods (even with approximation,
such as [43]) have a time/space complexity at least 𝑂 (𝑛2), where 𝑛 is the number of nodes of the
input networks, mainly due to the computation/storage of the alignment matrix and the sparse
matrix-matrix multiplication between the input adjacency matrices and the alignment matrix1. Yet,
network completion would make each input network even denser by adding the missing edges. As
a result, if we simply conduct the network alignment task on such densified networks, it might
make the computation even more intensive.
To address these limitations, we hypothesize that network alignment and network completion

can inherently complement each other due to the following reasons. First, (H1) alignment helps

completion. Intuitively, when many nodes in one network share similar connectivity patterns with
their corresponding aligned nodes (e.g., connecting to the similar sets of nodes) in another network,
the knowledge about the existence or absence of links in one network could help inferring the
missing links in another network via alignment if we can find such node correspondences across
networks. Second, (H2) completion helps alignment. As introduced before, network completion could
potentially improve the qualities of input networks, leading to the enhancement of the alignment
accuracy. Moreover, network completion itself implicitly assumes a low-rank structure on the input
networks, which, if harnessed appropriately, will actually accelerate the alignment process as we
will show in the paper.

Armed with these hypotheses, we propose to jointly address network alignment and network
completion problems so that the two tasks could mutually benefit from each other. To be specific,
in order to leverage alignment for the completion task, we impose the low-rank structure on

1Although the empirical runtime of some existing methods (e.g., BigAlign [16]) is near-linear, the big-O time complexity of
these methods is still quadratic.
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the underlying (true) network, which matches not only the observed links of the corresponding
network, but also the auxiliary observations from the other network via the alignment matrix.
Second, in order to leverage the network completion for the alignment, we recast the network
alignment problem via the low-rank structures of the complete networks, which not only improves
the alignment accuracy, but also speeds up the alignment process. We formulate them into a joint
optimization problem and propose an effective algorithm to solve it.

The main contributions of the paper are summarized as:
• Problem Definition. To our best knowledge, we are the first to jointly address the network
alignment and network completion tasks in an optimization framework.
• Algorithm and Analysis.We propose an effective algorithm (iNeAt) based on the multi-
plicative update to solve the optimization. We also analyze its correctness, convergence and
complexity. In particular, we prove that the low-rank structure of the complete networks
guarantees a low-rank structure of the alignment matrix, which in turn reduces the time
complexity of each iterative update to be linear. To our best knowledge, this is the first known
network alignment algorithm with a provable linear time complexity.
• Experiments. We evaluate the effectiveness and efficiency of the proposed algorithm by
extensive experiments. The experimental results demonstrate that (1) network alignment
and network completion can indeed benefit from each other in terms of alignment accuracy
and missing edges recovery rate, (2) our algorithm iNeAt achieves a better alignment and
completion quality, and meanwhile is faster than most of the baseline methods, and (3) our
algorithm is only linear w.r.t. the number of nodes in the networks.

The rest of the paper is organized as follows. Section 2 defines the incomplete network alignment
problem and provides some preliminaries of the paper. Section 3 presents the proposed optimization
formulation of iNeAt and Section 4 gives an effective optimization algorithm, followed by some
analyses. Section 5 presents the experimental results. Related work and conclusion are given in
Section 6 and Section 7.

2 PROBLEM DEFINITION
2.1 Problem Definition
Table 1 summarizes the main symbols and notations used throughout the paper. We use bold
uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s), and lowercase
letters (e.g., 𝛼) for scalars. We use A(𝑖, 𝑗) to denote the entry at the intersection of the 𝑖-th row and
𝑗-th column of the matrix A. We denote the transpose of a matrix by a superscript𝑇 (e.g., A𝑇 is the
transpose of A). The vectorization of a matrix (in the column order) is denoted by vec(·), and the
result vector is denoted by the corresponding bold lowercase letter (e.g., s = vec(S)). Equivalently,
the transformation of a vector to its corresponding matrix is denoted by a de-vectorization operator
mat(·) (e.g., S = mat(s)). The trace of a matrix is denoted by Tr(·), and the diagonal matrix of a
vector is denoted by diag(·).

Many real-world networks are incomplete with missing edges. Although some incompleteness
scenarios may be possible (e.g., with the probabilities whether edges exist known a priori), in our
paper, we only consider the network incompleteness where we only have the knowledge about
the existence (i.e., a value of 1) or the absence (i.e., a value of 0) of certain entries (denoted by
the set Ω) of its adjacency matrix. For the rest entries in the adjacency matrix, we do not know if
the corresponding links exist or not, and hence are represented as the question mark ?. Figure 1
presents an illustrative example. All solid lines represent the observed existing edges. As we can
see in Figure 1(a), the set of nodes (1, 2, 3, 4) in the first incomplete network have similar topology
to the nodes (6′, 7′, 8′, 9′), possibly leading to a wrong alignment result that these two sets of
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Table 1. Symbols and Notations

Symbols Definition
G1, G2 incomplete networks
A1,A2 two adjacency matrices of G1 and G2
𝑛1, 𝑛2 # of nodes in G1 and G2
𝑚1,𝑚2 # of nodes in G1 and G2

S an 𝑛2 × 𝑛1 alignment matrix between G2 and G1
𝑃Ω (·), 𝑃Ω̄ (·) an operator to project only to observed (unobserved) entries

U1,V1,U2,V2 low rank factorizations of A1 and A2
PΩ1 , PΩ2 projection matrix, all 1s at all observed entries

11, 12 1s vectors of length 𝑛1 and 𝑛2 respectively
𝜆,𝛾, 𝛽 parameters
Tr[·] trace operator
diag(·) diagonal matrix of a vector

vec(·), mat(·) vectorization and de-vectorization operator
rank(·) the rank of a matrix
eig(·) eigenvalues of a matrix

nodes are aligned within each other. However, the complete networks in Figure 1(b) (by filling
all the red lines) are identical, such as the cliques formed by nodes (1, 2, 3, 4) and (1′, 2′, 3′, 4′).
Thus, the set of nodes (1, 2, 3, 4) can be aligned to nodes (1′, 2′, 3′, 4′) respectively, so can the
rest of nodes. On the other hand, by completing two networks separately, noisy edges might be
incorrectly added (e.g., edge (4, 6)) and the true network structure would fail to be recovered. The
incorrectly recovered networks may further mislead the alignment results. Therefore, how to align
the incomplete networks while completing them is the key challenge this paper aims to address.

Problem 1. Incomplete Network Alignment.

Given: (1) Incomplete adjacency matrices A1, A2 of two undirected networks G1,G2, and (2-optional)

a prior node similarity matrix H across networks.

Output: (1) the 𝑛2 × 𝑛1 alignment/similarity matrix S, where S(𝑥, 𝑎) represents to what extent
node-𝑎 in G1 is aligned with node-𝑥 in G2, and (2) complete adjacency matrices A∗1, and A∗2.

2.2 Preliminaries
A - Network Alignment. Most existing network alignment algorithms (such as IsoRank [34] and
FINAL [43, 44]), explicitly or implicitly, are based on the topology consistency principle. Take FINAL
as an example, the topology consistency principle can be stated as follows2. Given two pairs of
nodes, say (1) node-𝑎 in G1 and node-𝑥 in G2 and (2) node-𝑏 in G1 and node-𝑦 in G2, if nodes 𝑎 and
𝑏 are close neighbors and nodes 𝑥 and 𝑦 are also close neighbors, the topology consistency principle
assumes the similarity between 𝑎 and 𝑥 , and that between their respective close neighbors 𝑏 and
𝑦 to be consistent, i.e., small [Ŝ(𝑎, 𝑥) − Ŝ(𝑏,𝑦)]2A1 (𝑎, 𝑏)A2 (𝑥,𝑦), where Ŝ is the similarity matrix.
Mathematically, this naturally leads to the following optimization problem.

min
ŝ
𝛼 ŝ𝑇 (D − A1 ⊗ A2)ŝ + (1 − 𝛼)∥D

1
2 (ŝ − h)∥2𝐹 (1)

where ŝ, h are the vectorization of the similarity matrix Ŝ and the prior similarity matrix H respec-
tively. D = D1 ⊗ D2 and D1,D2 are the diagonal degree matrix of A1,A2 respectively. Note that
2In [43], the authors generalize the topology consistency principle to further accommodate the additional node/edge
attribute information, which is outside the scope of this paper
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Fig. 1. An illustrative example. Figure 1(a) shows the input incomplete networks and Figure 1(b) shows part
of the alignment across two complete networks.

instead of using Ŝ to infer the alignment as in [43], we use the scaled similarity matrix S as the ’soft’
alignment matrix throughout our paper where S is the matrix form of s = Dŝ (i.e., S = mat(Dŝ)). In
other words, the entries in the alignment matrix S measure to what extent the two corresponding
nodes are aligned together. Besides, the second regularization term in Eq. (1) is to avoid trivial
solutions, such as a zero matrix Ŝ.

In order to solve the network alignment problem in Eq. (1), we can either use an iterative algorithm
with a time complexity of𝑂 (𝑛𝑚) and a space complexity𝑂 (𝑛2), or resort to its closed-form solution
whose time complexity could be as high as 𝑂 (𝑛6) where we assume that the two networks have a
comparable number of edges and nodes, i.e., 𝑂 (𝑚) = 𝑂 (𝑚1) = 𝑂 (𝑚2) and 𝑂 (𝑛) = 𝑂 (𝑛1) = 𝑂 (𝑛2).
In [43], the authors proposed to approximate the closed-form solution via eigenvalue decomposition.
But it is still quadratic in both time and space.
B - Network Completion. As mentioned earlier, incomplete networks might have many unobserved
missing edges, which could significantly change the true network structure and hence mislead
the topology-based network alignment. One straightforward way to address this issue is by using
matrix completion. Most of the existing matrix completion methods are centered around minimizing
the nuclear norm of the matrix [32]. However, since real-world networks are usually very large, it
is very costly to directly minimize the nuclear norm of the adjacency matrices. In [33], the authors
show that the nuclear norm ∥A1∥∗ = min

U1,V1

1
2 (∥U1∥2𝐹 + ∥V1∥2𝐹 ) where A1 = U1V𝑇1 , which allows the

factorization-based completion methods. To be specific, we can recover the complete networks by
minimizing the following objective function:

𝐽1 (U1,V1,U2,V2) =
1
2
∥𝑃Ω1 (A1 − U1V𝑇1 )∥

2
𝐹 +

𝜆

2
(∥U1∥2𝐹 + ∥V1∥2𝐹 )︸                                                      ︷︷                                                      ︸

network completion on A1

+ 1
2
∥𝑃Ω2 (A2 − U2V𝑇2 )∥

2
𝐹 +

𝜆

2
(∥U2∥2𝐹 + ∥V2∥2𝐹 )︸                                                      ︷︷                                                      ︸

network completion on A2

(2)

where the operator 𝑃Ω1 projects the value to the observed set Ω1 of A1, e.g., 𝑃Ω1 ((U1V𝑇1 ) (𝑖, 𝑗)) =
(U1V𝑇1 ) (𝑖, 𝑗) for any (𝑖, 𝑗) ∈ Ω1, otherwise 0; and operator 𝑃Ω2 is defined similarly.

3 PROPOSED OPTIMIZATION FORMULATION
In this section, we present the proposed optimization formulation to solve Problem 1. First, we
present how to formulate the alignment task in the form of two complete networks. A key contri-
bution here is that we prove that the low-rank structure of the complete networks guarantees a
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low-rank structure of the alignment matrix. Then we present how to leverage the alignment matrix
to infer missing edges across networks, followed by the overall optimization formulation.

3.1 Network Completion Helps Network Alignment
By performing the network completion on both incomplete networks, the structure of the underlying
networks could be recovered so that we can perform the alignment task across higher-quality
networks. We use the factorization-based network completion (i.e., Eq (2)) and denote these two
complete networks by A∗1 = U1V𝑇1 and A∗2 = U2V𝑇2 , where U𝑖 and V𝑖 (𝑖 = 1, 2) are the factorization
matrices of rank-r. We adopt Eq. (1) to perform the network alignment task. Note that in general,
we cannot guarantee the recovered adjacency matrices (A∗1 and A∗2) to be symmetric because V1
(V2) may not be identical to U1 (U2). This leads to a slightly different objective function from Eq.
(1) to align directed networks. Specifically, based on the topology consistency (i.e., small [Ŝ(𝑎, 𝑥) −
Ŝ(𝑏,𝑦)]2A1 (𝑎, 𝑏)A2 (𝑥,𝑦) in two directed networks), the optimization problem is formulated as
follows.

min
ŝ
𝛼 ŝ𝑇 (D̂ − A∗1 ⊗ A∗2)ŝ + (1 − 𝛼)∥D̂

1
2 (ŝ − h)∥2𝐹 (3)

where D̂ =
D1⊗D2+D̂1⊗D̂2

2 , D1 = diag(U1V𝑇1 11) and D̂1 = diag(1𝑇1 U1V𝑇1 ) are the outdegree matrix
and indegree matrix of A∗1, respectively. D2 and D̂2 are defined in a similar way.

However, directly solving the above problem requires at least 𝑂 (𝑛2) time complexity, even with
approximation. To address this issue, we give the following lemma, which states the alignment
matrix S under the topology consistency (i.e., Eq. (3)) intrinsically consists of a low-rank structure,
thanks to the low-rank structure of two complete adjacency matrices.

Lemma 1. Low-Rank Structure of the Alignment Matrix S. Let ŝ be the solution of Eq. (3)
where A∗1 = U1V𝑇1 and A∗2 = U2V𝑇2 are two complete rank-𝑟 adjacency matrices. Let the alignment

matrix S be the scaled similarity matrix S = mat(D̂ŝ) and H be the prior similarity matrix, then if

𝛼 < 0.5, the alignment matrix can be expressed as S = 𝛼U2MU1 + (1 − 𝛼)H where M is an 𝑟2 × 𝑟1
matrix and 𝑟1, 𝑟2 are the ranks of A∗1 and A∗2, respectively.

Proof. Followed by Eq. (3), the closed-form solution of similarity matrix Ŝ can be computed by
using Woodbury matrix identity [31] as below

ŝ = (1 − 𝛼)D̂−1h + 𝛼 (1 − 𝛼)D̂−1UΛ−1V𝑇 D̂−1h (4)

where U = U1 ⊗ U2, V = V1 ⊗ V2, Λ = I − 𝛼V𝑇 D̂−1U.
First, we rewrite Λ−1 as follows. Since for any two matrices X,Y, the eigenvalues of their product

satisfies eig(XY) = eig(YX) [31], we obtain

|eig(𝛼V𝑇 D̂−1U) | = |eig(𝛼UV𝑇 D̂−1) |
≤ |eig(2𝛼UV𝑇 (D1 ⊗ D2)−1) |
= 2𝛼 |eig((U1V𝑇1 D−1

1 ) ⊗ (U2V𝑇2 D−1
2 )) |

Here, the term U1V𝑇1 D−1
1 represents a weighted directed network whose adjacency matrix has

eigenvalues within (−1, 1), so as the term U2V𝑇2 D−1
2 . Thus, if 𝛼 < 0.5, according to the spectrum

property of Kronecker product, we have

2𝛼 |eig((U1V𝑇1 D−1
1 ) ⊗ (U2V𝑇2 D−1

2 )) | < 1
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Then, we can use Neumann expansion on Λ−1 as

Λ−1 =

∞∑
𝑘=0
(2𝛼)𝑘 [V𝑇 (2D̂)−1U]𝑘 (5)

Next, we rewrite (2D̂)−1 as follows. Denote D̄1 = D1 + D̂1 and D̄2 = D2 + D̂2, we have
(2D̂)−1 = (D1 ⊗ D2 + D̂1 ⊗ D̂2)−1 = {(D̄1 ⊗ D̄2) [I − (D̄−1

1 ⊗ D̄−1
2 ) (D1 ⊗ D̂2 + D̂1 ⊗ D2)]}−1

= [I − (D̄−1
1 ⊗ D̄−1

2 ) (D1 ⊗ D̂2 + D̂1 ⊗ D2)]−1 (D̄−1
1 ⊗ D̄−1

2 )

=

∞∑
𝑗=0
[(D̄−1

1 D1) ⊗ (D̄−1
2 D̂2) + (D̄−1

1 D̂1) ⊗ (D̄−1
2 D2)] 𝑗 (D̄−1

1 ⊗ D̄−1
2 )

=

∞∑
𝑗=0

𝑗∑
𝑖=0

(
𝑗

𝑖

)
[(D̄−1

1 D1)𝑖 (D̄−1
1 D̂1) 𝑗−𝑖D̄−1

1 ] ⊗ [(D̄−1
2 D̂2)𝑖 (D̄−1

2 D2) 𝑗−𝑖D̄−1
2 ]

By substituting the above equation into Eq. (5), the matrix Λ−1 can be derived as

Λ−1 =

∞∑
𝑘=0

∞∑
𝑗=0

𝑗∑
𝑖=0
(2𝛼)𝑘

(
𝑗

𝑖

)𝑘
[V𝑇1 (D̄

−1
1 D1)𝑖 (D̄−1

1 D̂1) 𝑗−𝑖 D̄−1
1 U1]𝑘 ⊗ [V𝑇2 (D̄

−1
2 D̂2)𝑖 (D̄−1

2 D2) 𝑗−𝑖 D̄−1
2 U2]𝑘 (6)

Denote s = D̂ŝ and ĥ = D̂−1h. Armed with the Kronecker product property vec(ABC) =

(C𝑇 ⊗A)vec(B), by substituting Eq. (6) into Eq. (4), we obtain the alignment matrix S = mat(D̂ŝ) as

S = 𝛼U2MU𝑇1 + (1 − 𝛼)H (7)

where M is an 𝑟2 × 𝑟1 matrix and is computed by

M = (1−𝛼)
∞∑
𝑘=0

∞∑
𝑗=0

𝑗∑
𝑖=0

2𝑘𝛼𝑘
(
𝑗

𝑖

)𝑘
[V𝑇2 (D̄

−1
2 D̂2)𝑖 (D̄−1

2 D2) 𝑗−𝑖 D̄−1
2 U2]𝑘V𝑇2 ĤV1 [U𝑇1 (D̄

−1
1 D1)𝑖 (D̄−1

1 D̂1) 𝑗−𝑖 D̄−1
1 V1]𝑘

(8)
□

Remarks. Eq. (7) suggests that the alignment matrix S consists of two parts, including a low-rank
structure and an additive term H to reflect the prior knowledge and is a convex combination of
these two parts. Such a convex optimization follows Eq. (3) where a regularization term is added to
minimize the inconsistency between the alignment result and the prior information. Note that other
types of regularization in Eq. (3) can lead to more complex combinations with the prior knowledge
which may utilize both the reliable and the unreliable prior information in a better way. However,
we only consider Eq. (3) and Eq. (7) in this paper and leave the more complex combinations to
future works.

In practice, the prior knowledge matrix H is either low-rank (e.g., a rank-one uniform matrix) or
very sparse. Having this in mind, we will mainly focus on how to learn the true low-rank structure
part of S (i.e., U2MU1) from the input incomplete networks. This naturally leads to the following
effective strategy. First, we temporarily treat the low-rank structure part as the alignment matrix
to be solved in the optimization problems (i.e., S ≈ U2MU1). After U2,M,U1 are obtained, we can
then calibrate the result by averaging between the learned S and the prior knowledge H to further
emphasize the importance of the prior knowledge, i.e., S← (1 − 𝛼)H + 𝛼S. As we will show in the
next section, a direct benefit of this strategy is that we can reduce the overall complexity (for both
space and time cost) to be linear.

To take advantages of the low-rank structure of S under the above strategy, instead of minimizing
Eq. (3) regarding the similarity matrix Ŝ, we alternatively optimize the topology consistency
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Fig. 2. Network completion via the alignment.

on the low-rank structure of alignment matrix S = U2MU1 without the second regularization
term, i.e., minimizing s𝑇 (D̂ − A∗1 ⊗ A∗2)s. Given A∗1 = U1V𝑇1 , A∗2 = U2V𝑇2 , by using the properties
vec(A)𝑇 vec(B) = Tr(A𝑇B) and vec(ABC) = (C𝑇 ⊗ A)vec(B), network alignment across the
complete networks can be formulated as minimizing the following objective function:

𝐽2 (U1,V1,U2,V2,M) =
𝛾

2
s𝑇 vec(D2SD1 + D̂2SD̂1) − 𝛾s𝑇 vec(U2V𝑇2 SV1U𝑇1 )

=
𝛾

2
Tr(D2U2MU𝑇1 D1U1M𝑇U𝑇2 + D̂2U2MU𝑇1 D̂1U1M𝑇U𝑇2 )︸                                                                  ︷︷                                                                  ︸

alignment across complete networks

− 𝛾Tr(U2V𝑇2 U2MU𝑇1 V1U𝑇1 U1M𝑇U𝑇2 )︸                                      ︷︷                                      ︸
alignment across complete networks

(9)

3.2 Network Alignment Helps Network Completion.
Despite the effectiveness of the factorization-based network completion methods (i.e., Eq. (2)), in
some applications, the information of a single network alone might be insufficient to correctly
infer the missing edges. Meanwhile, the alignment across the two networks may provide extra
hints of how to infer the missing edges. To be specific, since the aligned nodes are likely to share
similar connectivity patterns, the observed existing edges in one network could potentially help
recover the missing edges in the other network via the alignment matrix. Figure 2 presents an
illustrative example. Here, node-𝑎 in G1 and node-𝑥 in G2 are aligned together, and the neighbor of
𝑥 (say node-𝑦) is aligned with the neighbor of 𝑎 (e.g., node-𝑏), which is not observed to connect
with 𝑎. If we perform the completion solely based on the observed information of G1, we might
probably conclude that the edge between 𝑎 and 𝑏 does not exist. However, the facts that (1) 𝑎 and
𝑥 are aligned, (2) 𝑏 and 𝑦 are aligned, and (3) there is an edge between 𝑥 and 𝑦 might provide an
auxiliary confidence about the existence of the edge between 𝑎 and 𝑏. In general, we can estimate
such auxiliary confidence of the existence of the edge between 𝑎 and 𝑏 in G1 as

A∗1 (𝑎, 𝑏) ≈
𝑛2∑
𝑥,𝑦

S(𝑎, 𝑥)S(𝑏,𝑦)A2 (𝑥,𝑦) = (S𝑇A2S) (𝑎, 𝑏) (10)

where S = U2MU𝑇1 is the alignment matrix learned from the topology consistency.
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In our experiments, we find that such auxiliary confidence is most powerful to estimate the
existence/absence of an edge (𝑎, 𝑏) when such an edge itself is not observed in G1 (i.e.,(𝑎, 𝑏) ∈ Ω̄1).
Mathematically, this can be formulated as the following objective function.

𝐽3 (U1,V1,U2,V2,M) =
𝛽

2
∥𝑃Ω̄1 (U1V𝑇1 − U1M𝑇U𝑇2 A2U2MU𝑇1 )∥2𝐹︸                                              ︷︷                                              ︸

completion of G1 based on the observed edges in G2

+𝛽
2
∥𝑃Ω̄2 (U2V𝑇2 − U2MU𝑇1 A1U1M𝑇U𝑇2 )∥2𝐹︸                                                ︷︷                                                ︸

completion of G2 based on the observed edges in G1

(11)

where Ω̄1 and Ω̄2 are the unobserved set of A1 and A2.

3.3 Overall Objective Function
We impose the nonnegativity constraints on all the variables U1,V1,U2,V2,M to guarantee that all
the entries in matrices A∗1,A

∗
2, S to be nonnegative. Combining Eq. (2), Eq. (9) and Eq. (11) together,

the overall optimization problem is formulated as

min
U1,V1,U2,V2,M

𝐽 (U1,V1,U2,V2,M) = 𝐽1 + 𝐽2 + 𝐽3

s.t U1,U2,V1,V2,M ≥ 0 (12)

4 PROPOSED OPTIMIZATION ALGORITHM
In this section, we first present the proposed algorithm to solve the optimization problem in Eq.
(12). Then, we analyze the proposed algorithm in terms of the correctness, the convergence and
the complexity .

4.1 Optimization Algorithm
Since the overall objective function Eq. (12) is not jointly convex, we optimize it by block coordinate
descent. That is, the objective function is alternatively minimized with respect to one variable
group (e.g., U1) while fixing the others once at a time. For the sake of conciseness, we only show
the minimization procedures over U1 and M in this section. Other variables such as V1,U2,V2 can
be solved in a similar way and we put the details in Appendix A.
First, we show the update algorithm over U1. The gradient of Eq. (2) with respect to U1 is

computed by

𝜕𝐽1

𝜕U1
= X1 − Y1 (13)

where

X1 = [PΩ1 ⊙ (U1V𝑇1 )]V1 + 𝜆U1

Y1 = (PΩ1 ⊙ A1)V1

and PΩ1 (𝑖, 𝑗) = 1 for (𝑖, 𝑗) ∈ Ω1, otherwise PΩ1 (𝑖, 𝑗) = 0.
As for Eq. (9), note that D1 = diag(U1V𝑇1 11) and D̂1 = diag(1𝑇1 U1V𝑇1 ) are also in terms of U1, thus

the partial gradient is computed by
𝜕𝐽2

𝜕U1
= X2 − Y2 (14)

where
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X2 =
𝛾

2
[(U1M𝑇U𝑇2 D2U2M) ⊙ U1]1𝑟1 1𝑇1 V1 +

𝛾

2
111𝑇𝑟1 [(M

𝑇U𝑇2 D̂2U2MU𝑇1 ) ⊙ U𝑇1 ]V1

+ 𝛾 (D1U1M𝑇U𝑇2 D2U2M + D̂1U1M𝑇U𝑇2 D̂2U2M)
Y2 = 𝛾V1U𝑇1 U1M𝑇U𝑇2 U2V𝑇2 U2M + 𝛾U1M𝑇U𝑇2 U2V𝑇2 U2MU𝑇1 V1 + 𝛾U1V𝑇1 U1M𝑇U𝑇2 V2U𝑇2 U2M

And the gradient of Eq. (11) over U1 is
𝜕𝐽3

𝜕U1
= X3 − Y3 (15)

where
X3 = 2𝛽 [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )]U1M𝑇U𝑇2 A2U2M + 𝛽 [PΩ̄1 ⊙ (U1V𝑇1 )]V1

+ 2𝛽A1U1M𝑇U𝑇2 [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )]U2M

Y3 = 𝛽 [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )]V1 + 𝛽 [PΩ̄1 ⊙ (U1V𝑇1 + V1U𝑇1 )]U1M𝑇U𝑇2 A2U2M

+ 𝛽A1U1M𝑇U𝑇2 [PΩ̄2 ⊙ (U2V𝑇2 + V2U𝑇2 )]U2M

and matrix PΩ̄2 (𝑖, 𝑗) = 1 for any (𝑖, 𝑗) ∉ Ω2.
A fixed-point solution of 𝜕𝐽

𝜕U1
= 0 under the nonnegativity constraint of U1 leads to the following

multiplicative update rule

U1 (𝑝, 𝑞) ← U1 (𝑝, 𝑞) 4

√
Y1 (𝑝, 𝑞) + Y2 (𝑝, 𝑞) + Y3 (𝑝, 𝑞)
X1 (𝑝, 𝑞) + X2 (𝑝, 𝑞) + X3 (𝑝, 𝑞)

(16)

Second, the optimization algorithm over M is given as below. The gradient of Eq. (9) w.r.t M can
be derived as

𝜕𝐽2

M
= X4 − Y4 (17)

where
X4 = 𝛾U𝑇2 D2U2MU𝑇1 D1U1 + 𝛾U𝑇2 D̂2U2MU𝑇1 D̂1U1

Y4 = 𝛾U𝑇2 U2V𝑇2 U2MU𝑇1 V1U𝑇1 U1 + 𝛾U𝑇2 V2U𝑇2 U2MU𝑇1 U1V𝑇1 U1

And the gradient of Eq. (11) w.r.t M is computed by
𝜕𝐽3

M
= X5 − Y5 (18)

where
X5 = 𝛽U𝑇2 A2U2MU𝑇1 [PΩ̄1 ⊙ (U1V𝑇1 + V1U𝑇1 )]U1

+ 𝛽U𝑇2 [PΩ̄2 ⊙ (U2V𝑇2 + V2U𝑇2 )]U2MU𝑇1 U𝑇1 A1U1

Y5 = 2𝛽U𝑇2 A2U2MU𝑇1 [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )]U1

+ 2𝛽U𝑇2 [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )]U2MU𝑇1 A1U1

Consequently, the fixed-point solution of 𝜕𝐽

𝜕M = 0 under the nonnegative constraint leads to the
following update rule

M(𝑝, 𝑞) ← M(𝑝, 𝑞) 4

√
Y4 (𝑝, 𝑞) + Y5 (𝑝, 𝑞)
X4 (𝑝, 𝑞) + X5 (𝑝, 𝑞)

(19)
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Algorithm 1 iNeAt: Incomplete Network Alignment.
Input: (1) the adjacency matrices A1, A2 of the incomplete networks G1, G2, (2) the optional

prior alignment preference H, (3) the rank sizes 𝑟1, 𝑟2, (3) the parameters 𝛼, 𝜆,𝛾, 𝛽 . and (4) the
maximum iteration number 𝑡max.

Output: (1) the alignment matrix S between G1 and G2, and (2) the complete adjacency matrices
A∗1,A

∗
2.

1: Initialize U1,V1,U2,V2 by Eq. (20), M by Eq. (21), 𝑡 = 1;
2: while not converge and 𝑡 ≤ 𝑡max do
3: Update U1 by Eq. (16);
4: Update V1 by Eq. (27);
5: Update U2 by Eq. (28);
6: Update V2 by Eq. (29);
7: Update M by Eq. (19);
8: Set 𝑡 ← 𝑡 + 1;
9: end while
10: A∗1 = U1V𝑇1 and A∗2 = U2V𝑇2 .
11: S = 𝛼U2MU𝑇1 + (1 − 𝛼)H.

Initialization. Since the optimization problem in Eq. (12) is not a joint convex problem, a good
initialization of each variable group could play an important role of obtaining a good final solution.
For U1 and U2, we initialize them by solving the symmetric nonnegative matrix factorization of A1
and A2, e.g., minimizing ∥A1−U1U𝑇1 ∥2𝐹 over U1 ≥ 0. Same as [9], we use the following multiplicative
update rule to obtain the solution

U1 ← U1 ⊙ [1 − 𝜖 + 𝜖
A1U1

U1 (U𝑇1 U1)
] (20)

where 𝜖 is suggested to be set to 0.5 in practice. Then we set V1 = U1 due to the symmetry of A1
and initialize U2,V2 similarly. As for the variable M, given the initial U1 = V1,U2 = V2, we can
simplify the computation of Eq. (8) and initialize M as

M = (1 − 𝛼)
𝐾∑
𝑘=0

𝛼𝑘+1 (U𝑇2 D−1
2 U2)𝑘U𝑇2 D−1

2 HD−1
1 U1 (U𝑇1 D−1

1 U1)𝑘 (21)

where the constant 𝐾 can be set to a relatively large number, e.g., 100.
Overall, the proposed algorithm is summarized in Algorithm 1. First, it initializes each variable

as line 1. Then, the algorithm alternatively updates each variable group one by one (line 3-7) until
it converges or the maximum iteration number 𝑡𝑚𝑎𝑥 is reached. The algorithm finally outputs the
complete networks A∗1,A

∗
2 (line 10), and the alignment matrix S as line 11.

4.2 Proof and Analysis
In this subsection, we provide the theoretical analysis of the updating rule of U1. We first prove that
the fixed-point solution of Eq. (16) satisfies the KKT condition. Then we analyze its convergence,
as well as its time and space complexity. The analyses and proofs for other variables are similar
and are omitted in the paper for brevity.

Theorem 1. Correctness of Eq. (16). At convergence, the fixed-point solution of Eq. (16) satisfies
the KKT condition.
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Proof. Let Σ ∈ R𝑛1×𝑟1 be the Lagrangian multiplier and the Lagrangian function of Eq. (12) be

𝐿(U1) = 𝐽 (U1) − Tr(Σ𝑇U1)

By setting the gradient of 𝐿 w.r.t U1 to 0, we obtain

Σ = X1 + X2 + X3 − Y1 − Y2 − Y3 (22)

The KKT complementary condition for the nonnegativity of U1 gives

(X1 + X2 + X3 − Y1 − Y2 − Y3) ⊙ U1 = 0 (23)

According to the updating rule Eq. (16), at convergence, we have for ∀𝑝, 𝑞,

U1 (𝑝, 𝑞) = U1 (𝑝, 𝑞) 4

√
Y1 + Y2 + Y3

X1 + X2 + X3
(24)

which is equivalent to
(X1 + X2 + X3 − Y1 − Y2 − Y3) ⊙ (U1)4 = 0 (25)

Eq. (23) and Eq. (25) are equivalent, so at convergence, Eq. (16) satisfies the KKT condition. □

Then, we show the convergence of updating U1 under Eq. (16). First, the following lemma gives
the auxiliary function for the objective function Eq. (12) w.r.t U1.

Lemma 2. Auxiliary function of 𝐽 (U1). Let 𝐽 (U1) denote all the terms in Eq. (12) that contains
U1, then the following function 𝑍 (U1, Ũ1)

𝑍 (U1, Ũ1) =
1
4

∑
𝑝,𝑞

[(PΩ1 ⊙ (Ũ1V𝑇1 ))V1] (𝑝, 𝑞)
U4

1 (𝑝, 𝑞) + Ũ4
1 (𝑝, 𝑞)

Ũ3
1 (𝑝, 𝑞)︸                                                              ︷︷                                                              ︸

𝑇 ′1

−
∑
𝑝,𝑞

[(PΩ1 ⊙ A1)V1] (𝑝, 𝑞)Ũ1 (𝑝, 𝑞) (1 + log
U1 (𝑝, 𝑞)
Ũ1 (𝑝, 𝑞)

)︸                                                                 ︷︷                                                                 ︸
𝑇 ′2

+ 𝜆
4

∑
𝑝,𝑞

Ũ1 (𝑝, 𝑞)
U4

1 (𝑝, 𝑞) + Ũ4
1 (𝑝, 𝑞)

Ũ3
1 (𝑝, 𝑞)︸                                      ︷︷                                      ︸

𝑇 ′3

+ 𝛾
12

∑
𝑝,𝑞

Z1 (𝑝, 𝑞)
3U4

1 (𝑝, 𝑞) + Ũ4
1 (𝑝, 𝑞)

Ũ3
1 (𝑝, 𝑞)︸                                         ︷︷                                         ︸

𝑇 ′4

+ 𝛾𝑇 ′5 +
𝛽

4

∑
𝑝,𝑞

[(PΩ̄1 ⊙ (Ũ1V𝑇1 ))V1] (𝑝, 𝑞)
U4

1 (𝑝, 𝑞) + Ũ4
1 (𝑝, 𝑞)

Ũ3
1 (𝑝, 𝑞)︸                                                               ︷︷                                                               ︸

𝑇 ′6

+ 𝛽
2

∑
𝑝,𝑞

Z2 (𝑝, 𝑞)
U4

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)︸                       ︷︷                       ︸
𝑇 ′7

+ 𝛽
2

∑
𝑝,𝑞

Z3 (𝑝, 𝑞)
U4

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)︸                       ︷︷                       ︸
𝑇 ′8

+𝛽𝑇 ′9 + 𝛽𝑇 ′10

where
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Z1 =
1
2
[(Ũ1M𝑇U𝑇2 D2U2M) ⊙ Ũ1]1𝑟1 1𝑇1 V1 +

1
2

111𝑇𝑟1 [(M
𝑇U𝑇2 D̂2U2MŨ1) ⊙ Ũ1]V1

+ diag(Ũ1V𝑇1 11)Ũ1M𝑇U𝑇2 D2U2M + diag(V1U𝑇1 11)Ũ1M𝑇U𝑇2 D̂2U2M

Z2 = [PΩ̄1 ⊙ (Ũ1M𝑇U𝑇2 A2U2MŨ𝑇1 )]Ũ1M𝑇U𝑇2 A2U2M

Z3 = A1Ũ1M𝑇U𝑇2 [PΩ̄2 ⊙ (U2MŨ𝑇1 A1Ũ1M𝑇U𝑇2 ]U2M

𝑇 ′5 = −
∑

𝑜,𝑝,𝑞,𝑟,𝑠

(M𝑇U𝑇2 U2V𝑇2 U2M) (𝑜, 𝑞)V1 (𝑝, 𝑟 )Ũ1 (𝑠, 𝑟 )Ũ1 (𝑠, 𝑜) × Ũ1 (𝑝, 𝑞)

(1 + log
U1 (𝑝, 𝑞)U1 (𝑠, 𝑟 )U1 (𝑠, 𝑜)
Ũ1 (𝑝, 𝑞)Ũ1 (𝑠, 𝑟 )Ũ1 (𝑠, 𝑜)

)

𝑇 ′9 = −
∑

𝑜,𝑝,𝑞,𝑟,𝑠

PΩ̄1 (𝑝, 𝑜)V1 (𝑜, 𝑞) (M𝑇U𝑇2 A2U2M) (𝑠, 𝑟 )Ũ1 (𝑜, 𝑠) × Ũ1 (𝑝, 𝑟 )Ũ1 (𝑝, 𝑞)

(1 + log
U1 (𝑝, 𝑞)U1 (𝑜, 𝑠)U1 (𝑝, 𝑟 )
Ũ1 (𝑝, 𝑞)Ũ1 (𝑜, 𝑠)Ũ1 (𝑝, 𝑟 )

)

𝑇 ′10 = −
∑

𝑜,𝑝,𝑞,𝑟,𝑠,𝑡

PΩ̄2 (𝑝, 𝑞) (U2V𝑇2 ) (𝑝, 𝑞) (U2M) (𝑝, 𝑟 )Ũ1 (𝑠, 𝑟 )A1 (𝑠, 𝑡)Ũ1 (𝑡, 𝑜) (M𝑇U𝑇2 ) (𝑜, 𝑞)

× (1 + log
U1 (𝑠, 𝑟 )U1 (𝑡, 𝑜)
Ũ1 (𝑠, 𝑟 )Ũ1 (𝑡, 𝑜)

)

is an auxiliary function of 𝐽 (U1) for any U1, Ũ1 ≥ 0 after removing some constant terms such that

𝑍 (U1, Ũ1) ≥ 𝐽 (U1) and 𝑍 (U1,U1) = 𝐽 (U1). And it is also a convex function w.r.t U1 and its global

minima is

U1 (𝑝, 𝑞) = Ũ1 (𝑝, 𝑞) 4

√
Ỹ1 (𝑝, 𝑞) + Ỹ2 (𝑝, 𝑞) + Ỹ3 (𝑝, 𝑞)
X̃1 (𝑝, 𝑞) + X̃2 (𝑝, 𝑞) + X̃3 (𝑝, 𝑞)

(26)

where X̃𝑖 , Ỹ𝑖 , 𝑖 = 1, 2, 3 are all in terms of Ũ1 while sharing the same formulas with X𝑖 ,Y𝑖 , 𝑖 = 1, 2, 3.

Proof. Refer the proof to Appendix B. □

Next, we show the convergence of updating U1 by Eq. (16) in the following theorem.

Theorem 2. Convergence of Eq. (16). When other variables are fixed, under the updating rule Eq.

(16), the objective function w.r.t U1 monotonically non-increases.

Proof. Denote U1 at iteration 𝑡 as U(𝑡 )1 . According to Lemma 2, the global minima U(𝑡+1)1 of the
auxiliary function is achieved by minimizing the function 𝑍 (U1,U

(𝑡 )
1 ) over U1, which leads to

𝑍 (U(𝑡+1)1 ,U(𝑡 )1 ) ≤ 𝑍 (U
(𝑡 )
1 ,U(𝑡 )1 ) = 𝐽 (U

(𝑡 )
1 )

Besides, based on Lemma 2, 𝐽 (U(𝑡+1)1 ) ≤ 𝑍 (U(𝑡+1)1 ,U(𝑡 )1 ) and therefore 𝐽 (U(𝑡+1)1 ) ≤ 𝐽 (U(𝑡 )1 ) which
means the objective function w.r.t. U1 is monotonically non-increasing. □

The time and space complexity of each updating iteration in Algorithm 1 are summarized
in Lemma 3. Note that by exploring the low-rank structure of the alignment matrix, the time
complexity is reduced to linear.

Lemma 3. Complexity of iNeAt. The time complexity of each update iteration in Algorithm 1

is 𝑂 (𝑛𝑟 2 +min{|Ω̄ |, |Ω |}𝑟 ), and the space complexity is 𝑂 (𝑛𝑟 +min{|Ω̄ |, |Ω |}) where 𝑛, |Ω |, |Ω̄ | are
the number of nodes, the number of observed and unobserved entries in two incomplete networks

respectively. And 𝑟 denotes the rank of networks.
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Proof. For time complexity, calculating the term X1,Y1,X3 and Y3 in each iteration has𝑂 (𝑛𝑟 2 +
𝑚𝑟 +min{|Ω̄ |, |Ω |}𝑟 ) time complexity and𝑂 (𝑚+𝑛𝑟 ) space complexity. Note that PΩ1 +PΩ̄1 = 1𝑛1×𝑛1 .
In this way, for example, X1 can be computed from either PΩ1 or PΩ̄1 . Thus, we use min{|Ω̄ |, |Ω |}
for the complexity analysis. For terms X2 and Y2, it takes 𝑂 (𝑛𝑟 2) time complexity and 𝑂 (𝑛𝑟 ) space
complexity. For other variables V1,U2,V2 and M, since the analyses are similar, we omit the analyses
for brevity. Overall, we can obtain the time and space complexity in the above lemma. □

We remark that the linear complexity is obtained in each updating iteration of Algorithm 1. If
we carry out line 10-11 in a straightforward way, it will incur an additional 𝑂 (𝑛2) cost due to the
multiplications between low-rank matrices (e.g., U1V𝑇1 , U2MU1, etc.) as well as the need to store
the potentially dense matrices (e.g., A∗1, S, etc). To address this issue, we can store the resulting
A∗1, A∗2 and S in a compact way by the corresponding low-rank matrices. Then when we access
a certain entry of the matrix (e.g. A∗1), we perform the vector-vector inner product between the
corresponding rows of U1 and V1.

5 EXPERIMENTAL RESULTS
In this section, we present the experimental results of the proposed algorithm iNeAt. We evaluate
our algorithm in the following two aspects:
• Effectiveness: How accurate is our algorithm for aligning incomplete networks? How effective
is our algorithm to recover missing edges by leveraging the alignment result?
• Efficiency: How fast and scalable is our algorithm?

5.1 Experimental Setup
Datasets.We evaluate the proposed algorithm on three types of real-world networks, including
the collaboration network, infrastructure network and social networks. The statistics of all the
datasets are summarized in Table 2.
• Collaboration Network: We use the collaboration network in the general relativity and quan-
tum cosmology (Gr-Qc) area from the e-print arXiv [18]. In the network, each node represents
an author and there exists an edge if two authors have co-authored at least one paper.
• Infrastructure Network: This dataset is a network of Autonomous Systems (AS) inferred from
Oregon route-view [18]. In the network, nodes are the routers, and edges represent the
peering information among routers.
• Social Network: We use the social network collected from Google+ [19]. In the network, nodes
are the users and an edge denotes that one user has the other user in her circles. We also
use the Youtube network [39] where nodes are the Youtube users and edges represent the
friendship among users.
• Gordian Networks: This dataset contains communication networks via different channels. In
particular, we aim to align the communication networks via phone (Channel 1) and emails
(Channel 2). Each node in both networks represents a person. An edge in Channel 1 network
indicates two people contact each other through phone whereas each edge in Channel
2 network represents two people send an email. There are 1,000 common nodes in both
networks that are used as the alignment ground-truth.

Based on these datasets except Gordian dataset, we construct four pairs of incomplete networks
for alignment evaluations by the following steps. For each dataset, we first generate a random
permutation matrix and use it to construct the second (permuted) network. Then, in each of these
two networks, we remove 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20% of the total number of edges uniformly
at random to generate the unobserved edges. For the Gordian dataset (Channel 1 and Channel 2),
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Table 2. Statistics of Datasets.

Category Network # of Nodes # of Edges
Collaboration Gr-Qc 5,241 14,484
Infrastructure Oregon 7,352 15,665

Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

Communication Gordian Channel 1 1,000 41,191
Communication Gordian Channel 2 1,003 4,627
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Fig. 3. (Higher is better.) Alignment accuracy vs. the number of unobserved edges in the networks.

we first compute the edge betweenness score for each edge, which is sum of the fraction of all pairs
of shortest paths through the edge [6]. Then we normalize the edge betweenness scores such that
they sum to 1, i.e.,

∑
(𝑢,𝑣) ∈G1 𝑠𝑏 ((𝑢, 𝑣)) = 1 where 𝑠𝑏 ((𝑢, 𝑣)) is the edge betweenness score of edge

(𝑢, 𝑣) and then we use the normalized scores as the probabilities to remove the corresponding edge
as an unobserved edge. We run our algorithm and other comparison methods in all the pairs of
incomplete networks.
Comparison Methods.

• Alignment. To evaluate the alignment performance of our proposed algorithm iNeAt3, we
compare it with the following existing network alignment algorithms, including (1) NetAlign
[3], (2) IsoRank [34], (3) FINAL-P+ [43]. Besides, in order to validate whether alignment and
imputation are mutually beneficial from each other, we use the low-rank networks completed
solely by Eq. (2) as the input networks for FINAL-P+. We name this method as FINAL-IMP.
We also show the alignment results by the degree similarity (DegSim), which is also used as
the prior knowledge matrix H of iNeAt.
• Completion. To evaluate the completion performance, we compare our algorithm with the
existing matrix completion methods which are for the single network completion task,
including (1) a matrix factorization method based on Eq. (2) (NMF-IMP), (2) an accelerated
proximal gradient based nuclear norm minimization method (NNLS) [36], (3) a Riemannian
trust-region based matrix completion method (RTRMC) [5].

Machines and Repeatability. All experiments are performed on a Windows machine with four
3.6GHz Intel Cores and 32G RAM. The algorithms are programmed with MATLAB using a single
thread.

3The code can be found in http://www.public.asu.edu/~szhan172/ineat.zip
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Fig. 4. (Higher is better.) Recovery rate vs. the number of unobserved edges in the networks.

5.2 Effectiveness Analysis
We first evaluate the alignment accuracy with different numbers of unobserved edges in the
incomplete networks. We use a heuristic greedy matching algorithm as the post processing step on
the alignment matrix to obtain the one-to-one mapping matrix between two input networks, then
compute the alignment accuracy with respect to the ground-truth (i.e., the permutation matrix).
The results are summarized in Figure 3. We have the following observations. First, we observe
that iNeAt outperforms the baseline methods with different numbers of unobserved edges. To
be specific, our method achieves an up to 30% alignment accuracy improvement, compared with
the baseline methods that directly align across two incomplete networks (i.e., NetAlign, IsoRank,
FINAL-P+). Second, the degree similarity (i.e., H) alone gives a very poor performance on the
alignment accuracy, whereas by averaging H and U2MU1, the alignment matrix (i.e., results of
iNeAt) provides a much better accuracy. This verifies the effectiveness of our strategy combining
the low-rank structure of alignment matrix and prior knowledge H. Third, the accuracy of iNeAt
is higher than that of FINAL-IMP, which indicates that solving the alignment and imputation tasks
simultaneously indeed achieves a better performance than the completion-then-alignment strategy.
Specifically, as Figure 3 (a) and Figure 3 (b) show, in some cases, the pure completion may introduce
too much noise in the incomplete networks and hence lead to an even worse alignment result than
that of other alignment baseline methods (those without performing network completion at all).

Second, to evaluate the effectiveness of iNeAt for network completion, we assume the missing
edges are recovered if the corresponding entries of the completed adjacency matrix are larger
than a certain threshold (e.g., set to be 0.3 in our paper). Then, we calculate the recovery rate
over the total number of missing edges. In addition, as the algorithms of network completion may
achieve different performance with different initializations, we repeat the algorithms for 20 runs
and present the mean edge recovery rates and variances. The results are shown in Figure 4. As
we can see, iNeAt has a higher recovery rate than other baseline methods, indicating that the
completion performance is indeed improved by leveraging the alignment across two networks.
Besides, the network completion performance of our algorithms are not sensitive to the algorithm
initializations. For NNLS and RTRMC baseline methods, we did not observe any variances.

Third, we study how different parameters affect the alignment accuracy. In our experiments, we
mainly study three parameters, including (1) 𝛾 which controls the importance of alignment task,
(2) 𝛽 which controls the importance of cross-network completion task, and (3) 𝑟 which is the rank
of the complete network. The results are shown in Figure 5. As we can see, the alignment accuracy
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Fig. 5. Parameter study on collaboration networks with 5% unobserved edges: study the effect of the parame-
ters 𝛾 , 𝛽 , rank 𝑟 and 𝛼 in terms of alignment accuracy.

is stable within a wide range of parameter settings. Besides, Figure 5 (c) suggests that a relatively
small rank might be sufficient to achieve a satisfactory alignment performance. We also observe in
Figure 5 (d) that (1) by leveraging the combination of both U2MU𝑇1 and the prior information H can
significantly improve the alignment performance, and (2) 𝛼 = 0.5 leads to better results in most
cases.

5.3 Efficiency Analysis
Quality-Speed Trade-off. In order to evaluate the trade-off between the effectiveness and effi-
ciency of our method, we measure the quality from two aspects, including the quality of alignment
and that of network completion. Here, we show the trade-off results on the collaboration network
with 10% unobserved edges in Figure 6. As we can see in Figure 6 (a), the running time of our
method iNeAt is slightly higher than IsoRank and FINAL-P+, but it achieves a 15%-25% alignment
accuracy improvement across the incomplete networks. Meanwhile, our method is much faster
than NetAlign.

On the other hand, to evaluate the quality of network completion, note that the running time is
the time for completing two incomplete networks. As Figure 6 (b) shows, iNeAt obtains a better
recovery rate and less running time. To be specific, compared with NMF-IMP, iNeAt can recover
10% more missing edges with a similar running time. Besides, iNeAt achieves a slightly better
recovery rate and a much faster speed than NNLS and RTRMC.

Scalability.We use the largest dataset (Youtube) to study the scalability of our proposed method
iNeAt (i.e., running time vs. size of the network). Here, we use the same method to extract and
construct several pairs of incomplete subgraphs with different sizes from the entire network. As
we can see from Figure 7, the running time of the algorithm is linear w.r.t the number of nodes in
the networks which is consistent with our time complexity analysis.

6 RELATEDWORK
Network Alignment. In general, network alignment has two categories, i.e., local alignment
and global alignment. Among others, local network alignment aims to uncover the alignment
among small regions across multiple networks, such as motifs, small subgraphs and so on. Some
recent works include [4, 26, 30]. Nevertheless, local network alignment might be too restrictive
to effectively find the node correspondence. On the other side, many global network alignment
algorithms that targets to find node alignment, are based on the topology consistency. For example,
one early well-known approach IsoRank computes the cross-network pairwise topology similarities
by propagating the similarities of their neighboring node pairs and it is shown that this can be
formulated as a random-walk propagation procedure in the Kronecker product graph [34]. In
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Fig. 6. Quality-speed results on the collaboration network with 10% unobserved edges.
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addition, IsoRankN [20] extends the original IsoRank algorithm by using PageRank-Nibble [1] to
align multiple networks. BigAlign [16] and UMA [42] both assume that one network is a noisy
permutation of the other network, whereas [42] is generalized to align multiple networks by adding
the transitivity constraints. NetAlign formulates the network alignment problem as an optimization
problem to maximize the number of aligned neighboring node pairs [3] and solve it based on a
belief-propagation heuristic.
More recently, Liu et al. propose an algorithm that learns the embedding of the nodes while

making the aligned nodes are closed to each other in the embedding space [23]. Then the distances
among the embedding vectors of nodes are used to measure the probabilities that nodes are aligned.
Another recent embedding-based alignment method for attributed networks is proposed in [14].
However, these embedding-based methods implicitly suffer from the space disparity. To address
this issue, Du et al. propose an embedding based methodMrMine that forces the embedding vectors
of different objects of the networks at different resolutions to lie in the same space [11]. In addition,
Zhang et al. propose to mitigate this issue by postprocessing the node embedding vectors by
a non-rigid point-set registration [45]. Moreover, Vijayan et al. proposes MAGNA++ [38] that
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simultaneously maximizes the node conservation and edge conservation which are widely used in
bioinformatics. Other network alignment algorithms proposed in the bioinformatics community
includeHubAlign [13],Natelie [12], L-GRAAL [25], etc. However, most of these methods only assume
the global consistency in the network topology and possibly leverage the attribute information by
calculating the attribute similarity matrix as the prior alignment matrix. One potential drawback of
these methods is not considering the consistency in the attributes of the networks.

Some early works in another relevant topic (i.e., anchor link prediction), which use both structural
information and attribute information to map users across networks, include [15, 40]. A recent work
COSNET formulates the local consistency among the attributes of each node and the global topology
consistency, as well as the transitivity property into an energy-based model to find the alignment
across multiple attributed networks [46]. However, these methods are all supervised and require
the exact alignment relationships as the training data. On the other side, Zhang et al. propose an
attributed network alignment algorithm by adopting both the topological and attribute consistency
principles [43]. This work formulates these consistency principles into a convex quadratic problem
and propose a fixed-point solution to solve it. Du et al. an efficient solver based on Krylov subspace
to accelerate the algorithm [10]. Chen et al. [8] propose a community-based alignment methods
that can not only leverage the node attributes, but also find both the node-level alignment and the
community-level alignment. However, most, if not all, of the existing methods implicitly assume
that the input networks are complete without missing edges.

Network Completion. On the other side, since the real-world networks are often incomplete,
the network completion task is often the very first step prior to many applications in order to
gain a better performance. Kim et al. propose a network completion method based on expectation
maximization (EM) that can add the missing nodes and edges under the assumption that networks
follow the Kronecker graph model [17]. Another work proposed by Masrour et al. decouples
the network completion from transduction so that the node similarity matrix can be efficiently
leveraged as the side information [27]. Soundarajan et al. study to reduce the incompleteness of the
input network by a careful node selection to probe nodes [35]. In addition, inferring the missing
edges in the incomplete network can be considered as an adjacency matrix completion problem,
and hence the network completion problem can be naturally solved by many matrix completion
approaches. Among them, one well-known method is based on singular value thresholding (SVT)
which iteratively shrinkages the singular values to minimize the nuclear norm [7]. In order to
speed up the completion process, Toh and Yun propose an accelerated proximal gradient algorithm
to solve the nuclear norm regularized linear least squares problem [36]. Besides, by exploiting
the geometry of the low-rank structure constraint, a first-order and second-order Riemannian
trust-region approach is proposed to solve the formulated optimization problem on the Grassmann
manifold [5]. [37] utilizes graph auto-encoder for matrix completion, or specifically for bipartite
network completion. However, all these methods aim to complete a single network once at a time.
On the other hand, there are some recent work to complete multiple aligned networks by tensor
completion [22, 24]. Nonetheless, how these input networks are aligned at the first place was not
answered in these work.

Another hot topic related to network completion is the link prediction problem [21]. Miller et al.
propose a Beysian nonparametric latent feature model to predict the links in the relational data
[29]. [28] proposes to use the supervised matrix factorization to obtain the latent features and then
predict links by combining latent features with the explicit node and edge features. Barbieri et al.
propose a stochastic topic model which can not only predict the links to be recommended, but
also explain why the links are predicted [2]. In [41], Zhang et al. study the link prediction problem
across multiple aligned networks and formulate it as a sparse low-rank matrix completion problem.
This is different from iNeAt where no alignment are known apriori.
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7 CONCLUSION
In the era of big data, the multi-sourced and incomplete characteristics often co-exist in many real
networks. Nonetheless, the state-of-the-arts has been largely addressing them in parallel. In this
paper, we propose to jointly address network alignment and network completion so that the two
tasks can mutually benefit from each other. We formulate incomplete network alignment problem
as an optimization problem and propose a multiplicative update algorithm (iNeAt) to solve it.
The proposed algorithm is proved to converge to the KKT fixed point with a linear complexity in
both time and space. To our best knowledge, the proposed iNeAt algorithm is the first network
alignment algorithm with a provable linear complexity. The empirical evaluations demonstrate
the effectiveness and efficiency of the proposed iNeAt algorithm. Specially, it (1) improves the
alignment accuracy by up to 30% over the existing network alignment methods, in the meanwhile
leads a better imputation outcome; and (2) achieves a good quality-speed balance and scales linearly
w.r.t the number of nodes in the networks. Future work includes extending our algorithm to handle
attributed networks and other ways to leverage the prior knowledge.

8 ACKNOWLEDGEMENT
This work is supported by National Science Foundation under grant No. 1947135, and 1715385, by
the NSF Program on Fairness in AI in collaboration with Amazon under award No. 1939725, by the
United States Air Force and DARPA under contract number FA8750-17-C-0153 4, Department of
Homeland Security under Grant Award Number 2017-ST-061-QA0001. The content of the informa-
tion in this document does not necessarily reflect the position or the policy of the Government
or Amazon, and no official endorsement should be inferred. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation here on.

REFERENCES
[1] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using pagerank vectors. In Foundations of

Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE, 475–486.
[2] Nicola Barbieri, Francesco Bonchi, andGiuseppeManco. 2014. Who to follow andwhy: link predictionwith explanations.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 1266–
1275.

[3] Mohsen Bayati, David F Gleich, Amin Saberi, and Ying Wang. 2013. Message-passing algorithms for sparse network
alignment. ACM Transactions on Knowledge Discovery from Data (TKDD) 7, 1 (2013), 3.

[4] Johannes Berg and Michael Lässig. 2004. Local graph alignment and motif search in biological networks. Proceedings
of the National Academy of Sciences of the United States of America 101, 41 (2004), 14689–14694.

[5] Nicolas Boumal and Pierre-antoine Absil. 2011. RTRMC: A Riemannian trust-region method for low-rank matrix
completion. In Advances in neural information processing systems. 406–414.

[6] Ulrik Brandes. 2008. On variants of shortest-path betweenness centrality and their generic computation. Social

Networks 30, 2 (2008), 136–145.
[7] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. 2010. A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization 20, 4 (2010), 1956–1982.
[8] Zheng Chen, Xinli Yu, Bo Song, Jianliang Gao, Xiaohua Hu, and Wei-Shih Yang. 2017. Community-Based Network

Alignment for Large Attributed Network. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management. ACM, 587–596.
[9] Chris Ding, Xiaofeng He, and Horst D Simon. 2005. On the equivalence of nonnegative matrix factorization and

spectral clustering. In Proceedings of the 2005 SIAM International Conference on Data Mining. SIAM, 606–610.
[10] Boxin Du and Hanghang Tong. 2018. FASTEN: Fast Sylvester equation solver for graph mining. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1339–1347.
[11] Boxin Du and Hanghang Tong. 2019. MrMine: Multi-resolution Multi-network Embedding. In Proceedings of the 28th

ACM International Conference on Information and Knowledge Management. 479–488.

4Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: December 2018.



Incomplete Network Alignment: Problem Definitions and Fast Solutions 39:21

[12] Mohammed El-Kebir, Jaap Heringa, and Gunnar W Klau. 2015. Natalie 2.0: Sparse global network alignment as a
special case of quadratic assignment. Algorithms 8, 4 (2015), 1035–1051.

[13] Somaye Hashemifar and Jinbo Xu. 2014. Hubalign: an accurate and efficient method for global alignment of protein–
protein interaction networks. Bioinformatics 30, 17 (2014), i438–i444.

[14] Mark Heimann, Haoming Shen, and Danai Koutra. 2018. Node Representation Learning for Multiple Networks: The
Case of Graph Alignment. arXiv preprint arXiv:1802.06257 (2018).

[15] Xiangnan Kong, Jiawei Zhang, and Philip S Yu. 2013. Inferring anchor links across multiple heterogeneous social
networks. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management. ACM,
179–188.

[16] Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast bipartite graph alignment. In 2013 IEEE 13th

International Conference on Data Mining. IEEE, 389–398.
[17] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010. Kronecker

graphs: An approach to modeling networks. Journal of Machine Learning Research 11, Feb (2010), 985–1042.
[18] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification and shrinking diameters.

ACM Transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 2.
[19] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in ego networks. In Advances in neural

information processing systems. 539–547.
[20] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger. 2009. IsoRankN: spectral methods for

global alignment of multiple protein networks. Bioinformatics 25, 12 (2009), i253–i258.
[21] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. journal of the Association

for Information Science and Technology 58, 7 (2007), 1019–1031.
[22] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. 2013. Tensor completion for estimating missing values in

visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 208–220.
[23] Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across Social Networks Using Network

Embedding.. In IJCAI. 1774–1780.
[24] Yuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, and Hanghang Tong. 2014. Factor matrix trace norm

minimization for low-rank tensor completion. In Proceedings of the 2014 SIAM International Conference on Data Mining.
SIAM, 866–874.

[25] Noël Malod-Dognin and Nataša Pržulj. 2015. L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics 31,
13 (2015), 2182–2189.

[26] Hazel N Manners, Ahed Elmsallati, Pietro H Guzzi, Swarup Roy, and Jugal K Kalita. 2017. Performing Local Network
Alignment by Ensembling Global Aligners. In 2017 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM). IEEE, 1316–1323.
[27] FarzanMasrour, Iman Barjesteh, Rana Forsati, Abdol-Hossein Esfahanian, andHayder Radha. 2015. Network completion

with node similarity: A matrix completion approach with provable guarantees. In Advances in Social Networks Analysis

and Mining (ASONAM), 2015 IEEE/ACM International Conference on. IEEE, 302–307.
[28] Aditya Krishna Menon and Charles Elkan. 2011. Link prediction via matrix factorization. In Joint european conference

on machine learning and knowledge discovery in databases. Springer, 437–452.
[29] Kurt Miller, Michael I Jordan, and Thomas L Griffiths. 2009. Nonparametric latent feature models for link prediction.

In Advances in neural information processing systems. 1276–1284.
[30] Marco Mina and Pietro Hiram Guzzi. 2014. Improving the robustness of local network alignment: design and extensive

assessment of a markov clustering-based approach. IEEE/ACMTransactions on Computational Biology and Bioinformatics

(TCBB) 11, 3 (2014), 561–572.
[31] Michael Syskind Pedersen, Bill Baxter, Brian Templeton, Christian Rishøj, Douglas L Theobald, Esben Hoeghrasmussen,

Glynne Casteel, Jun Bin Gao, Kamil Dedecius, and Korbinian Strim. 2008. The Matrix Cookbook. (2008).
[32] Benjamin Recht. 2011. A simpler approach to matrix completion. Journal of Machine Learning Research 12, Dec (2011),

3413–3430.
[33] Jasson DM Rennie and Nathan Srebro. 2005. Fast maximum margin matrix factorization for collaborative prediction.

In Proceedings of the 22nd international conference on Machine learning. ACM, 713–719.
[34] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple protein interaction networks with

application to functional orthology detection. Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–
12768.

[35] Sucheta Soundarajan, Tina Eliassi-Rad, Brian Gallagher, and Ali Pinar. 2016. MaxReach: Reducing network incomplete-
ness through node probes. In Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International

Conference on. IEEE, 152–157.
[36] Kim-Chuan Toh and Sangwoon Yun. 2010. An accelerated proximal gradient algorithm for nuclear norm regularized

linear least squares problems. Pacific Journal of optimization 6, 615-640 (2010), 15.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: December 2018.



39:22 Zhang, S. et al

[37] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph Convolutional Matrix Completion. stat 1050
(2017), 7.

[38] Vipin Vijayan, Vikram Saraph, and TMilenković. 2015. MAGNA++:Maximizing Accuracy in Global Network Alignment
via both node and edge conservation. Bioinformatics 31, 14 (2015), 2409–2411.

[39] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network communities based on ground-truth. Knowledge
and Information Systems 42, 1 (2015), 181–213.

[40] Reza Zafarani and Huan Liu. 2013. Connecting users across social media sites: a behavioral-modeling approach. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 41–49.

[41] Jiawei Zhang, Jianhui Chen, Shi Zhi, Yi Chang, S Yu Philip, and Jiawei Han. 2017. Link prediction across aligned
networks with sparse and low rank matrix estimation. In Data Engineering (ICDE), 2017 IEEE 33rd International

Conference on. IEEE, 971–982.
[42] Jiawei Zhang and S Yu Philip. 2015. Multiple anonymized social networks alignment. In Data Mining (ICDM), 2015

IEEE International Conference on. IEEE, 599–608.
[43] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment. In Proceedings of the 22th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM.
[44] Si Zhang and Hanghang Tong. 2018. Attributed Network Alignment: Problem Definitions and Fast Solutions. IEEE

Transactions on Knowledge and Data Engineering (2018).
[45] Si Zhang, Hanghang Tong, Jiejun Xu, Yifan Hu, and Ross Maciejewski. 2019. Origin: Non-Rigid Network Alignment.

In 2019 IEEE International Conference on Big Data (Big Data). IEEE.
[46] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S Yu. 2015. Cosnet: connecting heterogeneous social networks

with local and global consistency. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 1485–1494.

A UPDATE RULE OF V1,U2,V2

Similarly, the gradient of Eq. (2) in terms of V1 is computed by 𝜕𝐽1
𝜕V1

= X6 − Y6 where

X6 = [PΩ1 ⊙ (V1U𝑇1 )]U1 + 𝜆V1

Y6 = (PΩ1 ⊙ A1)U1

The partial gradient of Eq. (9) w.r.t. V1 is computed by 𝜕𝐽2
𝜕V1

= X7 − Y7 where

X7 =
𝛾

2
111𝑇𝑟1 [(M

𝑇U𝑇2 D2U2MU𝑇1 ) ⊙ U𝑇1 ]U1 +
𝛾

2
[(U1M𝑇U𝑇2 D̂2U2M) ⊙ U1]1𝑟1 1𝑇1 U1

Y7 = 𝛾U1M𝑇U𝑇2 V2U𝑇2 U2M

And 𝜕𝐽3
𝜕V1

is computed by 𝜕𝐽3
𝜕V1

= X8 − Y8 where

X8 = 𝛽 [PΩ̄1 ⊙ (V1U𝑇1 )]U1

Y8 = 𝛽 [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )]U1

The fixed-point solution of 𝜕𝐽V1
= 0 under the nonnegativity constraint of V1 leads to the following

multiplicative update rule

V1 (𝑝, 𝑞) ← V1 (𝑝, 𝑞) 4

√
Y6 (𝑝, 𝑞) + Y7 (𝑝, 𝑞) + Y8 (𝑝, 𝑞)
X6 (𝑝, 𝑞) + X7 (𝑝, 𝑞) + X8 (𝑝, 𝑞)

(27)

The gradient of Eq. (2) w.r.t. U2 is computed by 𝜕𝐽1
𝜕U2

= X9 − Y9 where

X9 = [PΩ1 ⊙ (U2V𝑇2 )]V2 + 𝜆U2

Y9 = (PΩ1 ⊙ A2)V2
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For Eq. (9), its gradient over U2 can be derived as 𝜕𝐽2
𝜕U2

= X10 − Y10 where

X10 =
𝛾

2
[U2MU𝑇1 D1U1M𝑇 ) ⊙ U2]1𝑟2 1𝑇2 V2 +

𝛾

2
121𝑇𝑟2 [(MU𝑇1 D̂1U1M𝑇U𝑇2 ) ⊙ U𝑇2 ]

+ 𝛾 (𝛾D2U2MU𝑇1 D1U1M𝑇 + D̂2U2MU𝑇1 D̂1U1M𝑇 )
Y10 = 𝛾U2MU𝑇1 U1V𝑇1 U1M𝑇U𝑇2 V2 + 𝛾V2U𝑇2 U2MU𝑇1 U1V𝑇1 U1M𝑇 + 𝛾U2V𝑇2 U2MU𝑇1 V1U𝑇1 U1M𝑇

The partial gradient of Eq. (11) w.r.t. U2 is computed by 𝜕𝐽3
𝜕U2

= X11 − Y11 where

X11 = 2𝛽 [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )]U2MU𝑇1 A1U1M𝑇 + 𝛽 [PΩ̄2 ⊙ (U2V𝑇2 )]V2

+ 2𝛽A2U2MU𝑇1 [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )]U1M𝑇

Y11 = 𝛽 [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )]V2 + 𝛽 [PΩ̄2 ⊙ (U2V𝑇2 + V2U𝑇2 )]U2MU𝑇1 A1U1M𝑇

+ 𝛽A2U2MU𝑇1 [PΩ̄1 ⊙ (U1V𝑇1 + V1U𝑇1 )]U1M𝑇

In this way, the fixed-point solution of 𝜕𝐽

𝜕U2
= 0 under the nonnegativity constraint of U2 gives the

following multiplicative update rule

U2 (𝑝, 𝑞) ← U2 (𝑝, 𝑞) 4

√
Y9 (𝑝, 𝑞) + Y10 (𝑝, 𝑞) + Y11 (𝑝, 𝑞)
X9 (𝑝, 𝑞) + X10 (𝑝, 𝑞) + X11 (𝑝, 𝑞)

(28)

The gradient of Eq. (2) w.r.t. V2 is computed by 𝜕𝐽1
𝜕V2

= X12 − Y12 where

X12 = [PΩ2 ⊙ (U2V𝑇2 )]U2 + 𝜆V2

Y12 = (PΩ2 ⊙ A2)U2

The gradient of Eq. (9) over V2 is computed by 𝜕𝐽2
𝜕V2

= X13 − Y13 where

X13 =
𝛾

2
121𝑇𝑟2 [(MU𝑇1 D1U1M𝑇U𝑇2 ) ⊙ U𝑇2 ]U2 +

𝛾

2
[(U2MU𝑇1 D̂1U1M𝑇 ) ⊙ U2]1𝑟2 1𝑇2 U2

Y13 = 𝛾U2MU𝑇1 V1U𝑇1 U1M𝑇U𝑇2 U2

And the gradient of Eq. (11) w.r.t. V2 is 𝜕𝐽3
𝜕V2

= X14 − Y14 where

X14 = 𝛽 [PΩ̄2 ⊙ (V2U𝑇2 )]U2

Y14 = 𝛽 [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )]U2

In this way, the fixed-point solution of 𝜕𝐽

𝜕V2
= 0 under the nonnegativity constraint of V2 leads to

the multiplicative update rule as

V2 (𝑝, 𝑞) ← V2 (𝑝, 𝑞) 4

√
Y12 (𝑝, 𝑞) + Y13 (𝑝, 𝑞) + Y14 (𝑝, 𝑞)
X12 (𝑝, 𝑞) + X13 (𝑝, 𝑞) + X14 (𝑝, 𝑞)

(29)

B PROOF OF LEMMA 2
Proof. First, we prove that for any nonnegative U1, Ũ1, we have 𝑍 (U1, Ũ1) ≥ 𝐽 (U1). Recall that

the objective function w.r.t. U1 contains three parts, i.e., 𝐽 (U1) = 𝐽1 (U1) + 𝐽2 (U1) + 𝐽3 (U1). For
𝐽1 (U1), after removing the constant terms w.r.t. U1, we have

𝐽1 (U1) =
1
2
∥PΩ1 ⊙ (U1V𝑇1 )∥2𝐹︸                   ︷︷                   ︸

𝑇1

− Tr(A1 [PΩ1 ⊙ (V1U𝑇1 )])︸                            ︷︷                            ︸
𝑇2

+ 𝜆
2
∥U1∥2𝐹︸   ︷︷   ︸
𝑇3
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Similarly, we have the following for 𝐽2 (U1) and 𝐽3 (U1)

𝐽2 (U1) =
𝛾

2
Tr(U𝑇1 D1U1M𝑇U𝑇2 D2U2M + U𝑇1 D̂1U1M𝑇U𝑇2 D̂2U2M)︸                                                                  ︷︷                                                                  ︸

𝑇4

−𝛾Tr(U2V𝑇2 U2MU𝑇1 V1U𝑇1 V1U𝑇1 U1MU𝑇2 )︸                                              ︷︷                                              ︸
𝑇5

𝐽3 (U1) =
𝛽

2
∥PΩ̄1 ⊙ (U1V𝑇1 )∥2𝐹︸                   ︷︷                   ︸

𝑇6

+ 𝛽
2
∥PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )∥2𝐹︸                                      ︷︷                                      ︸

𝑇7

+ 𝛽
2
∥PΩ̄2 ⊙ (U2MU𝑇1 A1M𝑇U𝑇2 )∥2𝐹︸                                   ︷︷                                   ︸

𝑇8

−𝛽Tr( [PΩ̄1 ⊙ (U1V𝑇1 )] [PΩ̄1 ⊙ (U1M𝑇U𝑇2 A2U2MU𝑇1 )])︸                                                                  ︷︷                                                                  ︸
𝑇9

−𝛽Tr( [PΩ̄2 ⊙ (U2V𝑇2 )] [PΩ̄2 ⊙ (U2MU𝑇1 A1U1M𝑇U𝑇2 )])︸                                                                  ︷︷                                                                  ︸
𝑇10

Now we prove that 𝑇 ′𝑖 ≥ 𝑇𝑖 for 𝑖 = 1, · · · , 10 term by term. By the definition of PΩ1 and its
symmetry, PΩ1 = P𝑇Ω1

= PΩ1 ⊙ PΩ1 . Let U1 (𝑝, 𝑞) = Ũ1 (𝑝, 𝑞)Q(𝑝, 𝑞), ∀𝑝, 𝑞, we have

𝑇 ′1 ≥
1
2

∑
𝑝,𝑞

[(PΩ1 ⊙ PΩ1 (Ũ1V𝑇1 ))V1] (𝑝, 𝑞)
U2

1 (𝑝, 𝑞)
Ũ1 (𝑝, 𝑞)

=
1
2

∑
𝑝,𝑞,𝑟,𝑠

P2
Ω1
(𝑝, 𝑟 )V1 (𝑟, 𝑡)V1 (𝑟, 𝑞)Ũ1 (𝑝, 𝑡)Ũ1 (𝑝, 𝑞)Q2 (𝑝, 𝑞)

=
1
2

∑
𝑝,𝑞,𝑟,𝑠

P2
Ω1
(𝑝, 𝑟 )V1 (𝑟, 𝑡)V1 (𝑟, 𝑞)Ũ1 (𝑝, 𝑡)Ũ1 (𝑝, 𝑞) (

Q2 (𝑝, 𝑡) + Q2 (𝑝, 𝑞)
2

)

≥ 1
2

∑
𝑝,𝑞,𝑟,𝑠

P2
Ω1
(𝑝, 𝑟 )V1 (𝑟, 𝑡)V1 (𝑟, 𝑞)Ũ1 (𝑝, 𝑡)Ũ1 (𝑝, 𝑞)Q(𝑝, 𝑡)Q(𝑝, 𝑞)

=
1
2

∑
𝑝,𝑞,𝑟,𝑠

P2
Ω1
(𝑝, 𝑟 )V1 (𝑟, 𝑡)V1 (𝑟, 𝑞)U1 (𝑝, 𝑡)U1 (𝑝, 𝑞) = 𝑇1

where the first and fourth line is due to 𝑎2 +𝑏2 ≥ 2𝑎𝑏 and the third line is due to the equivalence
by switching 𝑡 ⇔ 𝑞. We can prove 𝑇 ′6 ≥ 𝑇6 in the same way.
Next, by using the inequality 𝑧 ≥ 1 + log 𝑧, ∀𝑧 > 0, we can easily prove 𝑇 ′2 ≥ 𝑇2. And similarly,

𝑇 ′5 ≥ 𝑇5,𝑇
′

9 ≥ 𝑇9 and 𝑇 ′10 ≥ 𝑇10.
For 𝑇 ′3 , we have 𝑇

′
3 ≥ 𝜆

2
∑
𝑝,𝑞 U2

1 (𝑝, 𝑞) = 𝑇3.
To show 𝑇 ′6 ≥ 𝑇6, we first consider the first term of 𝑇6. By denoting X = M𝑇U𝑇2 D2U2M which is

symmetric, we have
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𝛾

2
Tr(D1U1XU𝑇1 ) =

𝛾

2

∑
𝑝,𝑞,𝑟,𝑠

U1 (𝑝, 𝑟 ) (V𝑇1 11) (𝑟, 1)U1 (𝑝, 𝑠)X(𝑠, 𝑞)U1 (𝑝, 𝑞)

=
𝛾

2

∑
𝑝,𝑞,𝑟,𝑠

Ũ1 (𝑝, 𝑟 ) (V𝑇1 11) (𝑟, 1)Ũ1 (𝑝, 𝑠)X(𝑠, 𝑞)Ũ1 (𝑝, 𝑞)Q(𝑝, 𝑟 )Q(𝑝, 𝑠)Q(𝑝, 𝑞)

≤ 𝛾
2

∑
𝑝,𝑞,𝑟,𝑠

Ũ1 (𝑝, 𝑟 ) (V𝑇1 11) (𝑟, 1)Ũ1 (𝑝, 𝑠)X(𝑠, 𝑞)Ũ1 (𝑝, 𝑞) (
Q(𝑝, 𝑟 )3 + Q(𝑝, 𝑠)3 + Q(𝑝, 𝑞)3

3
)

=
𝛾

6

∑
𝑝,𝑟

[((Ũ1X) ⊙ Ũ1)1𝑟1 1𝑇1 V1] (𝑝, 𝑟 )
U3

1 (𝑝, 𝑟 )Ũ1 (𝑝, 𝑟 )
Ũ3

1 (𝑝, 𝑟 )
+ 𝛾

3

∑
𝑝,𝑞

[diag(Ũ1V𝑇1 1)Ũ1X] (𝑝, 𝑞)
U3

1 (𝑝, 𝑞)Ũ1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)

≤ 𝛾

12

∑
𝑝,𝑞

[ 1
2
((Ũ1X) ⊙ Ũ1)1𝑟1 1𝑇1 V1 + diag(Ũ1V𝑇1 1)Ũ1X] (𝑝, 𝑞)

3U4
1 (𝑝, 𝑞) + Ũ4

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)
(30)

Similarly, by denoting X̂ = M𝑇U𝑇2 D̂2U2M, we can show that

𝛾

2
Tr(D̂1U1X̂U𝑇1 ) ≤

𝛾

12

∑
𝑝,𝑞

[ 1
2

111𝑇𝑟1 (Ũ
𝑇
1 ⊙ (𝑋 Ũ𝑇1 ))V1 + diag(V1Ũ𝑇1 11)Ũ1X̂] (𝑝, 𝑞)

3U4
1 (𝑝, 𝑞) + Ũ4

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)
(31)

Then by adding Eq. (30) and Eq. (31) together, we can obtain 𝑇6 ≤ 𝑇 ′6 .
Denote T = M𝑇U𝑇2 A2U2M, we have

𝑇 ′7 =
𝛽

2

∑
𝑝,𝑞

[(PΩ̄1 ⊙ (Ũ1TŨ𝑇1 ))Ũ1T] (𝑝, 𝑞)
U4

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)

=
𝛽

2

∑
𝑝,𝑞,𝑟,𝑠,𝑡,𝑢

PΩ̄1 (𝑝, 𝑟 )T(𝑠, 𝑡)T(𝑢, 𝑞)Ũ1 (𝑝, 𝑠)Ũ1 (𝑟, 𝑡)Ũ1 (𝑟,𝑢)Ũ(𝑝, 𝑞)Q4 (𝑝, 𝑞)

Due to the symmetry of PΩ̄1 and the fact that PΩ̄1 = PΩ̄1 ⊙ PΩ̄1 , by switching the indices 𝑠 ⇔ 𝑡,𝑢 ⇔
𝑞, 𝑟 ⇔ 𝑝 , we have

𝑇 ′7 =
𝛽

2

∑
𝑝,𝑞,𝑟,𝑠,𝑡,𝑢

P2
Ω̄1
(𝑝, 𝑟 )T(𝑠, 𝑡)T(𝑢, 𝑞)Ũ1 (𝑝, 𝑠)Ũ1 (𝑟, 𝑡) × Ũ1 (𝑟,𝑢)Ũ(𝑝, 𝑞)Q4 (𝑟,𝑢)

And we can similar results by switching 𝑠 ⇔ 𝑢, 𝑡 ⇔ 𝑞, 𝑝 ⇔ 𝑟 and 𝑠 ⇔ 𝑞, 𝑡 ⇔ 𝑢, 𝑝 ⇔ 𝑟 . In this way,
we have

𝑇 ′7 =
𝛽

2

∑
𝑝,𝑞,𝑟,𝑠,𝑡,𝑢

P2
Ω̄1
(𝑝, 𝑟 )T(𝑠, 𝑡)T(𝑢, 𝑞)Ũ1 (𝑝, 𝑠)Ũ1 (𝑟, 𝑡)Ũ1 (𝑟,𝑢)Ũ1 (𝑝, 𝑞)

× [Q
4 (𝑝, 𝑞) + Q4 (𝑟,𝑢) + Q4 (𝑟, 𝑡) + Q4 (𝑝, 𝑠)

4
]

≥ 𝛽

2

∑
𝑝,𝑞,𝑟,𝑠,𝑡,𝑢

P2
Ω̄1
(𝑝, 𝑟 )T(𝑠, 𝑡)T(𝑢, 𝑞)Ũ1 (𝑝, 𝑠)Ũ1 (𝑟, 𝑡)Ũ1 (𝑟,𝑢)Ũ(𝑝, 𝑞)Q(𝑝, 𝑞)Q(𝑟,𝑢)Q(𝑟, 𝑡)Q(𝑝, 𝑠)

=
𝛽

2

∑
𝑝,𝑞,𝑟,𝑠,𝑡,𝑢

P2
Ω̄1
(𝑝, 𝑟 )T(𝑠, 𝑡)T(𝑢, 𝑞)U1 (𝑝, 𝑠)U1 (𝑟, 𝑡)U1 (𝑟,𝑢)U1 (𝑝, 𝑠)

= 𝑇7

Similarly, it can be proved that 𝑇 ′8 ≥ 𝑇8. Then by adding 𝑇 ′𝑖 , 𝑖 = 1, · · · , 10 together, we have
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𝑍 (U1, Ũ1) =
10∑
𝑖=1

𝑇 ′𝑖 ≥
10∑
𝑖=1

𝑇𝑖 = 𝐽 (U1) (32)

Second, we can directly prove 𝑍 (U1,U1) = 𝐽 (U1) by substituting Ũ1 with U1 in all above
inequalities.

Finally, to prove that the auxiliary function𝑍 (U1, Ũ1) is convexw.r.t.U1, for the sake of brevity, we
briefly show the Hessian matrix of 𝑍 (U1, Ũ1) is positive semi-definite. To start with, the derivative
𝜕𝑍 (U1,Ũ1)
𝜕U1 (𝑝,𝑞) can be calculated as

𝜕𝑍 (U1, Ũ1)
𝜕U1 (𝑝, 𝑞)

= (X̃1 + X̃2 + X̃3) (𝑝, 𝑞)
U3

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)
− (Ỹ1 + Ỹ2 + Ỹ3) (𝑝, 𝑞)

Ũ1 (𝑝, 𝑞)
U1 (𝑝, 𝑞)

(33)

where X̃𝑖 , Ỹ𝑖 , 𝑖 = 1, 2, 3 are all in terms of Ũ1 while sharing the same formulas with X𝑖 ,Y𝑖 , 𝑖 = 1, 2, 3.
For example, X̃1 = [PΩ1 ⊙ (Ũ1V𝑇1 )]V1 + 𝜆Ũ1. Then the Hessian matrix w.r.t. U1 is computed by

𝜕2𝑍 (U1, Ũ1)
𝜕U1 (𝑝, 𝑞)𝜕U1 (𝑟, 𝑠)

= 𝛿𝑝𝑟𝛿𝑞𝑠 [3(X̃1 + X̃2 + X̃3) (𝑝, 𝑞)
U2

1 (𝑝, 𝑞)
Ũ3

1 (𝑝, 𝑞)
+ (Ỹ1 + Ỹ2 + Ỹ3) (𝑝, 𝑞)

Ũ1 (𝑝, 𝑞)
U2

1 (𝑝, 𝑞)
] (34)

where 𝛿𝑝𝑟 , 𝛿𝑞𝑠 are the Kronecker delta functions, i.e., 𝛿𝑝𝑟 = 1 if 𝑝 = 𝑟 ; 𝛿𝑝𝑟 = 0 otherwise. Therefore,
the Hessian matrix ▽2

U1
𝑍 (U1, Ũ1) is a diagonal matrix with nonnegative elements. As a result, the

Hessian matrix is positive semi-definite, which means the auxiliary function 𝑍 (U1, Ũ1) is convex
w.r.t. U1. In this way, the global minima of 𝑍 (U1, Ũ1) is obtained by setting its first-order derivative
(i.e., Eq. (33)) to be zero which further leads to the solution consistent with Eq. (26). □
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