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CogKR: Cognitive Graph for Multi-hop
Knowledge Reasoning
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Abstract—Inferring new facts from an existing knowledge graph with explainable reasoning processes is an important problem, known
as knowledge graph (KG) reasoning. The problem is often formulated as finding the specific path that represents the query relation and
connects the query entity and the correct answer. However, due to the limited expressiveness of individual paths, the majority of
previous works failed to capture the complex subgraph structure in the graph. We propose CogKR that traverses the knowledge graph
to conduct multi-hop reasoning. More specifically, motivated by the dual process theory from cognitive science, our framework is
composed of an extension module and a reasoning module. By setting up a cognitive graph through iteratively coordinating the two
modules, CogKR can cope with more complex reasoning scenarios in the form of subgraphs instead of individual paths. Experiments
on three knowledge graph reasoning benchmarks demonstrate that CogKR achieves significant improvements in accuracy compared
with previous methods while providing the explainable capacity. Moreover, we evaluate CogKR on the challenging one-shot link
prediction task, exhibiting the superiority of the framework on accuracy and scalability compared to the state-of-the-arts.

Index Terms—cognitive graph, knowledge graph representation and reasoning, multi-hop reasoning.
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1 INTRODUCTION

KNOWLEDGE graphs (KGs) such as Freebase [1],
NELL [2], and YAGO [3] have been built in the last

decade and nourished a wide range of downstream tasks,
including relation extraction [4], question answering [5],
dialogue systems [6] and recommender systems [7]. How-
ever, the incompleteness challenge that exists in most KGs
seriously limits the accuracy of downstream tasks. This thus
motivates a lot of works proposed for new fact inference in
these years [8], [9], [10], [11].

Prior arts for KG reasoning can be roughly categorized
into embedding-based methods [8], [9], [12], [13], [14] and
path-based methods [10], [15], [16], [17], [18]. Embedding-
based methods collaboratively learn the distributed rep-
resentations of entities and relations according to existing
links in KGs. However, they usually consider only direct
links and lack the ability of multi-hop reasoning, which
involves multiple entities and facts in the reasoning pro-
cess [10]. Path-based methods instead leverage multi-hop
path information of entity pairs to infer their underlying re-
lations [15], [19], [20]. But due to their poor generalization to
unseen paths, the performances have largely been surpassed
by embedding-based methods.

More recent advancements in multi-hop reasoning
combine path-based methods with distributed representa-
tions [21], [22] and reinforcement learning [10], [16], [17]
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to improve the generalization ability. These methods have
gained remarkable performance in many benchmarks. How-
ever, the expressiveness of these path-based methods is still
limited to paths, which could only represent a small subset
of first-order logical formulas [23]. A more powerful form to
encode multi-hop relations is the subgraph of the KG, which
can handle more complex logical formulas. Unfortunately,
it is still challenging to search and reason over exclusive
subgraphs of the KGs efficiently. To bridge the gap, we may
get some heuristics from the dual-process theory [24], [25],
[26], [27], one of the dominant theories in cognitive science
that studies thoughts and reasoning processes. Specifically,
according to the dual process theory, the reasoning system
of human beings consists of two distinct processes, one to
retrieve relevant information intuitively (System 1) and the
other to reason over the collected information via a control-
lable, sequential, and logical reasoning process (System 2).
Such two systems are also related to the capacity-limited
working memory [28]. System 1 updates the working mem-
ory with the retrieved content, while System 2 operates on
the content of the working memory [24].

Inspired by the two-System structure of the dual process
theory, we propose a novel framework CogKR to efficiently
conduct multi-hop KG reasoning over subgraphs. The core
of the proposed CogKR is the cognitive graph [29], a
subgraph of the original KG iteratively expanded in the
reasoning process, which resembles the working memory
in human brains. Our framework combines two iterative
processes, one to expand the subgraph with relevant en-
tities and edges from the neighborhood, and the other to
conduct relational reasoning based on the subgraph. The
two processes, which resemble System 1 and System 2 in
dual process theory, are iterated to search and reason over
subgraphs of the KG. Moreover, the model is fully differen-
tiable, such that the model can be trained efficiently via the
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Fig. 1. An example of multi-hop KG reasoning. The aim is to find the
entity that has the relation ”Lives in” with the entity Player A. Blue circles
and orange, bold lines represent the bridge entities and relations used
in the reasoning process. By reasoning about the complex subgraph
structure around Player A, we can find the correct answer City B.

stochastic gradient descent methods. Our contributions are
summarized as follows:

• We propose CogKR, a novel framework for multi-
hop KG reasoning based on the cognitive graph
structure inspired by human cognition.

• We show that CogKR could model the complex
structure in a subgraph, improving the multi-hop
reasoning ability while preserving the explainability
simultaneously in knowledge graph completion.

• We evaluate CogKR on the challenging task of one-
shot link prediction in KGs. Our model achieves
improvements on accuracy and scalability over the
one-shot baseline.

2 RELATED WORK

2.1 Knowledge Graph Embedding
Embedding methods for knowledge graphs have been ex-
tensively studied for KG completion. From a general per-
spective, entities and relations are represented as continuous
vectors in latent space, and various scoring functions are
defined for a fact (es, r, eo). RESCAL [30] is one of the earlier
works that model multi-relational data with vector repre-
sentations. Following that, more advanced scoring functions
have been proposed, such as vector difference [8], [12],
vector product [9], [31], convolution [13], [32], and tensor
operation [14], [33]. Although these embedding approaches
have achieved impressive results on several KG completion
benchmarks, they have been shown to suffer from cascading
errors when modeling multi-hop relations [11], [34], which
are indispensable for more complex reasoning tasks. Be-
sides, since these methods all operate on latent space, their
predictions are not interpretable.

Furthermore, these embedding methods usually assume
enough training facts for all relations. One-shot link predic-
tion on KGs has been proposed by [35] to handle queries

about a new relation type with only one training instance.
They propose a similarity metric based on graph convolu-
tional network [36] and multi-step matching to compute
scores for all the candidate facts. However, their model
requires forward pass through neural networks for every
candidate, which is computationally expensive or even in-
tractable for large-scale KGs. Their method has been fur-
ther extended to handle few-shot learning (more than one
training instance is given) via aggregation network [37]
or optimization-based meta learning [38]. Another line of
research is to augment the KG embedding methods with the
ability to handle unseen entities or relations by leveraging
text descriptions [39], [40], [41].

2.2 Knowledge Graph Reasoning

Learning symbolic logic rules has been the mainstream to
automatically infer new knowledge in its early days [42]. In
statistical relational learning, machine learning is combined
with symbolic rules to handle uncertainty [19], [20]. The
Path-Ranking Algorithm [15] uses a random walk with
restart mechanism to obtain paths between two entities and
perform supervised classification of relations according to
discrete path features. Various neural methods to learn first-
order logical rules have also been proposed recently [23],
[43], [44]. Although logical formulas are easy to explain,
they have largely been superseded by distributed vector
representations due to the poor generalization ability.

To overcome the limit, many works [10], [11], [16], [17]
have proposed approaches that explicitly encode multi-step
paths with deep learning, denoted as path-based meth-
ods. Such methods benefit from both the generalization of
distributed representations and the explainability of logi-
cal rules. Both Chain-of-Reasoning [21] and Compositional
Reasoning [22] infer underlying relations of two entities
with neural networks taking multi-step paths found by
random walk as input. Recently, DeepPath [10] uses RL-
based agents combined with pre-trained KG embeddings
to find better paths for reasoning than those found by
random walks. MINERVA [16] reformulates the problem of
predicting the missing entity in a new fact as a sequential
decision problem of walking from one entity to reach the
answer. MultihopKG [18] augments MINERVA with reward
reshaping and action dropout to overcome false-negative
supervision and spurious paths. M-Walk [17] uses Monte
Carlo Tree Search to solve the reward sparsity problem.
DIVA [11] unifies path-finding and path-reasoning with
variational inference. DIVINE [45] uses generative adver-
sarial imitation learning [46] to learn reasoning policies
and reward functions self-adaptively through imitating the
demonstrations sampled from KGs. Compared with pre-
vious KG reasoning methods, our proposed CogKR bases
reasoning on subgraphs that can capture the interaction of
multiple paths.

2.3 Graph Neural Networks for Relational Learning

Graph neural networks (GNN) [47], [48] are a class of neural
networks that model graphs and structure their computa-
tions accordingly. Recently, graph convolutional network
(GCN) [36] and its multiple variants [49], [50] have become
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the dominant methods in representation learning and semi-
supervised learning on graphs [51], [52]. GNNs pretrained
on large-scale unlabeled data via self-supervised learn-
ing can further improve the performance on downstream
tasks [53], [54].

Although GNNs have been successfully applied to link
prediction on graphs [55], most GNNs operate on homoge-
neous graphs, in which only one type of edge exists. On the
contrary, in a typical KG, there are various relation types,
i.e., types of edges. Even in works of GNN for heteroge-
neous graphs [56], the number of edge types is quite limited,
far fewer than that in a typical KG. Therefore, it is not easy
to directly apply GNNs to KG reasoning. To overcome the
limit, R-GCN [57] and its variants [58], [59] modify the GCN
structure to use different parameters for different relation
types. These methods only apply GNNs to the computation
of entity embeddings, while the predictions are based on
scoring functions of embedding-based methods. Therefore,
their methods can be considered as more complicated ones
of embedding-based methods, and cannot provide expla-
nations for the predictions. GraIL [60] reasons over local
subgraph structures with GNNs to make inductive relation
prediction between two entities. However, directly applying
the method to knowledge graph completion can lead to
infeasible time cost, since it needs to extract subgraphs
for every candidate entity of a query. Furthermore, [61]
proposes an algorithm to synthesize benchmarks to evaluate
the logical generalization of GNNs for relational learning.
DPMPN [62] proposes a two-GNN framework to encode
both global and local graph structures coordinated by an
attention module. Their approach mainly focuses on prun-
ing message passing in GNN to improve scalability. Our
module, which introduces dual-process theory to improve
multi-hop reasoning, is conceptually simpler and provides
clearer explanations of prediction.

3 PROBLEM FORMULATION

A knowledge graph G is represented as G = (E ,R,T ),
where E and R denote the entity set and the relation set. T
is a set of triples {(es, r, eo)} N E ✓R ✓ E which denote the
facts about the specific relation r " R from es " E to eo " E .
es is called the head entity and eo is called the tail entity.
We can treat G as a directed graph composing of entities
as nodes and relations as different edge types. Then, the
triple (es, r, eo) represents a directed edge of type r from
es to eo. There may be multiple edges of different types
between two nodes. Following [16], we augment G with the
inverse link (eo, r�1, es) for any (es, r, eo) " T to enhance
the connectivity.

For multi-hop knowledge graph reasoning, we target to
leverage a reasoning model to predict the tail entity from
a background KG G for each query (es, r̂, ?). The reasoning
model should traverse the knowledge graph, collect relevant
evidence, and predict the correct answer based on the evi-
dence. The evidence might include multiple entities and re-
lations, which require multi-hop reasoning ability. Figure 1
illustrates an example of this task. Generally, in the training
phase, we use a set of triples Ttrain to train a reasoning
model, so that for each (es, r̂, eo) in Ttrain the predicting
probability of eo given the query (es, r̂, ?) is maximized.

Then, in the test phase, a different set of triples Ttest is used
to evaluate the performance of the trained model. That is,
given a query (es, r̂, ?), we use the trained model to output
prediction and compare it with the groudtruth.

4 APPROACH

In this section, we describe the proposed model for multi-
hop KG reasoning and the training algorithm, discuss the
connection with previous methods, and analyze the com-
plexity of the algorithm.

Our whole framework for multi-hop KG reasoning prob-
lem is shown in Figure 2. It takes a head entity es and a
relation r̂ as input and predicts the correct tail entity eo via
an explicit reasoning process. The problem is challenging,
as in most cases, inferring unseen relationships usually
involves complicated reasoning processes. We connect our
study to the dual-process theory from cognitive science [25].
Accordingly, the proposed model combines two iterative
processes: retrieving information from the original KG (Sys-
tem 1) and reasoning over collected information (System 2).
The retrieved information and reasoning results are stored
in a unique structure called cognitive graph. In the following,
we will introduce the cognitive graph, System 1 and System
2 respectively.

4.1 Cognitive Graph

The cognitive graph G is a subgraph of G that contains
entities and edges selected from G as relevant evidence
and latent representations for its entities as the reasoning
results. Formally, G = (V,E,X), where V N E , E N T and
X " R∂V ∂✓d. Here X is the matrix of latent representations,
whose each element X[e] for the entity e represents the
semantic information of e in the reasoning process.

In the beginning, V only contains the initially given head
entity es. At each step t, the V and E in G are expanded
based on currently involved nodes by System 1, and then
the representations X for the expanded V are updated by
System 2. To trace the currently involved entities, an atten-
tion flow on the graph [63] is constructed. We define the
attention distribution at at step t, a probability distribution
over entities in G, to represent the current focus. Given the
query (es, r̂, ?), the initial attention a0 is focused on es, that
is, a0 has 1 for es and 0 for other entities. Then after each
expansion step, we compute at+1 based on at to update the
focus.

Compared with individual paths found by previous
path-based reasoning methods, the cognitive graph is more
expressive, since some complex reasoning processes may
require the interaction among paths. For example, the path-
finding method cannot distinguish two paths es

r1
� e

r2
� eo

and es
r1
� e

r2
� eo that interact at the entity e, and two

independent paths es
r1
� e1

r2
� eo and es

r1
� e2

r2
� eo. On

the contrary, in the cognitive graph, the information from
multiple paths could interact at the ”bridge nodes”, such as
e in the previous case, which improves the expressiveness
of CogKR.
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Fig. 2. Overview of CogKR. The core is the cognitive graph, which consists of nodes with latent representations and edges linking them. The
expansion module (System 1) selects relevant edges from the neighborhood of current nodes (purple), according to their latent representations.
Then, the reasoning module (System 2) updates the latent representations of newly attended nodes (green), via neighborhood aggregation and
computes the attention values to measure their importance.

4.2 System 1 (Expansion)
The function of System 1 is to collect relevant evidence
from G for the subsequent reasoning. It iteratively leverages
a progressive subgraph expansion to search the possible
evidence of entities and relations. Specifically, at each step
t, System 1 selects the involved entities Ft�1 at the last step
and expand G with part of Ft�1’s outgoing edges and the
corresponding nodes.

Given the attention at last step at�1, Ft�1 is a collec-
tion of entities with probability mass larger than zero, i.e.
Ft�1 = {e∂at�1(e) > 0}. For each entity ek in Ft�1, the
candidate set to expand G consists of the outgoing edges
of ek in G, termed as At(ek) = {(r, e)∂(ek, r, e) " G}. To
avoid out-of-memory error during computation, we rank
the edges in At(ek) according to the PageRank values of
connected entities and cut the maximum number of edges
in At(ek) by a threshold ⌘. To provide the agent with
the option of staying at ek, we add a self-loop link to
At(ek). After obtaining At(ek), we can build the candidate
matrix At(ek) " R∂At(ek)∂✓3d by stacking the embeddings
of all edges in At(ek). The embedding of an edge (r, e) is
the concatenation of the entity embedding ve, the relation
embedding vr , and the entity’s latent representation X[e]
(filled with 0 if e ä V ). Based on the neighborhood features
At of ek and ek’s own representation (X[ek],vek), as well
as the query relation embedding vr̂ , the probabilities of
selecting edges are computed as

st(ek) = � (At(ek)W1) � � �W2[X[ek]h vek h vr̂]⌥
pt(ek) = at�1(ek)Softmax(st(ek)) (1)

where W1 " R3d✓d
,W2 " Rd✓3d are parameters, and h

denotes concatenation.
The concatenation of the probability vectors pt(e) for all

the entities ek in Ft�1, denoted as pt, represent a probability
distribution over the outgoing edges of entities in Ft�1.
From all of the outgoing edges, we select n edges with the
largest probability values, denoted as Et. n is the action

budget, i.e., the maximum number of selected edges at each
step. After that, we add edges in Et to E and add entities
that are connected with selected edges but never visited be-
fore to V , which implements the cognitive graph expansion.
Note that, there are two differences compared with path-
finding methods. Firstly, when n > 1, we select multiple
edges at each step, so that the search subgraph can form
a directed acyclic graph (DAG) rather than a single path.
Secondly, the attention flow mechanism is deterministic and
differentiable, which means that we could train the whole
module end-to-end without reinforcement learning.

4.3 System 2 (Reasoning)
After the expansion by System 1, the relational reasoning
can be conducted by System 2 over the extended cognitive
graph. To be more specific, we need System 2 to provide the
following two operations: (1) update the latent representa-
tions of entities that are visited via the newly selected edges;
(2) adjust the attention distribution over entities according
to selected edges.

For the first one, out of consideration about the general-
ization ability [21], [22], we adopt the deep learning mod-
ule instead of previous rule-based reasoning modules [43],
[44]. Concretely, considering the flexible structure of the
cognitive graph, we compute the node representations with
graph neural networks [47], which capture the dependence
of graphs via message passing [64] between the nodes of
graphs:

X[e] = U(e,me)
me = =

(ek,rk)"Ee

M(ek, rk, e), (2)

where Ee = {(ek, rk)∂(ek, rk, e) " E} is the ingoing edges
of e in G, M(ek, rk, e) is the message vector passed from
ek to e via relation rk, and U(�, �) is the node update func-
tion. Unlike conventional GNNs where the current layer of
representations are computed from the previous layer(s), all
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the representations are computed in the same layer but in
a sequential way. In this sense, the way we update node
representations is similar to the homogeneous AC-GCN in
[65], in which the GNN shares the same parameters across
layers.

By extending the framework of [65] to directed graph
with more than one edge type, we can study the logical
expressiveness of System 2 in terms of first-order predicate
logic. Given a query (es, r̂, ?), the rule to look for the correct
answer can be expressed as a logical node classifier, which
is given by a formula �(x) with exactly one free variable x.
For example,

�(x) ⇥= øx¨¨ ⇥øx¨ ⇥r1(x¨
, x

¨¨) 0 x
¨ = es� 0 r3(x¨¨

, x)� , (3)

where 0 is the logical AND operator and r(e1, e2) repre-
sents that (e1, r, e2) " T . The free variable x is evaluated
over the entity set E and any entity e that makes the
body part evaluate to true is the correct answer. With the
definition of logical node classifier in hand, we can give the
theorem about the logical expressiveness of System 2:
Definition 1. The set � of logical node classifiers is defined

as:

• (x = es) " � for r " R.
• �1(x) 0 �2(x) 0 ⇧ 0 �n(x) " � for

�1(x),�2(x),⇧,�n(x) " �
• øx¨(r(x¨

, x) 0 �(x¨)) for r " R, �(x¨) " �

Theorem 1. Every logical node classifier �(x) " � can be
captured by our System 2.

The proof of the theorem is in Appendix A.
Considering the success of RNN models in path-based

methods [16], [22], we use GRU [66], a variant of RNN with
a gating mechanism as the message function

M(ek, rk, e) = GRU(X[ek],vrk h ve), (4)

where GRU(X[ek], [vrk ;ve]) is the one-step update of
GRU with the input of the previous hidden state X[ek] and
the relation-entity feature vrk h ve. We do not use more
advanced RNN models such as LSTM [67] that improve
long-term memory since reasoning paths are usually short.

The node update function is simply the average function

U(e,me) = 1∂Ee∂me (5)

It can be considered as an extension of the Path-
RNN [22], with the ability to encode not only a single path
but a complex subgraph.

For the second operation, we directly aggregate the prob-
abilistic values of edges pointing to the entities to compute a
new attention distribution over entities, which is formulated
as follows

ãt(e) = =
(e¨,r,e)"Et

pt(e¨, r, e)
at(e) = ãt(e)

<e¨"E ãt(e¨)
(6)

Note that the normalization is necessary since the sum of the
probabilities of Et might be smaller than 1 due to previous
top-n selection.

Algorithm 1 Graph-based KG Reasoning Algorithm
Require: Query (es, r̂, ?); A background KG G = (E ,R,T )

1: V ⇥ {es}, E ⇥ o
2: a0 ⇥ one hot(es), X[es] ⇥ 0
3: for t = 1 to T do

4: Ft�1 ⇥ {e∂at�1(e) > 0}
5: for entity ek in Ft�1 do

6: st(ek) ⇥ score(At(ek);vek ,X[ek],vr̂)
7: pt(ek) ⇥ at�1(ek)Softmax(st(ek))
8: end for

9: pt ⇥ <ek"Ft�1pt(ek), Et ⇥ <ek"Ft�1At(ek)
10: if t j T then

11: Et ⇥ Top-k(Et,pt, n)
12: end if

13: at ⇥ 0∂E∂, Vt ⇥ o
14: for (e¨, r, e) in Et do

15: at(e) ⇥ at(e) + pt(e¨, r, e)
16: Vt ⇥ Vt < {e¨}
17: end for

18: if t j T then

19: V ⇥ V < Vt,E ⇥ E <Et

20: Update X[Vt] with Equations (2) and (4)
21: at ⇥ at/<e¨ at(e¨)
22: end if

23: end for

24: return argmaxe"V aT (e)
4.4 Prediction and Optimization
In the previous sections, we describe how CogKR builds the
cognitive graph and conducts relational reasoning via deep
learning. In this section, we will introduce how the final
answer is predicted and what objective is used to optimize
the model.

Generally, the prediction of the tail entity eo in the query
could be straightforward. At the last step T , we directly
compute aT based on aT�1 as described in Sections 4.2
and 4.3 but without selecting n edges since the expansion
of the cognitive graph is no need any more. Then, the aT is
considered as the prediction distribution and we maximize
the probability of eo being predicted as the correct entity. A
cross-entropy loss fashion `(aT , eo) = � log aT (eo) can be
applied. However, one critical issue is that the prediction
distribution aT does not have full support over the entity
set E . As we only compute the probabilities for entities in
the T -hop neighborhood of es, the others are all aT (e) = 0.
Moreover, since only top n edges are selected in the iterative
process and the local nature of the attention mechanism,
aT could be more sparse than the T -hop neighborhood.
Therefore, it is quite possible that aT (eo) = 0 in the initial or
the intermediate training procedure. To avoid such ill-posed
cases to the log function, we assume the probability of eo is
a small number ✏ close to zero when a(eo) = 0. So the final
objective is defined as:

`(aT , eo) = w� log aT (eo) aT (eo) > 0

� log(1 + ✏ �<e aT (e)) aT (eo) = 0
(7)

We use the stochastic gradient descent to approximate
the gradient descent on the full dataset in Equation (7). The
complete algorithm is summarized in Algorithm 1.

Page 5 of 14 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, JUNE 2020 6

4.5 Discussion
4.5.1 The difference with path-finding methods

As illustrated in Section 1, our framework has two main
differences with path-finding methods. Firstly, our frame-
work can search the knowledge graph in the form of a DAG
instead of a single path. Secondly, our model can be trained
end-to-end without reinforcement learning. There is also the
third difference. According to [16], [18], beam search is often
used in the evaluation stage of path-finding methods to
improve sample efficiency. The model rolls out n paths for
a query, in which n edges that have the largest accumulated
probability values are selected greedily at each step. The
way our model explores the KG following attention is
similar to beam search, but the explored entities and edges
are integrated into the cognitive graph, instead of individual
paths. This enables the interaction of multiple paths and
avoids inconsistency between training and evaluation.

4.5.2 Explainability of cognitive graph

After predicting the correct answer eo for a query (es, r̂, ?),
we can extract a graphical explanation for the prediction
from the cognitive graph. The explanation is generated by
extracting the enclosing subgraph between the head entity
es and the predicted answer eo in the cognitive graph G.
The enclosing subgraph of G between entities es and eo is
defined as the subgraph of G that consists of entities on a
(directed) path between es and eo and edges between the en-
tities. From Section 4.3 we know that the subgraph between
es and eo can decide eo’s latent representation. Therefore
it can provide graphical explanation for the prediction. In
Section 5.4 we show examples of graphical explanations
generated by CogKR.

4.5.3 Complexity Analysis

To complete a query (es, r̂, ?), embedding-based methods
need to enumerate the whole entity set, so it takes O(∂E∂)
time for every query. For a large KG containing millions of
entities, this is highly expensive especially combined with
complex scoring functions.

CogKR, on the other hand, utilizes the local structure
of the KG to reduce the time complexity. For System 1, at
each step, at most n entities are visited and for each entity
we compute scores of at most ⌘ outgoing edges. Given the
iteration times T , it thus takes O(Tn⌘) time to complete
graph expansion. Similarly for System 2, at each step, at
most n nodes’ latent representations are updated. To update
each entity, we need to aggregate the messages from at
most ∂E∂ edges. Therefore, it takes O(Tn∂E∂) time for latent
representation computation. Since at each step at most n

edges are added to the cognitive graph, we have ∂E∂ & Tn.
Overall, CogKR takes at most O(Tn⌘ + T

2
n
2) time. Given

predefined T, n and ⌘, the maximum time is a constant that
does not depend on the entity number, and thus is scalable
to handle the large KGs.

5 EXPERIMENT

In this section, we provide empirical results to validate the
effectiveness of CogKR on multi-hop KG reasoning. Firstly,
we evaluate CogKR on three knowledge graph completion

benchmarks, to show that CogKR could outperform both
embedding-based and path-based baselines. Secondly, we
evaluate CogKR on the one-shot link prediction task pro-
posed recently, to show CogKR’s superiority in accuracy
and scalability on this challenging setting. Thirdly, we ana-
lyze the performance of CogKR from different perspectives,
including the ablation study, the reasoning ability for dif-
ferent hops, the convergence speed, and the influence of
hyperparameters. Finally, we conduct a case study over the
graphical explanations extracted from cognitive graphs to
show that CogKR could utilize the subgraph structure to
conduct relational reasoning and provide explanations.1

5.1 Knowledge Graph Completion
5.1.1 Datasets

TABLE 1
Statistics of datasets in knowledge graph completion.

Dataset #Ent. #Rel #Train #Valid #Test

FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

We use two public KG datasets, FB15K-237 [68] and
WN18RR [13] for the KG completion task. These two
datasets are sampled from FB15K [8] and WN18 [8] with
inverse relations causing test set leakage removed. There-
fore, they are more challenging and realistic. The original
datasets, FB15K and WN18, have been shown to suffer from
test set leakage due to inverse relations from the training
set being present in the test set [13]. To further validate that
CogKR can tackle large-scale KGs, we also evaluate CogKR
on YAGO3-10, a subset of of YAGO3 [69] which consists of
entities that have a minimum of 10 relations each. For all the
datasets, we use the original data split, which is widely used
in most papers. The dataset statistics are shown in Table 1.

5.1.2 Experimental Setting

We add inverse relations into the training set as data aug-
mentation. But these inverse relations are not added into the
validation or test set on FB15K-237 and WN18RR, to avoid
inconsistency in evaluation data with other papers [16],
[18], [45]. During training, given a training triple (es, r̂, eo),
the corresponding edge and its inverse are masked for the
model to avoid leakage. On FB15K-237, following [62], all
the edges from es to eo are also masked, forcing the model
to learn a composite reasoning pattern rather than a single-
hop pattern.

During the evaluation, for a test triple (es, r̂, eo), all
the correct answers for the query (es, r̂, ?) except eo are
removed from the prediction. This is called the filtered
setting [8] and has been used by most papers, since it can
provide a more reliable performance metric in the presence
of multiple correct triples. We use Hits@1,3,10 and mean
reciprocal rank (MRR), which are standard metrics for KB
completion, as evaluation metrics.

1. The code can be downloaded from https://github.com/THUDM/
CogKR.
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TABLE 2
KG reasoning results for FB15K-237 and WN18RR. Results of [π] are taken from [16]. Results of [∑]are taken from the corresponding papers.

Other results are obtained by running the official implementations.

FB15K-237 WN18RR

Model H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

DistMult [π] 27.5 41.7 56.8 37.0 41.0 44.1 47.5 43.3
ComplEx [π] 30.3 43.4 57.2 39.4 38.2 43.3 48.0 41.5
R-GCN 19.9 32.0 47.5 29.1 7.6 11.8 18.4 11.1
ConvE 31.3 45.7 60.0 41.0 40.3 45.2 51.9 43.8
RotatE 33.1 48.2 63.7 43.4 44.6 52.1 60.3 49.9
TuckER 33.6 46.7 60.7 42.7 45.5 50.2 53.5 48.5

NeuralLP [π] 16.6 24.8 34.8 22.7 37.6 46.8 65.7 46.3
MINERVA[∑] 21.7 32.9 45.6 29.3 41.3 45.6 51.3 44.8
MultihopKG[∑] 32.9 - 54.4 39.3 43.7 - 54.2 47.2
M-Walk[∑] 16.5 24.3 - 23.2 41.4 44.5 - 43.7
DIVINE[∑] 22.3 33.1 - 29.6 - - - -

CogKR 36.9 49.2 61.4 44.9 48.4 54.3 60.6 52.3

TABLE 3
KG reasoning results for YAGO3-10. Results of ∂ are taken from [14].

Other results are obtained by running the official implementation.

Model H@1 H@3 H@10 MRR

DistMult[∂] 24 38 54 34
ComplEx[∂] 26 40 55 36
ConvE[∂] 35 49 62 44
RotatE[∂] 40.2 55.0 67.0 49.5
TuckER 41.6 55.3 67.1 50.5
MultihopKG 40.5 53.7 63.4 48.5

CogKR 47.7 57.3 64.4 53.6

We compare CogKR with various state-of-the-arts. For
embedding-based methods, we compare with TransE [8],
DistMult [31], ComplEx [9], R-GCN [57], ConvE [13], Ro-
tatE [14], and TuckER [33]. Among the embedding-based
methods, R-GCN also applies GNN to conduct relational
reasoning over knowledge graphs. For path-based methods,
we compare with NeuralLP [44], MINERVA [16], Multi-
hopKG [18], M-Walk [17] and DIVINE [45].

5.1.3 Hyperparameters

The dimensions of embeddings and node representations
are set to 100 and 200 respectively. The entity and relation
embeddings are randomly initialized. As two key hyperpa-
rameters, maximum step T is set to 4 on FB15K-237 and
YAGO3-10 and 5 on WN18RR and action budget n is set to
64 on FB15K-237 and YAGO3-10 and 32 on WN18RR. The
maximum neighbor number ⌘ is set to 256. The activation
function is LeakyReLU in all the layers.

We use the ADAM optimization algorithm for model
training with a learning rate of 1e-3. We also add L2 reg-
ularization with a weight decay of 0.0001. The batch size
is 28 on FB15K-237 and YAGO3-10 and 64 on WN18RR.
The maximum training step is 30,000 on WN18RR and
YAGO3-10 and 80,000 on FB15K-237. We use the MRR on
the validation set as the criteria to pick the best model
checkpoint.

5.1.4 Result Analysis

Table 2 reports the KG completion performance on FB15K-
237 and WN18RR datasets. As shown on both datasets,

CogKR produces consistent improvements over previous
methods in terms of Hits@1, 3 and MRR. Path-based meth-
ods, including NeuralLP, MINERVA, MultihopKG, M-Walk,
and DIVINE, generally perform worse than embedding-
based methods. Our model could outperform all the
embedding-based and path-based methods. This demon-
strates the effectiveness of CogKR with the structure of
System 1 and System 2. Besides, the improvements of our
model on FB15K-237 are particularly substantial in all the
evaluated metrics, with relative improvements of 9.8% on
Hits@1. We speculate that it can be related to the fact that
on FB15K-237 there are no edges in the training set directly
linking any pair of head and tail in the validation (or test)
set. Therefore, the multi-hop reasoning ability is particularly
important on this dataset, which is exactly what our model
is good at. On the contrary, for a large portion (35.2%) of
facts in the validation and test set of WN18RR, the head and
the tail are linked by some edge (of a different relation) in
the train set. Therefore, the multi-hop reasoning ability may
not be so important, which limits the improvements we can
achieve. We will further analyze the multi-hop reasoning
performance on WN18RR in Section 5.3.2.

Table 3 shows the experimental results on YAGO3-10.
The dataset is not used in previous path-based methods. We
select MultihopKG, which has the best performance among
path-based methods in the previous experiment, as the path-
based baseline. CogKR can also outperform baselines on
YAGO3-10, in terms of all the metrics except Hits@10.

5.2 One-shot Link Prediction on KGs
To further validate the effectiveness of CogKR, we evaluate
the model on a more challenging task proposed recently:
one-shot link prediction on KGs [35]. In this task, we need
to perform link prediction for relation types with only one
training fact per relation. Since the information about each
relation type is limited and vague, it poses more challenges
to the model about its reasoning ability.

5.2.1 Datasets

Most benchmarks for knowledge graph completion, like
FB15K-237 and WN18RR used in our previous experiment,
are subsets of real-world KGs but do not contain sufficient
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TABLE 4
Statistics of datasets in one-shot link prediction.

Dataset #Ent. #Rel # Triples # Tasks

NELL-One 68,545 358 181,109 67
Wiki-One 4,838,244 822 5,859,240 183

relation types to train and evaluate one-shot learning algo-
rithms [35]. Therefore, we use the newly proposed NELL-
One and Wiki-One datasets in [35], both of which are
created from real-world KGs (NELL [2] and Wikidata [70]
respectively) for one-shot relational learning. The datasets
are created with a similar process: relations with less than
500 but more than 50 triples are selected as one-shot tasks
and randomly divided into training, validation, and testing
relations. The dataset statistics are shown in Table 4. Follow-
ing [35], we use Hits@1,5,10 and MRR as evaluation metrics.
Note that the Wiki-One dataset is an order of magnitude
larger than any other benchmark datasets in terms of the
number of entities and relations. In practice, we found
that the Wiki-One dataset suffers from sparsity and non-
connectivity in the backend KG. In the test set, 15.8% of the
entity pairs are not connected at all, and the distances of
the other 25.5% pairs are no less than 5. For these 41.3%
pairs, we do not have any reasonable paths to infer their
relations. To better evaluate the reasoning ability, we remove
evaluation facts whose entity pairs’ distances are no less
than 5 in Wiki-One.

5.2.2 Experimental Setting

For each dataset, we have a set of training relations Rtrain.
For each relation r " Rtrain, or Rvalid, Rtest, we have the
corresponding fact set Dr = {(es, eo)∂(es, r, eo) " G}. To
generate a training instance, we first sample a relation r̂

from Rtrain and then sample the training triple (esr̂, r̂, eor̂)
and the query triple (es, r̂, eo) from Dr .

For evaluation, another two sets of relations Rvalid and
Rtest are given as the validation and test relations. For each
relation r̂ in Rvalid or Rtest, we select one triple (es, r̂, eo) as
the support fact and use all the other pairs in Dr̂ for eval-
uation. For cross-validation, it is guaranteed that relations
in Rtest will not appear in Rtrain or Rvalid. Note that in [35],
for a query (es, r̂, eo), they only rank entities in a filtered
candidate set Ces,r̂ . We follow this setting and filter entities
e ä Ces,r̂ from our prediction.

We compare with various baselines. For embedding-
based methods, we compare with TransE, DistMult, and
ComplEx. More advanced embedding methods such as
ConvE failed to scale to Wiki-One, as reported in [35].
We also include MINERVA as the path-based baseline and
GMatching [35] as the one-shot baseline.

5.2.3 Hyperparameters

To deploy CogKR on this task, we combine it with the one-
shot model GMatching proposed in [35]. GMatching learns
to match the training triple (esr̂, r̂, eor̂) and a candidate
triple (es, r̂, eo) with GCN [36]. Instead, we use the same

architecture to map the training triple to a vector represen-
tation of r̂:

!r̂ = �(Wr(!esr̂
h!eor̂

) + br)
!e = �(Wsve + bs +Wc �

1∂Ne∂ =
(rk,ek)"Ne

vrk h vek), (8)

which is then passed to CogKR as vr̂ to answer the query(es, r̂, ?), as described in Section 4.
On NELL-One, the dimensions of embeddings and node

representations are set to 100 and 200 respectively. On Wiki-
One, the dimensions are set to 50 and 100 due to the
extremely large scale of the dataset. On both datasets, we
use T = 3 and n = 16.

We use the ADAM optimization algorithm for model
training with learning rates of 1e-3 for parameters of CogKR
and 1e-4 for parameters of the entity encoder and the
relation layer. We also add L2 regularization with a weight
decay of 0.0001. The batch size is 160 on NELL-One and
24 on Wiki-One. The maximum training step is 10000 on
NELL-One and 30000 on Wiki-One. We use the MRR on
the validation set as the criteria to pick the best model
checkpoint.

5.2.4 Result Analysis

Table 5 reports the one-shot link prediction performance
on NELL-One and Wiki-One datasets. On NELL-One,
CogKR produces consistent improvements over previous
works in all evaluation metrics. The absolute improvement
is 7.4% for Hits@1 and 7.8% for MRR. On Wiki-One, our
model also achieves improvements on Hits@1 and MRR,
but does not show advantages against the embedding-based
method GMatching on Hits@5, 10. We can also observe sim-
ilar patterns in the performance of MINERVA. We speculate
that when the information about the target is insufficient,
multi-hop reasoning methods, including CogKR and MIN-
ERVA, cannot conduct effective reasoning and lose their ad-
vantages. Nevertheless, CogKR can always perform better
than MINERVA, confirming its improvements over path-
based methods. We also find that the traditional embedding
methods do not perform well on Wiki-One, possibly due
to the contrast between its extremely large scale and the
scarcity of training data in the one-shot setting. Another
observation is that the path-based method MINERVA can
generally outperform embedding-based methods in the one-
shot setting, contrary to its disadvantage on the fully-
supervised setting in Section 5.1. We speculate that knowl-
edge graph reasoning methods, including MINERVA and
CogKR, are more suitable for one-shot link prediction on
KGs.

5.2.5 Inference Time

A disadvantage of embedding-based methods is that each
candidate entity e for the query (es, r̂, ?) needs to be eval-
uated with a scoring function. This is especially slow for
GMatching [35], whose scoring function is a complex neural
network that compares the candidate triple (es, r̂, e) with
the training triple (esr̂, r̂, eor̂). This is almost infeasible for
large-scale KGs that contain millions of entities.

To validate CogKR’s advantage on time complexity, we
compare the inference time of CogKR against DistMult
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TABLE 5
One-shot KG reasoning results for NELL and Wikidata.

NELL-One Wiki-One

Model H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR

TransE 4.4 14.9 29.6 11.1 2.5 4.3 5.2 3.5
ComplEx 9.4 19.4 23.9 14.1 4.0 9.2 12.1 6.9
DistMult 12.3 23.1 26.9 16.3 1.9 7.0 10.1 4.8

MINERVA 16.0 26.1 29.0 20.6 21.4 25.6 26.6 23.3
GMatching 13.3 22.6 29.6 18.3 17.0 27.3 33.5 22.6

CogKR 23.4 34.1 36.9 28.4 23.4 26.5 27.0 24.7

(a) Multi-hop Analysis (b) Convergence Analysis

Fig. 3. Performance analysis of CogKR.

TABLE 6
Inference time of different methods on Wiki-One test set (sec /

samples).

#Candidates CogKR GMatching DistMult

5,000 3.0 ✓ 10�3 4.6 ✓ 10�2 1.6 ✓ 10�3

4,838,243 3.0 ✓ 10�3 4.2 ✓ 10 5.1 ✓ 10�1

as the traditional baseline and GMatching as the neural
baseline. All the models are implemented in PyTorch and
evaluated on a single RTX 2080 GPU. The results with both
the truncated candidate set (no more than 5000) and the
full entity set (4,838,244) are reported in Table 6. As we
can see, when the candidate number is limited to 5000, the
running time of GMatching and DistMult is comparable to
that of CogKR. DistMult is even faster than CogKR due to
its simple scoring function. However, with the full entity set
as candidates, the running time of GMatching and DistMult
increases proportional to the number of candidates, whereas
the running time of CogKR remains the same. This shows
the efficiency of CogKR when the entity number of KGs
becomes very large.

5.3 Quantitative Analysis
5.3.1 Ablation Analysis

We conduct the ablation study to analyze the contributions
of different components in CogKR. The results are shown in
Table 7. PG-KR has the same architecture with CogKR but
uses the stochastic policy to select edges and policy gradient
for training. We observed that basically the policy gradient
does not work for CogKR, possibly because the search space

TABLE 7
Ablation study on FB15k-237 benchmark.

Model H@1 H@3 H@10 MRR

CogKR 36.9 49.2 61.4 44.9

PG-KR 3.3 5.7 9.2 5.3
Path-KR 10.4 13.6 16.1 12.3
� System 2 27.5 40.3 53.6 35.9

of graphs is even larger than that of paths. Path-KR is the
variation of CogKR with n = 1, which means that the
cognitive graph is reduced to a single path. According to
the results, this hurts the performance greatly, leading to
a 71.8% relative drop in Hits@1. Besides, we also created
a variation of CogKR without System 2, which means no
latent representations for nodes. As can be seen, removing
System 2 has a smaller effect, but still causes a 25.5%
relative loss of Hits@1. In summary, different components
of CogKR all contribute to the final improvement in the KG
reasoning.

5.3.2 Multi-hop Analysis

To evaluate the multi-hop reasoning ability, in Figure 3a,
we show the Hits@1 of CogKR on WN18RR, categorized
by the shortest path lengths from the query entity to the
correct answer. The baseline is MultihopKG [18], which has
shown the best performance among path-based methods
on WN18RR. We observe that CogKR outperforms such a
strong baseline by 9.9-12.8% for facts that require 2, 3 or 4
reasoning steps. For facts that require only one-step reason-
ing, both methods can achieve accuracy close to 100%, and
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Fig. 4. Hyperparameter sensitivity of CogKR on FB15K-237.

the improvement of our method is marginal. For facts with
longer distances, both methods can hardly make effective
predictions. It indicates the long reasoning paths are highly
uncertain and hard to distill useful information. Above all,
CogKR can improve the multi-hop reasoning ability for the
appropriate length.

5.3.3 Convergence Analysis

To evaluate the convergence speed of CogKR, we plot the
model’s performance on the validation set of WN18RR
at different training points in Figure 3b. The baseline is
MultihopKG, which uses reinforcement learning with re-
ward reshaping and action dropout to train path-finding
agents [18] and has the official implementation to trace the
training process. We show the average of 3 runs and the
95% confidence interval. From Figure 3b, compared with
the path-finding method, the performance of our model can
improve faster while the final performance is also better.
This confirms our motivation of using differentiable training
to efficiently search over the subgraph space.

5.3.4 Hyperparameter Sensitivity

Finally, we analyze the influence of hyperparameters on the
performance of CogKR. We mainly focus on three hyper-
parameters, the maximum step T , the maximum number
of edges ⌘, and the action budget n. The performance of
CogKR under different choices of T , ⌘, and n on FB15K-237
is shown in Figure 4. T is the maximum length of reasoning.
When T is small, e.g., T = 2, the expressiveness of CogKR is
limited to the short reasoning paths, leading to a significant
drop of accuracy. However, overlong reasoning paths, e.g.,
T = 5, are highly uncertain, also leading to a slight drop of
accuracy. ⌘ is the maximum number of edges for entities in
G. CogKR is not sensitive to the choice of ⌘, achieving high
accuracy even when ⌘ = 64. n is the maximum number of
selected edges at each step. According to Figure 4, larger
n, which indicates the topological structure of cognitive
graphs could be more complex, generally improves the
performance. However, when n is too large, the noise is also

TABLE 8
Statistics of the cognitive graphs on the test set. Avg. Size indicates the
average number of nodes in the cognitive graphs. Avg. Recall indicates

the fraction of cognitive graphs that contain the correct answers.

Dataset Avg. Size Avg. Recall

FB15K-237 88.3 67.6
YAGO3-10 76.6 68.2

introduced into the cognitive graph, which may affect the
convergence and lead to the improvement constrained.

5.4 Qualitative Analysis
In Figure 5, we give three examples of graphical expla-
nations built by CogKR. According to Section 4.5.2, each
graphical explanation is built by extracting all the paths
from the head entity r̂ in the query to the predicted tail
entity in the cognitive graph. From the examples, we can
conclude: 1) the expressiveness of cognitive graphs is more
powerful than individual paths. Graphs in three cases con-
tain complex interaction of multiple paths that cannot be
captured by path-finding methods. 2) the cognitive graph
can provide graphical explanations for the prediction of
CogKR. For example, in case (a), to predict the missing genre
of the movie Wonder Boys, CogKR looks at the movie About
Schmidt that shares two common genres with Wonder Boys.
In case (c), CogKR predicts that Michael Biehn acted in the
movie Terminator 2, because Michael also acted in the movie
The Terminator, which is its prequel and shares the same
genre with Terminator 2. The three cases are all consistent
with human cognition. We also show the statistics of the
complete cognitive graphs on the test set in Table 8. We
can observe that in a large portion of incorrect predictions
by CogKR the correct answers are missing in the cognitive
graphs.

6 CONCLUSION

This paper presents CogKR, a novel framework to tackle the
multi-hop KG reasoning problem. Under the inspiration of
the dual process theory in cognitive science, we organize the
reasoning process with a cognitive graph, achieving more
powerful reasoning ability than previous path-based meth-
ods and end-to-end training following gradient methods.
Experimental results on both knowledge graph completion
and one-shot link prediction benchmarks demonstrate the
superiority of our framework. For further improvements,
we find that reasoning-based methods often get stuck to
the non-connectivity of KGs. Therefore, we will explore
to improve System 1 by allowing the non-connected node
expansion.

APPENDIX
PROOF OF THEOREM 1
Let �(x) be a logical formula in �. sub(�) = �1,�2,⇧,�L is
an enumeration of the sub-formulas of � such that if �k is a
sub-formula of �l then k & l. Note that the formula x = es

has no sub-formula and must exist in the enumeration. We
always represent it with �1.
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Aliens (Film)
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(Film)
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nominated
for

nominated
for
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award_inv
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(Film)
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(Film)
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(Film)
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Fig. 5. Case Study: different forms of graphical explanations in the experiments. Red rectangles denote query entities, green eclipses denote final
answers, and purple capsules denote intermediate nodes. White eclipses and dashed lines denote irrelevant entities and edges.

We will build the System 2 such that component l of
entity e’s latent representation X[e] gets a value 1 if and
only if the sub-formula �l is satisfied for e. In this way, the
last component of X[e] after the reasoning process will get
a value 1 if and only if e satisfies � since �l = �. Therefore
our System 2 captures the formula �.

We choose the message and update functions in our
System 2 as:

M(ek, rk, e) = �(AX[ek] +Bvrk + b) (9)
U(e,me) = �(C�(me) + c) (10)

where A,B,C " RL✓L and b, c " RL are defined next.
� is the activation function, which is the truncated ReLU
activation, i.e., �(x) = min(max(x, 0), 1). vrk is the one-hot
encoding of relation type rk. The entries of the l-th rows of
A,B,C and b, c are defined according to �l as:

• If �l = �j1 0 �j2 0⇧ 0 �jn , then Clj1 = Clj2 = ⇧ =
Cljn = 1 and cl = �n + 1.

• If �l(x) = øx¨(r(x¨
, x)0�j(x¨)), then Blrk = Alj = 1,

bl = �1, and Cll = 1, cl = 0.
and all other values in the l-th entries of A,B,C and b, c
are 0. We skip the case when �l = (x = es), which is
only possible for l = 1 and x = es. We initialize the latent
representations X[es] of es with the first component as 1
and the other components as 0.

Next we prove that for every �l " sub(�) and every
entity e in G, (X[e])l = 1 if and only if e satisfies �. We
prove it by induction on the entities in G in topological
ordering. The first entity of topological sort can only be es.
Given that (X[es])1 = 1 and other components of X[es] are
0, we know that the property holds for es.

Now we assume that for every entity ek before e in
the topological ordering, the property holds. Then we need
to prove that for e the property also holds. This is quite
straightforward given our definition of A,B,C and b, c. If
�l(x) = øx¨(r(x¨

, x) 0 �j(x¨)), the l-th component of X[e]
is computed as:

(M(ek, rk, e))l = �((X[ek])j + I(rk = r) � 1)
(X[e])l = �(�( =

(ek,rk)"Ee

(M(ek, rk, e))l)) (11)

By induction hypothesis we know that (X[ek])j = 1 if
and only if ek satisfies �j . (X[e])l = �(∂{ek∂(ek, rk) "
Ee and rk = r and ek satisfies �k}∂). Therefore (X[e])l = 1
if and only if e satisfies �l. We can also observe that(�(me))l = 1 if and only if e satisfies �l.

If �l = �j1 0�j2 0⇧,0�jn , without loss of generality, we
assume that each sub-formula is in the form of øx¨(r(x¨

, x)0
�(x¨)). The l-th component of X[e] is computed as:

(X[e])l = � ⇧ n

=
i=1

(�(me))ji � n + 1↵ (12)

Since (�(me))ji = 1 if and only if e satisfies �ji , we have
that (X[e])l = 1 if and only if e satisfies �j1,�j2,⇧,�jn.
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