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OAGknow: Self-supervised Learning for Linking
Knowledge Graphs
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Gong, Kuansan Wang, and Evgeny Kharlamov

Abstract—We propose a self-supervised embedding learning framework—SelfLinKG—to link concepts in heterogeneous knowledge
graphs. Without any labeled data, SelfLinKG can achieve competitive performance against its supervised counterpart, and significantly
outperforms state-of-the-art unsupervised methods by 26%-50% under linear classification protocol. The essential components of
SelfLinKG are local attention-based encoding and momentum contrastive learning. The former aims to learn the graph representation
using an attention network, while the latter is to learn a self-supervised model across knowledge graphs using contrastive learning.
SelfLinKG has been deployed to build the the new version, called OAGknow of Open Academic Graph (OAG). All data and codes are
publicly available.
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1 INTRODUCTION

Concept linking, with the goal of linking concepts of the same
meaning, is critical for document-based data systems such
as Academic Search (AMiner, Microsoft Academic Graph)
and Question Answering Platform (Reddit, StackOverflow),
where knowledge bases containing concepts and their rela-
tions are independently developed within each system to
help complicated searching and reasoning. Usually, these
knowledge bases are incomplete, and to complement each
other via concept linking is important for advanced applica-
tions. For example, the topic classification of academic papers
in AMiner depends on concept extraction in paper abstract.
But the incompleteness of concept taxonomy and lack of
concepts’ text descriptions leads to bad performance. For
instance, we cannot literally distinguish ambiguous concepts
such as “entropy” in physics and “entropy” in information
science. In the past decades, quite a few approaches have
been proposed to address several related topics, such as
entity linking [24], [44], [46], schema matching [14], [15],
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Fig. 1: An example of concept linking between the Open Aca-
demic Graph (OAG) and Wikipedia.“Artificial intelligence”
is a research concept in OAG, which is linked with the
entry https://en.wikipedia.org/wiki/Artificial intelligence
in Wikipedia.

entity resolution [31], [45], and ontology alignment [28].
However, the problem of linking knowledge at the Web-

scale remains an open question. Most of the aforementioned
methods can only tackle the concept linking problem at
relatively small-scale. In [44], the authors present a deep
learning method—LinKG—to generate links between two of
the largest publicly available academic graphs. However, the
method operates in a (semi-)supervised way and requires
sufficiently labeled data, usually infeasible when dealing with
concept linking in the open Web. Moreover, the ambiguity
issue with noise makes the problem more severe.

Current supervised embedding-based alignment algo-
rithms fail to solve these problems. To enable large-scale
and label-efficient concept linking, we have to develop a
new method and evaluate it on publicly available large-scale
heterogeneous knowledge bases. In this work, we make
an attempt with both research and deployment purposes,
to link research concepts (a.k.a., fields of study) in the
Open Academic Graph (OAG) and concept entries in (En-

. OAGknow data: https://aminer.cn/oag know/

. Code: https://github.com/Xiao9905/OAG know

https://en.wikipedia.org/wiki/Artificial_intelligence
https://aminer.cn/oag_know/
https://github.com/Xiao9905/OAG_know
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glish) Wikipedia. OAG [44], which consists of the Microsoft
Academic Graph (MAG) [26] and the AMiner Academic
Graph [29], contains more than 700 million entities and 2
billion relationships, making it the largest publicly available
academic entity graph to date. For the research purpose,
we can have suitable large-scale datasets for evaluations.
For deployment purpose, the OAG entity graph has several
types of entities: papers, authors, institutions, conferences,
journals, and research concepts. To tag the concepts to papers,
e.g., to determine whether a paper is about “data mining”,
sufficient semantic information about the concept entities
is desirable. Therefore, we propose to enrich OAG concepts’
semantic information by linking them with the same concept entries
in Wikipedia.

Figure 1 illustrates an example of the “Artificial intelli-
gence” concept in OAG. In OAG, concepts are crawled from
the Internet and then organized into taxonomy by calculating
their pairwise subsumption (a form of co-occurrence) from
millions of academic papers [25]. Thus the organization
of this taxonomy is a bit different from Wikipedia. In
addition, only 1/3 of the concepts are associated with
Wikipedia entries (using the crawled URLs), leaving the
rest of them with very little semantic information. From
the figure, we can see at least two types of relations in
OAG: hypernym and related. How to address and leverage the
relation heterogeneity to improve concept linking is largely
unexplored. In addition, there are many ambiguous and
similar concepts. For the ambiguity issue, an example is
that there are four different “entropy” entries in Wikipedia.
For confusingly similar concepts, an example can be found
between “artificial neural networks” in machine learning
and “neural networks” in neuroscience in OAG. Therefore,
the concept linking task must deal with these inherent issues.
Finally, the OAG concept taxonomy covers over 679,921
concepts. To link OAG with Wikipedia, (semi-)supervised
methods require massive label data, which is usually arduous
and expensive to obtain.

In light of these issues and challenges, we propose a self-
supervised representation learning framework—SelfLinKG—
to link concepts between OAG and Wikipedia. The core idea
is to leverage self-supervised contrastive learning [12] to
learn the intrinsic relations between different parts of the
data. SelfLinKG compromises two key components: local
attention-based encoding and global momentum contrastive
learning.

The local attention-based encoding, which is based on
graph attention networks [35], focuses on incorporating
heterogeneous information within a single graph, including
neighborhood context and hierarchy context. The global
momentum contrastive learning aims at teaching the encoder
to learn shared critical features across multiple graphs
without labels. With the instance discrimination as pre-
training task and contrastive loss, the designed encoder can
learn features that distinguish ambiguous concepts from
the target concept in an self-supervised manner. With the
shared encoder mechanism, the representations are forced
to be effective across the two graphs. With the momentum
update, the fluctuating training of self-supervised is therefore
stablized.

To summarize, our work makes the following contribu-
tions:

• First, we propose to study the concept linking problem
across multiple large-scale knowledge bases, specifically
between the large-scale OAG and Wikipedia. The chal-
lenges of this problem are identified: various relations,
ambiguous concepts, scarce label data, and scalability.

• Second, to address them, we present a self-supervised
embedding learning framework for concept linking–
SelfLinKG—-which leverages state-of-the-art deep learn-
ing techniques for learning semantic and structural
representations, even competitive against its supervised
counterpart.

• Third, we conduct extensive experiments on OAG and
Wikipedia, which suggest that SelfLinKG can achieve
very high accuracy of 97.33% in the real application,
significantly outperforming baseline models.

• Finally, together with the linking results, we make the
Open Academic Graph with Knowledge (OAGknow)
publicly available. OAGknow consists of 93 million con-
cepts, which can be used for various research problems
such as text mining, question answering, and knowledge
reasoning.

2 THE CONCEPT LINKING PROBLEM

In this section, we formalize the problem of concept linking
across knowledge bases and present the task of linking
academic graphs with Wikipedia.

Knowledge bases (KBs) comprise both structured and
unstructured information. Broadly speaking, it could be a
taxonomy, an encyclopedia, or a knowledge graph. Formally,

Definition 1. Knowledge Base (KB)
A KB is defined as a graph G = {C,R,A}, where the concept
c ∈ C contains semantic attributes and the relation r ∈ R
is associated with its type mapping functions φ(r) : R → D
with |D| > 1, where D is the set of relation types (e.g. D =
{hypernym, related}), and A = {ci, rij , cj} is the adjacency set
recording the connectivity between concepts.

For example, Wikipedia is a KB comprising of concepts
(entries), and its relation set includes 1) the hypernym relations
between concepts with a broad meaning and those with more
specific meaning and 2) the related relations between concepts
sharing weaker association. Compared with Wikipedia,
taxonomies usually contain only the hypernym relations.

Definition 2. Concept Linking across KBs
Given m knowledge bases KBp(p = 1, · · · ,m, with m > 1),
the goal is to generate concept linkings L = {(c(p)i , c

(q)
j )|c(p)i ∈

KBp, c
(q)
j ∈ KBq, p 6= q} such that c(p)i and c

(q)
j represent

exactly the same concept in KBp and KBq .

In this work, we focus on the problem of concept linking
between two public knowledge bases—the Open Academic
Graph (OAG) [44] and the English Wikipedia. OAG is
to date the largest publicly available academic graph. It
contains five types of entities, including papers, authors,
affiliations, venues (journals and conferences), and research
concepts (topics). The goal here is to link OAG’s concepts
with Wikipedia’s concept entries by using 1) OAG’s concept
taxonomy and concept content, and 2) Wikipedia’s content
and entry taxonomy.
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The problem is challenging, as it is difficult to acquire
sufficiently labeled data to train an effective machine learning
model. To deal with this issue, we desire to have a powerful
unsupervised or semi-supervised model. Second, there is
also the name disambiguation issue. For example, there are
four different “entropy” entries in Wikipedia, and how to link
different ones with those in academic graphs is challenging.
Finally, the model needs to handle the scalability, as to train
and deploy a model to deal with thousands of millions of
concepts is not an easy task.

To deal with the aforementioned issues, especially the
first one, we further clarify the supervised and unsupervised
(or self-supervised) embedding learning for concept linking
in the following definition.

Definition 3. Embedding Learning for Concept Linking
Given m knowledge bases represented as m graphs Gp =
{Cp, Rp, Ap}(p = 1, · · · ,m), a embedding function f : c|G→
Rd is learned such that for each concept c(p)i ∈ Cp, embedding
v
(p)
i = f(c

(p)
i |Gp) could be efficiently utilized to recover the full

concept linkings L = {(c(p)i , c
(q)
j )|c(p)i ∈ Cp, c

(q)
j ∈ Cq, p 6= q}

in:
1) Supervised setting: part of L is provided as the training set

for training f .
2) Unsupervised (Self-supervised) setting: none of L is

provided for training f .

3 THE SELFLINKG FRAMEWORK

In this section, we present the self-supervised embedding
learning framework—SelfLinKG—for linking concepts across
knowledge bases. We will first discuss the motivation of
SelfLinKG and then introduce its two components.

3.1 Motivation
In related fields of concept linking, such as entity align-
ment, embedding-based methods are generally based on
supervised learning. Supervised learning has achieved great
success in the last decade, but it suffers from heavy depen-
dency on manual labels and poor scalability on unseen data.
These problems are especially fatal to large-scale concept
linking and entity alignment. A large amount of manually
labeled data is too expensive, and to make the linking system
online, we need to make the algorithm scalable.

Despite the drawbacks of supervised learning, however,
previously people have few choices but to choose it because
of two important reasons as shown in Figure 2:

1) Lack of embedding consistency. For concepts in differ-
ent KBs, their representations are located in different
and inconsistent embedding spaces (just like two people
using two languages). To make their embeddings consis-
tent, we can either use a supervised classifier to bridge
the gap (a translator [16]) or let them fall into the same
embedding space by anchor nodes (both turn to use the
third language [2], [18], [31], [45]). Both methods require
external supervision.

2) Lack of training objective. In supervised learning,
labels serve as objectives for encoders to draw near
positive samples and push away negative samples.
Without labels, such a goal seems to be impossible
because we can not draw near positive pairs.

Fig. 2: Motivation of SelfLinKG from perspectives of embed-
ding consistency and training objective.

Are there any means to cope with these problems, or part
of them, without labels? Fortunately, recent breakthroughs
in self-supervised learning shed light on this question.

In terms of embedding consistency, if KBs are in the same
language, we can leverage the inherent embedding space of
it. Instead of using word embeddings trained separately on
different KBs, pre-trained language models such as BERT can
provide a unified initial embedding space for concepts from
different KBs. During the training, a shared encoder that yields
embeddings for concepts from different KBs will further
ensure the consistency.

In terms of training objectives, without labels, we cannot
draw near positive sample pairs. However, there are always
abundant negative samples. If we can push away negative
samples from each other as much as possible, it equals we
relatively draw near positive ones that share similarity to
some extent. The instance discrimination pretext task with
contrastive loss are born for that purpose.

To sum up, we propose SelfLinKG, a concept learn-
ing framework to deal with the large-scale heterogeneous
concept linking problem without an arduously expensive
process for producing massive labeled data. We propose
to leverage self-supervised learning to learn the intrinsic
relations between concepts across the two knowledge bases,
which also help mitigate the scalability issue for handling
large-scale data. In the following sections, we will introduce
two components that SelfLinKG comprises of in details: 1)
local attention-based encoding and 2) global momentum
contrastive learning. Figure 3 illustrates the architecture of
SelfLinKG.

Local Attention-based Encoding. The local attention-based
encoding aims to tackle the data heterogeneity and map both
data into the same latent space at both entity-level and graph-
level. For entity-level, both semantic information and struc-
tural information are involved. We design a heterogeneous
graph-attention-based encoder to aggregate information from
the taxonomy structures (both hierarchy and neighborhood).
For graph-level, we formulate taxonomies, encyclopedias,
and knowledge graphs into unified attributed graphs with
two types of relations (hyponym and related) to simplify the
problem.

Global Momentum Contrastive Learning. After encoding
concepts’ into vectors in the first step, we propose to use
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a self-supervised representation learning solution to link
concepts across the two datasets. This solution requires
a proper self-supervised training task and objective function.
Note that under this setting, there is no existing link across
the graphs. Inspired by recent progress on self-supervised
contrastive learning in computer vision [12], we propose
to use instance discrimination as the pre-trained task and
leverage momentum contrastive learning as the objective. We
use an online encoder (updated by direct gradient descends)
and a target encoder (updated by momentum), which are
trained across both graphs, to ensure the training stability
and that embeddings are projected into the same embedding
space.

3.2 Local Attention-based Encoding
We introduce the local attention-based encoder, which aims
to efficiently capture semantic and structural information
by learning to aggregate information from concepts. The
encoder comprises three components: semantic embedding
generation, neighborhood aggregation, and hierarchy aggre-
gation.

Semantic embedding generation. For a concept in the
knowledge base, we embed its semantic information into
the latent space. Traditionally, we can initialize embeddings
randomly or train phrase-level embeddings on each KB using
methods like doc2vec [13]. However, when it comes to large-
scale applications across multiple knowledge bases, such
methods are computationally expensive and can not easily
scale up to concepts absent in training corpus. Additionally,
semantic embeddings trained separately in each KB will spoil
the embedding consistency we have discussed in Section 3.1
that is critical for a self-supervised setting.

Therefore, we adopt the recent pre-trained language
model BERT [5], [41] as the basic encoder, which is pre-
trained over vast amounts of corpora (including whole
Wikipedia) and has been proved to be effective for almost
all the language tasks. With the help of BERT, concepts with
similar semantics in different KBs will still be embedded
into similar vectors and maintain the embedding consistency.
What is more, since many concepts are professional terms,
the conventional embedding methods such as GloVe fails
to cover them. But BERT’s sub-token technique, which split
an unknown token into known sub-tokens, can preserve the
semantics in these terms.

For most concepts, such as in many taxonomies, their
names are the only semantic information we can utilize,
and the semantic embedding hi is generated by: hi =
encoder(namei). When there are attributes available, we can
extend the representation by using aggregators like pooling
or soft attention mechanisms [31].

In detail, for a sequence to encode, we turn it into
lowercase with the max sentence length as 25 with padding
for shorter ones. Notice that we allow for special tokens in
BERT tokenizer. Since BERT is a bidirectional transformer,
the encoded output is also a sequence with the same length
as the original sequence. To transform this sequence to a
fix-length vector as sequence embedding, follow tradition,
we apply the average pooling from the second output to the
final output. The first output is the embedding of the special
token [CLS] in BERT, meaning start of the sequence, which is

usually used for natural language understanding task such
as text classification. In our setting it is discarded because
we want embeddings that represent token-level information
rather than sentence-level. The BERT output units have a
dimension of 768, to transform into a given dimension for
other networks, we apply the max pooling and reduce the
dimension to 150.

Neighborhood aggregation. In real-world applications, raw
semantic information is usually minimal and does not con-
tain sufficient information for high-quality links. Therefore,
structural contexts are often utilized to generate high quality
and distinguishable embeddings. To put correct weights on a
concept’s neighbors, we propose to use the multi-head graph
attention networks [35] with trainable unique embeddings.

Given a concept c(p)i in knowledge base KBp (for short,
we use ci), the goal of neighbor aggregation is to learn the
attention coefficient attn(ci, cj), which implies the aggrega-
tion weight of a concept cj ’s influence on target concept
ci. The attention coefficient is learned by the self-attention
mechanism:

oij = attn(Whi,Whj) (1)

where oij indicates the importance of concept cj ’s features
to concept ci, hi is concept ci’s semantic embedding, and W
is a shared projection matrix. By utilizing the neighborhood
structure, the graph attention layer only needs to compute
oij for concepts cj that have the related relations with ci, i.e.
concepts cj ∈ Ni, where Ni is the neighborhood of node ci.
Then oij can be normalized across all possible cj by using
the softmax function

αij =
exp(LeakyReLU(Whi +Whj))∑

k∈Ni
exp(LeakyReLU(Whi +Whk))

(2)

Then we employ the multi-head attention to generate concept
ci’s output embedding h′i. Here we continue to use c(p)i and
h
(p)′
i to emphasize that they only involve information from
KBp:

h
′(p)
i = fc(

Kn

k=1

σ(
∑
j∈Ni

αkijW
k
hh

(p)
j )) (3)

where
f

represents the concatenation operation, fc(·) is fully-
connected neural networks, σ is the activation function, Wh

denotes specified projection matrix for semantic embedding,
Ni is the neighborhood of node ci, and K is the head number.

In practice, consider the average degree of 2.56 in MAG
and 22.24 in EnWiki (see details in Section 4.1), we sampling
a fixed number of 20 neighbor nodes as the Ni for concept
ci and employ a 2-hop multi-head attention networks to
encode the embedding. Since the |Ni| is fixed, when the
1-hop neighbors of ci are not enough, we will continue to
sample 2-hop and even k-hop neighbors if needed.

The reason for using multi-head attentions are as follow.
Analogous to different kernels and channels in convolutional
neural networks, different attention heads in attention net-
works captures different patterns, while a single attention
head could only captures one pattern and leads to unstable
and poor performance, which has been proved in various
work [3], [34], [35], [37].
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Fig. 3: An illustrative architecture of SelfLinKG framework. Local Attention-based Encoding, i.e. the encoder, encodes
neighbor and hierarchical information into vector embedding. Global Momentum Contrastive Learning leverages the output
embedding to calculate contrastive loss using self-supervision rather than labeled data. Online encoder f uses momentum
to update the target encoder ft.

Up until now, we follow the traditional setting of graph
attention networks. However, this will lead to several prob-
lems:

1) Semantic embedding is static during the training, but it
should be trainable to adapt to better representation.

2) Ambiguous concepts (i.e., with similar or the same
name) could not be well distinguished.

3) Under heterogeneous multi-graph settings, synonym
concepts should be linked, but they actually have very
different semantic embedding.

To solve the tough problems above, beyond semantic
embedding, we introduce unique embedding. For each
concept c(p)i , we create a unique trainable embedding ui. In
the self-supervised mode, every concept has its own unique
embedding. Therefore, besides Wh we create another set of
projection matrix Wu for aggregating the unique embedding
as

u′i = fc(
Kn

k=1

σ(
∑
j∈Ni

αkijW
k
uu
′
j)) (4)

and the final output of neighborhood aggregation is to
concatenate the aggregation results of semantic embedding
and unique embedding and pass to a fully-connected layers

v
(p)
i = fc([h

′(p)
i ‖u

′
i]) (5)

The auxiliary unique embedding successfully solves the
problems above. First, unique embedding could now be
trained to provide concepts with dynamic adaption. Second,
ambiguous concepts could gain a distinct representation
through differentiate unique embedding of themselves while
not changing the original semantic embedding. Finally, syn-
onym concepts could narrow the gap of their representation
by having a shared or similar unique embedding.

Hierarchy aggregation. In this part, we introduce the idea of
extending the hierarchical context of a concept using breadth-
first-search (BFS) and applying a similar graph attention

mechanism in neighborhood aggregation to perform the
hierarchical aggregation.

First, we define the hierarchical context to be the hy-
pernym (parent concepts) context rather than the hyponym
(children concepts) because children concepts are usually
noisy and excessive. In practice, we view children concepts
as ordinary related concepts, and encode them in the neigh-
borhood aggregation step.

The intuition for extending hierarchical context is that
hierarchical structure in different knowledge bases is het-
erogeneous. For instance, in MAG the concept Machine
learning has the parent concept Computer science. However,
in EnWiki this structure is more elaborate and fine-grained:
Machine learning has the parent Artificial Intelligence, and
Artificial Intelligence has the parent Computer science. If we
only consider direct hypernyms of the concept, we will not
be able to deal with the heterogeneous problem that widely
exists in real datasets.

A naive way is to use the top-down path from the root
concept to the target concept. However, for most knowledge
bases, the hierarchy is not organized as a tree, but a directed
acyclic graph (DAG); and a concept could possibly have more
than one direct parent. To solve the problem, we propose to
extend the hierarchical context by bottom-up breadth-first-
search (BFS).

Given d as number of samples, we perform BFS to
sample d parent concepts from target concept c

(p)
i in

KBp and generate the subgraph Gi = {Ei,Ri} where
Ei = {ej |j = 1, 2, ..., d} is the set of parent concepts
and Ri = {(c(p)i , ej)|j = 1, 2, ..., d} ∪ {(ej , ek)|ek is the
parent of ej}. In this subgraph, we perform graph attention
aggregation to generate the hierarchical representation as

αj =
exp(LeakyReLU(Wh(c

(p)
i ) +Wh(ej))∑

k∈Ei exp(LeakyReLU(Wh(c
(p)
i ) +Wh(ek)))

(6)
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m
(p)
i = fc(

Kn

k=1

σ(
∑
j∈Ei

αkjW
k
mh(ej))) (7)

where m(p)
i is the hierarchical representation, h(·) denotes

semantic embedding, Wm is the projection matrix for hierar-
chy aggregation. In practice, we sampling a fixed number of
5 hypernym nodes as the Ei for concept ci and employ a 2-
hop multi-head attention networks to encode the embedding.
Similarly, because hypernym relations are very sparse, 5
hypernym nodes could usually cover 2-hop and even 3-hop
hypernym nodes for concept ci (see Section 4.1).

In all, we finally get the overall representation v′(p)i for
concept c(p)i by integrating all these representation up as

v
′(p)
i = fc([h

(p)
i ‖v

(p)
i ‖m

(p)
i ]) (8)

where h(p)i denotes the original semantic embedding, v(p)i

denotes the neighborhood aggregation result and m
(p)
i

denotes the hierarchy aggregation result.

3.3 Global Momentum Contrastive Learning

In this section, we present the self-supervised global momen-
tum contrastive learning framework with three key ideas:
shared encoder, contrastive loss as instance discrimination,
and momentum update.

Shared encoder As we have discussed in Section 3.1, dur-
ing the shift from supervised embedding learning to self-
supervised embedding learning, lack of embedding consistency
and training objectives are the main obstacles. For the consis-
tency problem, BERT embeddings have provided us with a
unified initial embedding space for concepts from different
KBs. However, if we train encoders for each KB respectively,
each of these encoders will learn their own parameters and
therefore spoil the consistency.

For ensuring consistency during training, a natural idea
is to “merge” KBs into one. This is what happens to the
shared encoder, that it is jointly trained over KBs to maintain
the unified embedding space because it only learns one set
of parameters. Our ablation study shows that the shared
encoder mechanism brings in a noticeable improvement.

Contrastive loss as instance discrimination Recent studies
show promising results on self-supervised representation
learning [17] using contrastive loss [9] in computer vi-
sion [12], [30], [42], natural language processing [4] and
graph learning [36]. Given a positive sample pair (x, y) and
a set of negative samples Y− = y1, ..., yk, the contrastive loss
is formulated as:

Lcontrast = E[− log
ef

T
x fy/τ

ef
T
x fy/τ +

∑
i e
fT
x fy−

i
/τ

]

= E[−fTx fy/τ ]︸ ︷︷ ︸
alignment

+E[log(ef
T
x fy/τ +

∑
i

e
fT
x fy−

i
/τ
)]︸ ︷︷ ︸

uniformity

(9)

where f(·) refers to the encoder and τ is the temperature
hyperparameter. The first term aims at “alignment” and the

second aims at “uniformity” of sample vectors on a sphere
given the normalization condition.

The traditional supervised entity alignment algorithms
can also be categorized into contrastive learning with man-
ually labeled positive pairs. Based on the assumption that
after encoder f converges, a concept x from KB1 and its
positive paired y from KB2 should have similar embeddings
(P(fx = fy) = 1). If we always normalize the representation
(||fx|| = 1), according to [38], we have fTx fy ≈ 1 and the
contrastive loss can be further written as:

Lcontrast
P(fx=fy)=1
========= −1/τ + E[log(e1/τ +

∑
i

e
fT
x fy−

i
/τ
)]

(10)

which indicates that the main problem of embedding-based
concept linking lies in uniformity rather than alignment
given the prerequisite. This provides us with a solid the-
oretical foundation for applying self-supervised learning
to concept linking problem, that if we can guarantee
P(fx = fy) = 1 during the training, we can still learn a
good representation for concept linking without manually
labeled positive samples.

This condition does approximately hold during the
training of SelfLinKG. Because we have already unified the
embedding space of different KBs, suppose x from KB1 and
y from KB2 are identical concepts, they must share some
semantic and structural similarities (otherwise no machine
learning algorithm will be able to link them). From the
perspective of representation, fx and fy are naturally close
to each other in the embedding space. In SelfLinKG, we
only push other noisy concepts away from them as far as
possible to make their distance relatively small and do not
try to draw them near. Of course, the performance will not
be as good as supervised learning with abundant labels, but
we will show in the experiments that our self-supervised
SelfLinKG is competitive and even better than supervised
ones in few-label situations.

Internal Deduplication Assumption (IDA) for negative
sampling In practice, we propose to leverage contrastive
loss as instance discrimination to train our encoder. For each
concept x, we use the initial BERT embeddings to select out
a set of top-k similar concepts y−i as hard negative samples
from the KB that contains x rather than the KB we want
to link x to, and then maximize the similarity of fx = f(x)
encoded by the online encoder f with fy = ft(x) encoded
by the target encoder ft and minimize the similarity of fx
with fy−i .

This strategy works under the assumption that a KB is in-
ternally deduplicated, which we call “Internal Deduplication
Assumption (IDA)”. In fact, a KB usually does not contains
two distinct concepts that have identical meaning. In that
case, we can view any other concepts in the KB as negative
ones to a given target x, and therefore would not select out
true positive samples even without groundtruth because we
are selecting negative samples from KB that the concept x
comes from rather than the counter KB. Compared with Local
Closed World Assumption [6] which assumes triplets not in
a set of KBs as negative samples, our assumption is made
within a deduplicated KB and assumes all concepts beyond
the target itself could play the role as negative samples.
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Algorithm 1: Global Momentum Contrastive Learn-
ing

Input : Knowledge Base KBp(p = 0, 1, ..., P );
Online encoder f and params θ; Target
encoder ft(·) and params θt.

Output : Pretrained embedding v for linking task.
Initialize θ = θt.
while True do

Randomly pick a KBp from all KBs and a batch
X from KBp;

for concept ci ∈ X do
fx = f(ci);
/* 1. instance discrimination */
fy = ft(ci);
sample Y− = {y−1 , ..., y

−
k } from KBp;

fy−i
= ft(y

−
i );

L = −fTx fy/τ + log(ef
T
x fy/τ +

∑
i e
fT
x fy−

i
/τ
)

/* 2. gradient update on f */
θ = θ − α · ∂∂θL
/* 3. momentum update on ft */
θt = mθt + (1−m)θ

Fig. 4: Conceptual comparison of (a) end-to-end training and
(b) momentum update. End-to-End use single encoder, which
suffers from training instability and could not converge in the
experiment. However, momentum update helps the target
encoder to change steadily along the direction of gradient
momentum, rather than that of the instant gradient.

There may be another remaining question about why
we use hard negative samples. As indicated Equation (10),
the more negative samples rather than harder ones, the
better uniformity. That is true for previous applications
of contrastive learning that focus on image classification
problems who leverage a memory bank or a queue to store a
large amount of randomly selected negative samples ( [12],
[30], [42]). However, in concept linking, we find that since the
semantic embeddings have been pre-trained and are quite
distinctive in most cases, using random negative samples
from memory banks or queue structures lead to trivial solu-
tions in preliminary experiments. Thanks to the pre-training,
trivial negative samples actually have been distributed far
away from our target, and the main problem lies in those
harder ones. Thus, we perform negative sampling based on
semantic embedding similarity, i.e., we collect concepts that
are similar to the target concept by name as negative sampled
ones.

Momentum Update. In this part, we will introduce the

final critical idea that ensures the feasibility of SelfLinKG—
momentum update. Recall Equation (10), given a concept x
and a set of negative samples y−i , we will update the encoder
f by minimizing Lcontrast. However, a question is that are
we going to update f according to fx, fy−i , or both of them?

Traditionally, in the end-to-end training fashion, we will
update f from both fx and fy−i . However, in the contrastive
learning scenario, we only update f according to fx and
stop gradients being back-propagated to f from fy−i

in a
momentum update paradigm. A conceptual comparison
between them is shown in Figure 4. The reason is that
fy−i

here serves as a stable ground for fx to adjust its
location in the embedding space. If we directly update
them according to the direction of the instant gradient, so
rapid are the fluctuations of fy−i at the beginning of the
training that even x in adjacent batches may see drastically
different embedding of the same negative sample y−i , leading
to representation collapse [12]. Instead, as many famous
optimization algorithms such as Adam and Adagrad do, we
can update them according to the direction of the gradient
momentum, which is far more steady. In Section 4.4, our
experiment also support this conclusion.

On the other hand, the fy−i should also be updated along
with the learning of f . Thus, a compromise is to leverage
momentum update with two encoders: the online encoder f
and the target encoder ft. Such techniques are also common
in fields such as reinforcement learning, where Double Q-
learning [33] with two encoders are proposed to deal with
the learning collapse and instability. In this case, we can
rewrite the contrastive loss as

Lcontrast = E[−f(x)T ft(x)/τ ]

+ E[ef(x)
T ft(y)/τ +

∑
i

ef(x)
T ft(y

−
i )/τ ] (11)

where the online encoder f is directly updated by gradients
as

θ ← θ − α · ∂
∂θ
Lcontrast (12)

where α is the learning rate. And the target encoder, by the
momentum it is updated for every certain number of steps
as

θt ← mθt + (1−m)θ (13)

where m ∈ [0, 1) is the momentum coefficient that needs to
be set as a large value like 0.999 to ensure smooth optimiza-
tion. In this case, the representations of negative samples y−i
are slowly updated following the rapidly updated online
encoder. Our ablation study in Section 4.4 also shows a
relatively bigger momentum value (i.e., a slower update to
target encoder) could lead to better results.

3.4 SelfLinKG in the Supervised Setting

To demonstrate SelfLinKG’s characteristic of label efficiency,
in this section, we will briefly describe SelfLinKG in the
supervised setting, which is used for ablation study in the
experiment. We use SelfLinKGs to stand for supervised
SelfLinKG.
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In the supervised setting, i.e., there are groudntruth cross
links Ltrain = {(x, y)} where x ∈ KB1, y ∈ KB2 provided,
according to Equation (9), we leverage the most ordinary
form of contrastive loss for the concept linking task with
supervision. We still preserve the shared encoder mechanism
and momentum update to make a fair comparison. For the
local attention-based encoding, those linked pairs also share
identical unique embeddings. In the experiment, we adjust
the ratio |Ltrain|/|L| of cross links for training SelfLinKG to
compare with SelfLinKG with no Ltrain provided.

We discuss the experiment results between SelfLinKG and
SelfLinKGs in Section 4.4. The results show that SelfLinKG
has a competitive and even much better performance in
situations with fewer labels.

4 EXPERIMENT

Because SelfLinKG is designed to cope with concepts in
real-world large-scale heterogeneous knowledge bases, con-
ventional entity alignment benchmarks like DBP15k [27] are
either too small, with little ambiguity, or cross-lingual (which
must require external supervision), which fail to meet our
requirements. Therefore, in this work, we decide to evaluate
the SelfLinKG between two large heterogeneous knowledge
bases: Microsoft Academic Graph (MAG) taxonomy ( [25],
[26]) in OAG [44] and English Wikipedia (EnWiki).

Based on experiments, we further conduct concept linking
between 14 different knowledge bases. The final linked
concept graph OAGknow is publicly available.

4.1 Dataset

MAG taxonomy. MAG taxonomy consists of 679,921 con-
cepts collected from the Internet and 873,087 hypernym rela-
tions generated according to co-occurrence from 208,915,369
published papers. As some concepts in MAG are isolated —
have no relations with the other concepts, we filter them out.
Finally, the resultant MAG graph consists of 490,885 concepts
and 873,087 hypernym relations.

English Wikipedia (EnWiki). As for EnWiki, we use the
snapshot of June 2019. After cleaning, we have 7,598,399
terms and 1,584,269 categories, with 7,029,440 related re-
lations and 1,395,321 hypernym relations. We apply three
rounds of cleaning to EnWiki: First, since there are too many
entities rather than concepts in EnWiki, we use concepts in
the MAG subgraph to search top-10 similar entries in EnWiki
by name as seeds. And then, we extend all concepts that
are 1) hypernyms of seeds, 2) has the same name with seeds
into the subgraph. Finally, because some categories share
the exact same name with concepts, we merge them into
one. Notice that there are no original hypernym relations
in Wikipedia, so we view pages-in-category and subcategory
as hypernym relations.. Finally, the obtained EnWiki graph
consists of 620,557 concepts, 5,503,012 related relations and
1,395,321 hypernym relations.

Groundtruth. As for evaluation, because MAG taxonomy is
collected from the Internet, the original web page URLs for
concepts are available. After examination, 233,010 concepts
of the MAG taxonomy derive from EnWiki, in which some
of the URLs are redirected to other new entries because the

EnWiki is also evolving. We evaluate SelfLinKG and other
baseline models based on these original links as groundtruth.

4.2 Setup

Evaluation Tasks. To systematically evaluate the proposed
methodology, we design the following four tasks:

• Synonym Linking: We utilize the redirect link in EnWiki
to build a dataset consisting of 10,082 sample pairs,
among which 5,041 are synonym concept pairs, and
others are negative sample pairs by sampling similar
terms. Following [31], we put the pair of embedding into
a multi-layer neural network as a classifier to output the
similarity score.

• Disambiguation: Disambiguation of concepts sharing
the exact same name is extremely difficult for linking.
The ambiguous concepts are mainly from EnWiki, with
a correct matching concept in MAG. We pick out
ambiguous concepts by disambiguation pages in EnWiki
and construct a dataset containing 730 unique terms
and 3,548 concepts. Statistics of the disambiguation
dataset are shown in Table 2. For each unique term,
we re-rank concepts by L2 distance using trained rep-
resentation. Because in the disambiguation task, the
negative samples should only involve those ambiguous
ones, Hit@K would be a more objective metric rather
than Prec./Rec./F1 in which case negative samples are
randomly selected and lead to a virtual-high result.

• General Linking: We build a challenging dataset con-
tains both simple matching cases and synonym cases, al-
together 20,100 samples, including 70% simple matching
cases and 30% synonym concepts cases and harden it by
sampling negative concepts that have similar semantic
embedding with positive pairs. The dataset has 60%
for training, 20% for validation, and 20% for testing.
Following previous works, we feed pairs of embeddings
into a multi-layer neural network as a classifier to output
the similarity score.

• General Ranking: We further construct a ranking
dataset using positive pairs from the General Linking
dataset. For each positive sample, we find the top-20
similar concepts by name in EnWiki as candidates,
and re-ranking them by L2 distance using trained
representation and faiss toolkit.

Comparison Methods. Though many embedding-based
entity alignment algorithms have emerged these years, most
of them focus on supervised learning and are not fair to
serve as baselines for self-supervised SelfLinKG. Therefore,
we select a series of state-of-the-art unsupervised knowledge
graph embedding methods that are used as baselines in
various entity alignment papers to compare. We manually
tune their hyperparameters for a solid comparison.

• RESCAL [20]: This method is an approach to relational
learning based on the factorization of a three-way tensor.

• TransE [1]: A method that models relationships by
interpreting them as translations operating on the low-
dimensional embeddings of the entities.

• ComplEx [32]: This is a simple approach to perform
matrix and tensor factorization for link prediction data
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TABLE 1: Results of linking performances under unsupervised settings.

Task & Metrics RESCAL TransE ComplEx HolE DistMult GAKE SelfLinKG

Synonym
Linking

Prec. 54.92 55.94 56.44 56.45 56.15 46.86 67.85
Rec. 25.51 56.91 35.16 23.58 32.01 40.96 85.77
F1 34.84 56.42 43.33 33.26 40.78 43.71 75.76

AUROC 54.44 60.10 56.96 54.50 56.41 49.86 80.64

Disam-
biguation

Hit@1 21.78 22.05 34.10 19.58 36.43 38.35 48.21
Hit@2 58.90 57.94 63.69 56.98 67.26 64.65 70.00
Hit@3 75.20 76.71 80.00 76.30 80.41 80.41 82.73
Hit@5 91.09 92.19 92.32 93.15 91.64 92.32 93.28

General
Linking

Prec. 54.36 58.67 53.36 56.26 55.25 52.75 75.85
Rec. 51.81 59.53 62.95 35.58 53.27 57.72 76.15
F1 53.05 59.10 57.76 43.59 54.24 55.12 76.00

AUROC 54.09 59.79 54.55 54.86 56.47 53.04 80.75

#Candidates 2 3 4 5 6 >7
Portion(%) 31.4 20.0 16.0 10.4 9.7 12.5

TABLE 2: Statistics for Disambiguation Task Dataset

that uses vectors with complex values and retains the
mathematical definition of the dot product.

• HolE [19]: Holographic embeddings (HOLE) is a
method to learn compositional vector space represen-
tations of entire knowledge graphs. It is related to
holographic models of associative memory in that it
employs the circular correlation to create compositional
representations.

• DistMult [43]: This method focuses on the study of
neural-embedding models, where the representations
are learned using neural networks with energy-based
objectives.

• GAKE [8]: This method formulates the knowledge base
as a directed graph, and learns representations for any
vertices or edges by leveraging the graph’s structural
information. In this method, three types of graph context
for embedding are introduced: neighbor context, path
context, and edge context; each reflects properties of
knowledge from different perspectives.

• SelfLinKG: self-supervised SelfLinKG. In this method,
we input the subgraph of a concept, and trained the
shared encoder across MAG and EnWiki with only
the instance discrimination pre-train task, which is an
unsupervised method. The unique embedding has no
sharing in these settings, i.e., every single concept has
its unique embedding.

We utilize OpenKE [10], an Open-source Framework for
Knowledge Embedding organized by THUNLP based on
the TensorFlow toolkit. The authors use C++ to implement
some underlying operations, such as data preprocessing and
negative sampling. For each specific model, it is implemented
by TensorFlow with Python interfaces so that there is a
convenient platform to run models on GPUs. For GAKE,
we download the authors’ source codes written in C++ to
perform training.

Environment and Settings. In the experiment, the input
dimension and hidden dimension for graph attention layers
are 150; attention dropout is 0.3; the number of attention head
is 4. The input dimension of the fully-connected-layer in the
encoder is set to 600 and output a vector with a dimension
of 150.

For the hyperparameters of global momentum contrastive

learning, we set the momentum value m to 0.999, tem-
perature τ to 10. The networks are optimized with Adam
optimizer. All codes are implemented in Python3 and run by
interpreter Python3.6. The experiments were conducted on
a CentOS server with a 14 cores Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz, 640G System RAM, and a Tesla V100-SXM2
32GB RAM GPU.

An important technique in our method is negative
sampling based on name similarity. Here we apply the Faiss,
a library for efficient similarity search1. In the candidate
searching period, we apply the IndexFlatL2 as an indexer
based on L2 distance. The search was previously conducted
respectively in the MAG subgraph and EnWiki subgraph. It
is quite efficient because once the indices are built by KD-tree,
the closest neighbor can be easily found.

4.3 Results of Unsupervised Linking and SelfLinKG

Table 1 shows the overall linking performance on three
tasks by embedding the training method: Synonym Linking,
Disambiguation, and General Linking. The results of the
General Ranking task are showed in Figure 5. All the
methods compared are unsupervised or self-supervised
embedding learning methods. Results show that our method
SelfLinKG consistently outperforms other alternatives (26%-
33%) in every task. We will discuss and compare results on
each of them.

Synonym Linking. For Synonym Linking, the names of a
positive concept pair are not identical, sometimes even very
different from each other literally. SelfLinKG performs the
best among all methods with high recall, F1, and AUROC,
which means that SelfLinKG only omits a little proportion of
positive pairs, even for those with entirely different names. Its
comparatively low precision is probably because it assumes
some negative concept pairs with similar names as correct.
TransE performs comparatively well, while other methods
generally have low F1 scores around 30%-40%.

Disambiguation. In the Disambiguation task, SelfLinKG also
significantly performs better than other methods, which
means SelfLinKG has learned a highly distinguishable
representation that can discriminate ambiguous concepts.
GAKE also achieves superior performance to other baseline
methods, probably because context plays a vital role in its

1. https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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(a) Variants of SelfLinKG (b) Other methods

Fig. 5: Ablation study on General Ranking. The SelfLinKGs

here is trained under the best training ratio 0.8.

training. Moreover, it is also the structural and hierarchical
context information that can help to disambiguate similar
concepts. [31] also observes such insight.

General Linking. For General Linking, compared with
Synonym Linking, it is easier because we add in many simple
cases. However, hardened negative samples can still cause
trouble. SelfLinKG still performs the best, and other baselines’
performance also increases. TransE is still the top method
among baselines, but other methods also have competitive
performance compared to TransE. SelfLinKG shows a more
balanced precision and recall in this task, demonstrating its
ability to cope with linking problems in most cases.

General Ranking. Figure 5 display the result on General
Ranking, which takes the top-20 similar concepts by name as
negative samples for each positive pair from General Linking
and re-rank them using trained representation by L2 distance.
We only show the top-5 ranking results because the number
of candidates for each concept is only 20. Noted that the
SelfLinKGs here is trained under the training ratio 0.8 (see
training ratio’s detailed definition in Section 4.4).

The subfigure (a) compares the performance on variants
of SelfLinKG. It is surprising for us to see that in this challeng-
ing setting, the SelfLinKG overwhelms other variants by 5%-
9%, even using supervision. We speculate that this is because
in the SelfLinKGs, we only train concepts in the |Ltrain|,
which takes up 80% of the whole |L| and approximately
25% of the whole MAG concepts, leading to an insufficient
uniformity because only 25% of the concepts are trained.
However, in SelfLinKG, because we have no limitation of
the training set, every concepts are trained using the self-
supervised objective which results in a better uniformity over
the whole dataset (as theoretically demonstrated in Eq. 9).
This implies that our self-supervised objective could even be
a complementary for the supervised setting to achieve better
uniformity, but due to the limited passage we will leave it as
an open problem for the following work.

For other unsupervised methods in subfigure (b), because
their objectives do not focus enough on the discrimination
task enough, they also fail to perform well in the General
Ranking task.

4.4 Detailed Ablation Study

In this section, we conduct ablation studies on three critical
factors in SelfLinKG: self-supervision, shared encoder, and
momentum update.

(a) Disambiguation: Hit@1 (b) General Linking: AUROC

Fig. 6: Ablation study on 1) SelfLinKG v.s. SelfLinKGs, 2)
shared encoder v.s. separate encoder

Self-supervised v.s. Supervised. To further study the capa-
bility of the proposed self-supervised model SelfLinKG for
concept linking, we develop a supervised version SelfLinKGs

and evaluate the gap between the two versions. For im-
plementation details of SelfLinKGs, please refer to Section
3.4. We compare them in the Disambiguation and General
Linking tasks. Among 233,010 anchor links we have, we take
out 22k of them as available training labels for supervised
SelfLinKGs. Noted that these 220k anchor links do not
overlap with the 10k used for evaluating the General Linking
task.

Figure 6 shows the results of the different versions of
SelfLinKG on these two tasks. For SelfLinKG and SelfLinKG
(separate), their performance is static to the ratio of training
labels provided because they are in the self-supervised set-
ting. On the contrary, supervised SelfLinKGs’s performance
benefits from the increasing ratio of provided training labels.

We observe from both (a) and (b) that the self-supervised
SelfLinKG is significantly better than the supervised
SelfLinKGs when the ratio of the training data is less than
0.5 (about 110k labels). Only when the training data ratio
increases to nearly 0.6, the supervised version can take
advantage of massive labeled information. Noted that in
practice, collecting such a large number of training data is
always expensive and infeasible.

Moreover, for multiple knowledge bases linking, this
cost is growing quadratically with the number of knowl-
edge bases involved. Suppose there is m KBs, under the
supervised setting, we have to manually label cross-links
for every two KBs, which results in m(m−1)

2 needed dataset.
Our unsupervised model SelfLinKG suggests that the self-
supervised method could also perform ideally while cutting
down the labeling costs.

Shared encoder v.s. Separate Encoder. From both Figure 6
and Figure 5, we also observe that the shared encoding is very
helpful. With the shared encoding, SelfLinKG can obtain an
improvement of 5.5% by Hit@1 rate in the Disambiguation
task. In the General Linking task, we can also obtain an
improvement of 2% by AUROC. This verifies the importance
of sharing parameters in multi-graph learning and cross
embedding space learning. A consistent embedding space
is critical for the performance of concept linking and entity
alignment.

Momentum Update v.s. End-to-end. In Table 3 we discuss
the gap between momentum update and end-to-end training.
Besides, we also investigate how to choose momentum value.
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TABLE 3: Ablation study on momentum value m
Momentum Hit@1 F1 AUROC
end-to-end

(0.0) failed failed failed

0.9 failed failed failed
0.99 46.57 74.74 81.43
0.999 48.21 76.00 80.75
0.9999 46.57 77.33 83.41

TABLE 4: Ablation study on multi-head attention
Heads Hit@1 F1 AUROC

4 48.21 76.00 80.75
1 47.13 73.31 78.87

As we discussed in Section 3.3, the single-encoder-
architecture (end-to-end) in contrastive learning leads to
instability naturally. This is because, in training, the target
encoder serves as the ground-truth, i.e., the distribution
we want the online encoder to fit on. In the single-encoder-
architecture, model parameters are updated drastically at the
beginning of training, leading to a rapid changing ground-
truth and a failure. The momentum update can successfully
deal with the problem by changing the target encoder slowly
and smoothly, following the average direction of gradient
optimization rather than the instant gradient.

For comparison between momentum update and end-
to-end training, the end-to-end training equals momentum
update when m = 0. In this situation, we discover that end-
to-end training leads to a rapid collapse. This holds even
when m is only a bit small such as 0.9. Our experiment shows
that the training still fails very quickly.

Besides failed scenarios, we test on the other three typical
values of m: 0.99, 0.999, 0.9999. The experiment indicates
that the value between 0.999-0.9999 performs well. For value
bigger than 0.9999, the target encoder is updated too slowly
and causes the performance to drop.

Multi-head Attention We conduct further experiments to
show that why multi-head attention is necessary. As authors
in Graph Attention Network (GAT) claimed [35], they found
the multi-head attention to be beneficial similar to findings
in transformers [34]. The intuition is that a certain type of
attention head usually captures a certain data pattern, like
kernels in convolutional neural networks. With more heads,
more parameters are engaged in the training which often
yield better results.

In the Table 4, we compare the performance of traditional
single-head attention and our multi-head attention (i.e. 4-
head attention) on Disambiguation and General Linking
tasks. The results show that our 4-head attention outperforms
single-head attention on every tasks. Although more heads
may yield marginal benefits, but it also brings in a heavier
model, so in this work we only choose 4 heads for our local
attention network.

5 OAGknow— LINKED CONCEPT GRAPH

Based on our proposed framework and public datasets,
we have published Open Academic Graph Knowledge
(OAGknow)1, which integrates concepts from 14 bilingual
knowledge bases. Some datasets such as AMiner, AMiner-
NSFC, and Termonline are published for the first time.

In practice, first, we use semantic embedding and fuzzy
matching to generate a similar candidate pool. Then we feed

the neighborhood and hierarchy of concepts into SelfLinKG,
and self-supervisedly train their embeddings. Finally, we
leverage the trained embeddings to do ambiguous ranking
and classification on pairs from the candidate pool to get
the linked KBs. The accuracy of links is 97.33% by random
sampling a small subset of OAGknow for evaluation.

Table 5 shows the basic statistics of the OAGknow. Con-
cepts are linked to 0.7 billion OAG entities (authors, papers,
venues, affiliations) through MAG and AMiner. Together
with 93 million concepts from various KBs, OAGknow is the
largest public academic knowledge graph to date.

TABLE 5: Overall Statistics of OAGknow. T Taxonomy ; E
Encyclopedia; K Knowledge Graph

Name Type Language #Concepts #Cross-links
MAG [26] T En 679,921 963,579

AMiner [29] T En&Zh 367,890 33,890
AMiner-NSFC T Zh 53,017 85,689

NSF T En 2,155 810
Termonline T En&Zh 105,298 92,754

GB T Zh 3,543 2,697
Bpress T En 1,269 1,157

Xlore [39] E En&Zh 508,768 252,144
EnWiki E En 7,598,399 17,552,975
ZhWiki E Zh 1,055,757 703,737
Baidu E Zh 10,423,650 229,137

HuDong E Zh 3,141,658 367,850
Wikidata K En 22,574,520 17,918,258
Freebase K En 47,294,433 4,021,644
Overall - - 93,810,278 42,226,321

6 RELATED WORK

Concept linking, closely related to entity linking, ontology
alignment, schema matching and data integration etc., has
long been studied for decades [7]. Many approaches have
been proposed to address this problem. For example, Li et
al. [15] argue for rule-based methods and develop a rule
discovery algorithm. Tang et al. [28] use machine learning
and regard concept linking as minimizing Bayesian risk of
decision making. As the size of KB increases, many semi-
supervised or unsupervised methods appear. For example,
Rong et al. [23] transfer the entity matching problem to
a binary classification problem. Wang et al. [40] present a
factor graph model to learn the alignment across knowledge
bases. For data integration across social networks, Zhang
et al. [46] propose COSNET, an energy-based model that
considers global and local consistency. Pellissier et al. [21]
utilize existed hyper-links and build an online platform for
tagging manually.

Recently, network embedding and knowledge graph
embedding have been proved to be efficient in many
downstream tasks. Nickel et al. [20] view the embedding
training as tensor factorization. Bordes et al. [1] propose
TransE to interpret multi-relational data as translations
operating. Trouillon et al. [32] use complex embedding
with composition to represent relation. Yang et al. [43] put
forward DistMult to jointly embed entities and relations by
neural networks. Feng et al. [8] formulate the knowledge
base as a directed graph and learn representations leveraging
the graph’s structural information. These works are generally
unsupervised learning on a single knowledge graph and pay
little attention to cross knowledge bases situation.
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In the more specific field of entity linking, many super-
vised embedding method appear these years. Chen et al.
[2] propose an embedding-based model for multilingual
entity alignment based on TransE. Zhu et al. [47] develop
an iterative method for entity alignment via joint embed-
dings. Sun et al. [27] propose a joint attribute-preserving
embedding model for cross-lingual entity alignment. Trivedi
et al. [31] consider jointly combining link prediction and
cross-linking tasks using attention. These methods rely on a
large number of seed or anchor entities to ensure accuracy.
However, few studies focus on the unsupervised embedding
method and aim to find a unified solution for noisy and
large-scale knowledge bases linking.

In this work, we propose a unified framework Self-
LinKG to fill the gap. We first unify knowledge bases as
heterogeneous information networks and employ attention
to aggregate crucial structural information. To address the
same embedding space problem, we propose to use a
shared encoder mechanism and unique embedding. To
solve the high-cost and ambiguous problem, we propose
the unsupervised momentum contrastive learning. To learn
more about self-supervised contrastive learning, please refer
to [17].

7 CONCLUSION AND DISCUSSION

In this work, we propose an self-supervised model SelfLinKG
for linking large-scale heterogeneous knowledge bases.
Without labeled data, SelfLinKG uses global momentum
contrastive learning to learn a shared representation among
multiple knowledge bases. Our experiments on two large-
scale graphs show that the proposed unsupervised SelfLinKG
can achieve a comparable performance with its supervised
counterpart. We apply the model to automatically generate
linkings among 14 different knowledge bases and make the
linked graphs publicly available.

As the future work, it would be rather interesting to
design a knowledge linking system to automatically harvest
knowledge (linking new knowledge into existing bases) from
the open Web. It would be also exciting to explore novel
methods to make the model more robust, as the open data is
always noisy.

There are also some open problems about leveraging
contrastive objective in knowledge graph embedding. It
requires further study on whether our SelfLinKG is adaptive
to KBs that have fewer cross-links or from very different
domains. Intuitively, we think the number of cross-links
is not a problem, because the contrastive objective aims
at scattering nodes’ embedding uniformly in the sphere
space and we can still efficiently narrow down distances of
positive pairs. For KBs from very different domains, it is
probably very hard to self-supervisedly link them up if very
little common information is shared between target pairs’
attributes and structure, in which case supervised labels may
be still indispensable.

For questions about whether this contrastive objective
could help the embedding learning within one knowledge
base, we think it depends on the downstream task. Some
very recent work [11], [22] demonstrate the effectiveness of
it on node classification and graph classification in networks,
but also show that it may not help tasks such as relation

prediction and link prediction. We believe it is probably
the same for the single knowledge graph embedding task.
Limited to the passage, we do not study the problem in this
work.
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