
EgoNetCloud: Event-based Egocentric Dynamic Network Visualization
Qingsong Liu∗, Yifan Hu†, Lei Shi∗, Xinzhu Mu‡, Yutao Zhang§, Jie Tang§

ABSTRACT

Event-based egocentric dynamic networks are an important class of
networks widely seen in many domains. In this paper, we present
a visual analytics approach for these networks by combining data-
driven network simplifications with a novel visualization design -
EgoNetCloud. In particular, an integrated data processing pipeline
is proposed to prune, compress and filter the networks into smaller
but salient abstractions. To accommodate the simplified network
into the visual design, we introduce a constrained graph layout al-
gorithm on the dynamic network. Through a real-life case study
as well as conversations with the domain expert, we demonstrate
the effectiveness of the EgoNetCloud design and system in com-
pleting analysis tasks on event-based dynamic networks. The user
study comparing EgoNetCloud with a working system on academic
search confirms the effectiveness and convenience of our visual an-
alytics based approach.

1 INTRODUCTION

The egocentric network, as part of a larger network, is composed of
a focal node (the “ego”) and a set of nodes having direct connection
to the ego (the “alters”), and all the edges between the ego and its al-
ters, as well as among all the alters. In many scenarios, such an ego-
centric network serves as the foundation to understand the role of
the ego in the full-scale network. For example, in email networks,
the egocentric connections can help to infer one’s communication
type and pattern in the social interaction [13]. In mobile networks,
the egocentric text-message conversation of the subscribers can be
used to detect potential mobile spammers and promote appropriate
responses [30]. Effective egocentric network visualizations have
been shown to be critical as both the visual evidence for the role
classification [25] and the exploratory tool to uncover hidden net-
work patterns [21].

On small networks (e.g., below 100 nodes), the node-link dia-
gram and the force-directed layout algorithm perform reasonably
well. However, many networks are alive, i.e., they change over
time. Depicting the temporal dynamics of an egocentric network
can introduce extra visual clutter because of the proliferation of net-
work edges [8, 21, 25]. Moreover, in many event-based networks, a
clique sub-graph is produced for each event that occurred in the net-
work, creating dense graphs that are hard to lay out and comprehend
due to the edge crossing and visual clutter. In this paper, we con-
sider the problem of visualizing event-based egocentric dynamic
networks. We shall discuss in more detail in Section 3 that most
dynamic networks are event-based, differentiated only by the num-
ber of related nodes on an event. One example is the co-authorship
network of a researcher during his career. Each of his publications
can be seen as an event. On each event, there can be a number of

∗SKLCS, Institute of Software, Chinese Academy of Sciences, e-
mail:{liuqs,shil}@ios.ac.cn. Lei Shi is the corresponding author.

†Yahoo Labs, New York, e-mail:yifanhu@yahoo.com.
‡Academy of Art and Design, Tsinghua University, e-

mail:mxz12@mails.tsinghua.edu.cn.
§Department of Computer Science and Technology, Tsinghua Univer-

sity, e-mail:stack@live.cn, jery.tang@gmail.com.

related nodes, aka the co-authors on the same publication. By por-
traying a clear, interactive image of his egocentric dynamic network
built on the publications, we can provide a visual summary of his
evolving academic collaborations.

Visualizing event-based egocentric dynamic networks is a non-
trivial task. First, the visual design should reveal both the egocen-
tric network structure and the temporal dynamics of the ego/alter
nodes. This rules out a naive use of the node-link network dia-
gram. Second, such a network can have a much larger size and
complexity than a static egocentric network due to the dynamic and
event-based nature. Applying traditional graph layout algorithms
on the entire network can not satisfy the new requirements on the
performance, visual metaphor, and the layout constraint. Third, in-
teractions should be re-designed pertaining to these networks to en-
able the fine-grained visual exploration and analysis on temporal,
topological and contextual aspect of the egocentric network.

In this paper, we propose a visual analytics based solution by
combining novel data processing algorithms with an effective visual
metaphor design. We have built an integrated visualization system
called EgoNetCloud. Our major contributions are summarized as:

• Data-driven empirical algorithms, to prune, compress and filter
event-based egocentric dynamic networks into smaller but more
informative abstractions (Section 3);

• EgoNetCloud visual metaphor and interactions, to display and
explore both the egocentric network structure and their tempo-
ral dynamics (Section 4.1, 4.2);

• Fast and constrained layout computation, to fulfill the require-
ment of the new visual metaphor and maintain fine readability
(Section 4.3);

• Comprehensive evaluations, to demonstrate the effectiveness of
the EgoNetCloud design through a user study comparing our
system with a production system, and a real-world case study.
(Section 5).

2 RELATED WORK

2.1 Network simplification
Increasing computational scalability and reducing visual complex-
ity are among the key considerations in visualizing dynamic net-
works. One way to lower the visual complexity is through net-
work simplifications in which the central idea is to prune edges or
filter nodes. An extreme simplification that still keeps the graph
connected can be obtained by a minimum spanning tree algorithm.
The path-oriented simplification [27] removes edges that do not af-
fect the quality of best paths between any pair of nodes. There are
numerous other measures for edge importance. Girvan’s edge be-
tweenness [17] by the number of paths that run along the edge, and
Birnbaum’s component importance [7], defined as the probability
that the edge is critical to maintain a connected graph.

As the size of network increases, plotting every node creates
visual clutters, which hinders network understanding and analy-
sis tasks. Apostolico [3] introduces a compression scheme based
on the topological structure of the Web Graph that combines effi-
cient storage with fast retrieval for the information on a node. The
SEG [24] method visually condenses large network traffic graphs
without sacrificing the connectivity information. Due to the intrin-
sic structures in these networks, SEG was shown to condenses some

graphs by more than 20 times while preserving the critical con-
nectivity information. In this paper, we adopt the SEG method to
compress the nodes in egocentric networks. All the aforementioned
compression algorithms are for unweighted graphs. Toivonen [28]
proposed methods for the compression of weighted graphs. While
the compression is often based on the network connectivity, it can
also be done by combining nodes with the same attribute [9]

2.2 Dynamic Network Visualization
While static graph visualizations are often divided into node-link
and matrix representations, we identify the representation of time
as the major distinguishing feature for dynamic graph visualiza-
tions. Dynamic graph visualization focuses on the challenge of
the visual and computational complexity introduced by the extra
time dimension. Many different visualization techniques have been
introduced for dynamic graph structures which can be classified
hierarchically [5]. As Beck discussed in [4], the time dimension
can be mapped in an animation to a simulated time (time-to-time
mapping), which creates an intuitive dynamic graph visualization.
Ghani [16] found that node speed and target separation are promi-
nent visual metrics for user perception of the animation. An al-
ternative is to use a space dimension of the generated visualiza-
tion to represent a timeline (time-to-space mapping). By showing
the complete sequence of graphs in a static image [29], or as a di-
ary [12], it promises to provide a better overview of the time and
the changed among timesteps. Federico [11] proposed a visual ana-
lytic approach that supports a multi-faceted analysis of dynamically
changing networks.

Traditionally, dynamic network visualization was studied espe-
cially on specific types of graphs such as trees [20] and directed
acyclic graphs [22], drawn as a 2D node-link diagram. A matrix
representation with time-line was proposed for visualization of ge-
nealogy data [6]. Visualization for egocentric network has so far
motivated a variety of ideas. Farrugia et al. [10] proposed a tree-
ring layout in which the time was encoded into multiple concentric
circles from the ego node. The alters were replicated at each ac-
tive time slot and placed equidistantly on the ring. In contrast, Shi
et al. [25] proposed a 1.5D dynamic network visualization (1.5D),
based on the egocentric data reduction of the dynamic network. It
introduces a temporal glyph to represent the trend of the ego node.
The time information of each of these edges is encoded by the lo-
cation of the edge’s endpoint on the trend glyph. Compared to the
1.5D approach, our EgoNetCloud introduces simplification meth-
ods to deal with large-scale networks, and adopts an improved stress
majorization approach which optimizes the topological and tempo-
ral context with reference to the ego node.

2.3 Graph Layout Algorithm
Graph visualization seeks to find a visual representation of a graph
that captures structures and reveals anomalies in the graph. Node-
link diagrams and adjacency matrices [5] are two basic ways of
representing graphs, with the former being more widely used. The
graph layout problem is to find the most appropriate node positions
for a node-link representation of a graph. In doing so, often a cer-
tain objective cost is optimized [19]. Two basic layout algorithms
are force-directed placement and stress optimization [14,15]. A ro-
bust way to solve the stress model is stress majorization [15]. For
our application, we need to place nodes close to their ideal positions
in time and space, while maintaining readability and reflecting the
topology of the graph. We propose a technique which modify the
stress majorization process to achieve these goals.

3 EVENT-BASED EGOCENTRIC DYNAMIC NETWORK

3.1 Definition
Consider the dynamic network represented by a time-varying graph
I = (V,E) spanning a time period [0,Γ). The graph consists of a

~ I G

Figure 1: Construct an event-based egocentric dynamic network
from a set of events and their associated edges.

node (vertex) set V and an edge (link) set E. Each edge e∈ E (node
v ∈ V) is associated with a time set T (e) (T (v)), which contains
multiple discrete time points or continuous time periods defining
the activation time of the edge (node). An example is given in the
middle column of Figure 1. It is assumed that the underlying graph
I is simple, i.e. there is no loop edges or multiple edges between
two different nodes. Both directed and undirected graphs are al-
lowed, but for simplicity, we assume that I is undirected. We use
the notation u↔ v to denote that nodes u and v are connected by an
undirected edge.

The egocentric dynamic network G(Ω) = (V (Ω),E(Ω)) with re-
gard to the ego node Ω is essentially an induced subgraph of the
full-scale dynamic graph I, as shown in the right column of Figure
1. Its node set includes the ego node Ω, and all nodes that Ω is
connected with, V (Ω) = {Ω}∪{v|v↔Ω}.

The graph G(Ω) is said to be event-based if any discrete time
point (or continuous time period) t ∈ T (e) of the edge e ∈ E(Ω)
is associated with an activation event φ , denoted by e ∼< φ , t >.
For example, a co-authorship of two researchers at time t is exactly
triggered by one of their joint papers published at t. Conversely,
the event-based egocentric dynamic network G(Ω) can be uniquely
constructed from the event set Φ. Each event φ ∈ Φ will add an
activation of the edge e at time t if e ∼< φ , t >, as illustrated in
the left column of Figure 1. In a co-authorship egocentric network,
each paper publication will introduce a clique subgraph among all
authors of the paper, activated at the publication time.

In fact, every dynamic network can be seen as event-based if
each activation of a particular edge is considered a single event.
For example, establishing a friendship tie in online social networks
corresponds to a “connect” event. Sending a mobile short message
belongs to a “contact” event.

3.2 Analysis Framework

The main goal of EgoNetCloud is to reveal both the structure and
temporal dynamics of event-based egocentric dynamic networks.
This calls for a series of processing steps starting with the full-
scale network normally in a large size. In extracting the egocentric
dynamic network, we split the ego node into multiple sub-nodes.
Each of the sub-node represents a discrete time point or continuous
time period. As such, the static egocentric network can be decom-
posed into the dynamic network according to each edge’s times-
tamp. However, the resulting egocentric dynamic network G(Ω)
may still contain a large number of nodes and edges. Displaying
all nodes and edges can result in significant visual clutters, while
judiciously removing some nodes and edges, or at least summariz-
ing them, often give a more succinct view of the network without
significant loss of information. With the above principle in mind,
our network processing pipeline can be summarized as below:

• Edge Pruning: to remove low-weight edges to simplify the ego-
centric dynamic network. For example, in academic collabora-
tion networks, the complete graph of each collaboration could
be converted into a backbone spanning connected subgraph:

2

one that retains important collaboration relationship, while con-
tains much less number of edges (Section 3.3).

• Node Compression: to group nodes with the same connection
pattern together. This can greatly reduces the number of nodes,
especially effective after edge pruning is applied. (Section 3.4).

• Graph Filtering: to reduce nodes and their related edges by
certain rule-based policy, so as to reserve key roles and connec-
tions in the visualization (Section 3.5).

The resulting system takes a JSON formatted file with “node”
and “link” object arrays. A node object contains the attributes of
each node (e.g., its id and label); a link object contains the attributes
on link (e.g., a time stamp), as well as the ids of the end nodes.

3.3 Edge Pruning
In a large complex network, including all the edges in the network
visualization often severely reduces the clarity of display and con-
ceals alters’ role. Pruning unessential edges thus helps to highlight
key nodes and edges in the network.

In academic networks, a complete co-authorship graph, which is
traditionally used to indicate the paper collaboration, has a lot of
redundancy. For example, consider one paper with three authors in
this order: A, B and C. Suppose A has collaborated many times with
B but none with C. Being a student of B, C can also published a lot
with B. In this case, the edge between A and C is less important
and can be pruned to display only substantial collaborations. To
quantify this idea, we compute edge weights on each event-based
clique graph, using information from the full-scale network, then
pruning edges in the egocentric network with the weight smaller
than a threshold.

3.3.1 Computing Edge Weights
Take the academic network case as an example, we consider pa-
pers as documents and authors as words, and compute author-author
similarity in a way analogous to computing the word-word similar-
ity in text analysis. Specifically, we form the sparse matrix M of
dimension m×n, where m is the number of papers, and n the num-
ber of authors. The (i, j)-th entry of the matrix, mi j , is non-zero if
author j is an author of paper i.

For each paper (a row of matrix M) with, say, n authors, we can
either make each nonzero row entry as 1

n , or use a credit allocation
algorithm to decide the weight for each author. As an example,
suppose we have 3 papers involving 5 authors represented by the
following matrix

M =

 1/3 1/3 0 1/3 0
1/3 1/3 0 0 1/3
1/4 1/4 1/4 0 1/4

This matrix says that papers 1 and 2 have 3 co-authors each, paper
3 has 4 coauthors. For example, paper 5 is written by author 2 and
3. We calculate the edge weight between two authors j and l as
cosine similarity of j-th and l-th columns of the matrix M.

Recency based scaling: so far we assumed that each paper con-
tributes to the similarity equally if the number of authors are the
same. Considering that a recent collaboration is more important
that a collaboration many year ago, we scale the contribution from
each paper by the inverse of its age, thus contribution of paper k to
the similarity of authors i and j is scaled by γk =

1
ageOf(k)+s , where

s is a parameter. A joint paper s year old is 1/2 as important as a
recent paper (γk = 1/(s+ s) vs 1/s).

Scaling based on author ordering: up to now we have been cal-
culating author similarity using purely historical information. How-
ever in a paper co-authored by A, B and C, just because B and C
have stronger a historical collaboration record than A and B does

(a) (b)
Figure 2: The performance of four edge pruning algorithms on the co-
authorship network of 1791 TVCG papers, 1995∼2013: (a) algorithm
efficiency; (b) number of edges after pruning. The X axis represents
the bins by the number of co-authors per paper. The interval between
two bins is proportional to the number of papers in the starting bin.

not mean that in the current paper, the edge between B and C is
more important than that between A and B. To look at this in an-
other way, if A is the leading author, and all pairs of authors have the
same historical tie, then a reasonable null hypothesis is that the links
between A and B, and A and C, should be stronger than the link be-
tween B and C, because A is leading the collaboration. Therefore
for a paper k involving authors i and j, the similarity between au-
thors i and j due to paper k is scaled by σki j = 1/r(k, i)+1/r(k, j),
where r(k, i) and r(k, j) are list orders of author i and j. So overall,
the similarity along an edge e between authors i and j is

w(e) =
∑k=1,...,m γ2

k σki jmkimk j(
∑i=1,...,m σki j(γkmki)2

)1/2 (
∑ j=1,...,m σki j(γkmk j)2

)1/2

Note that this is a weighted cosine similarity, with weights γkσ
1/2
ki j .

So far we assumed that authors are ordered by their contribu-
tions. But in some academic fields authors are always listed in
alphabetical order. In such a case we use a credit allocation algo-
rithm [23] to capture the coauthors contribution to a publication as
perceived by the scientific community, and leave out σki j in w(e).

3.3.2 Pruning the Edges
After computing the weights of each edge in a complete paper col-
laboration graph, we propose an algorithm to prune the edges. The
algorithm has three objectives: (1) prune as many edges as pos-
sible; (2) retain important edges; (3) preserve the connectivity of
the graph. The simple method such as keeping the top k heaviest
weighted edges may not work, because of the possibility to discon-
nect the resulting subgraph.

To measure how well important edges are kept after applying a
particular pruning algorithm, we propose the follow metric. Give
a weighted graph G = {V,E} with w(e) the edge weight, we de-
fine the efficiency of a sub-graph Gs = {Vs,Es} as efficiency(Gs) =

∑e∈Es w(e)
sum of top |Es| edge weights in E .

Initially we attempted to use the maximum weighted spanning
tree (MWSP) algorithm to generate a tree, and pruned all non-tree
edges. This does satisfy considerations 1) and 3), however our ex-
periment results below show that it does poorly in retaining the im-
portant edges (consideration 2)). In our experiment we took 1791
TVCG papers from year 1995 to year 2013 with no more than 7 co-
authors (we exclude papers with more than 7 co-authors because the
sample size for such papers is too small for reliable statistical aver-
aging). We then apply pruning algorithms to these author networks
and plot the efficiency as a function of the number of co-authors
in Figure 2(a). For comparison with MWSP, we took the same
weighted complete graph, and permute the edge weights, then gen-
erate the maximum weighted spanning tree. In the figure, the red
line represents the efficiency of MWSP, while the magenta line the

3

Figure 3: An example for the node compression: (a) Several red
and blue nodes have the same neighborhood connectivity. They can
be compressed to reduce the graph size; (b) The final compressed
graph with grouped nodes.

efficiency of the permuted MWSP. If the backbone of author net-
works have a natural tendency to be tree like, we would expect that
MWSP/permuted MWSP should capture a larger share of the edge
weights (have high efficiency) on a real author network than on a
random network. However Figure 2(a) shows that the opposite is
true. In other word, the backbone of a real author network does not
have a propensity to be a tree. This is understandable, because in a
paper co-authored by, say, 6 people, there could well be subgraphs
of authors who form tight cliques, due to previous collaborations.

Therefore instead of the spanning tree, we propose to use the
smallest connected maximum weighted spanning subgraph. This
graph, denoted as Gmin−k, is defined as the smallest possible con-
nected subgraph consists of the top weighted edges. In other word,
no edge in the complement of this subgraph has weigh greater than
any of the edges in Gmin−k, furthermore, taking away the edge(s)
with the lowest weight in Gmin−k would make it disconnected.

As we can see from the blue line in Figure 2(a), the average effi-
ciency of Gmin−k is much higher than the both the maximum span-
ning tree, and the maximum spanning tree with randomly permuted
weights. It captures most of the important edges. At the same time,
as Figure 2(b) demonstrated, the number of edges in Gmin−k isn’t
much more than the maximum weighted spanning tree. This means
that Gmin−k prunes a large amount of unimportant edges, while
maintains the backbone of the author network, and preserves the
connectivity of the graph. To verify the effectiveness of Gmin−k, we
compare it to the “brute force approach” (BF) edge pruning algo-
rithms from [31], which iteratively picks the edge whose removal
best keeps the connectivity. As Figure 2(a) show, the results of BF
are almost the same to the maximum spanning tree.

3.4 Node Compression
Edge pruning simplifies the graph by reducing the number of
edges, while node compression simplifies by reducing the num-
ber of nodes. The main idea of the node compression method is
to merge nodes with the same or similar connectivity. Nodes with
the same connectivity are known as “structurally equivalent”, and
can be identified in linear time [24] and merged. After node com-
pression, the ultimate graph consists of two kinds of nodes: single
nodes remaining from the original graph (solid blue disk in the Fig-
ure 4) and the meta-node grouped from multiple sub-nodes in the
original graph (disk with blue outer ring in the Figure 4).

We describe the node compression algorithm below. Given an
egocentric dynamic network, let W be the graph adjacency matrix.
We devise a two step approach: in the first step, the diagonal el-
ements of W is set to 0, allowing the grouping of nodes with ex-
actly the same connectivity, such as the red nodes in Figure 3, to be
merged. In the second step, the diagonals are set to 1 and all the
original nodes that have the same connectivity and are also linked
to each others are grouped, as the blue nodes in Figure 3. This basic
compression is lossless. In addition, we employ a fuzzy compres-
sion that not only compresses nodes with the same connectivity,
but also nodes with highly similar connectivity. When combined
with the edge pruning process discussed earlier, the edge pruning
not only reduces the edge number, but also results in better node

compression. Taking Jie Tang’s academic collaboration egocentric
dynamic network as an example, the raw graph has 235 nodes, with
the edge pruning step, it can be compressed into 156 nodes, while
without edge pruning it can be only compressed into 198 nodes.

3.5 Graph Filtering

After the edge pruning and node compression, the egocentric dy-
namic network may still have excessive number of nodes and edges
which create cluttered visualizations. To resolve this problem, we
provide two classes of node filters on alter nodes. The first is based
on the connectivity of alters with the ego in the egocentric dynamic
network, and the second based on the active time of alters.

Using graph connectivity, we calculate the importance of a node
using the PageRank algorithm on the egocentric network. In addi-
tion, we provide filtering according to the degree of the nodes, as
well as based on time period. For application on the author collab-
oration network, we also provide node filtering based on the total
number of citations, both in the overall network, and in the egocen-
tric dynamic network.

4 EGONETCLOUD

4.1 Visualization Design

On the temporal and structural analysis of egocentric dynamic
networks, the single-view static visualizations [18, 25] have been
shown to be more effective than using the network animation [29]
and the small multiples [10]. In a 1.5D design [25], a trend graph
is introduced to display the temporal dynamics of the egocentric
network, while the node-link graph is preserved to represent the
network connections. This design, however, has drawbacks when
applied to the event-centric scenario. First, the egocentric network
in our case can grow to a much larger size and complexity due to
the event definition and the clique subgraphs. The existence of the
standalone trend graph reduces the available space for the network
layout and leads to more edge crossings. Second, the temporal and
categorical dynamics on the event can not be displayed in the orig-
inal design. In this paper, we introduce EgoNetCLoud, a new visu-
alization for event-centric egocentric dynamic networks. The main
innovation lies in: (1) a hybrid design that places the egocentric
network inside the trend graph, to save the layout space and reduce
edge crossings; (2) a double-sided cloud metaphor to replace the
trend graph to display the temporal dynamics of both the egocen-
tric network and its central event in multiple types.

We describe the visual design of EgoNetCloud through the de-
ployment on the ArnetMiner (AMiner) data set [1], a popular aca-
demic search and social networking website. We focus on the ego-
centric network of Prof. Jie Tang (the inventor of AMiner), where
his paper publications are considered to be the central events (aka
the ego nodes). Till April 2013, Prof. Tang’s egocentric network
has expanded to 235 co-authors and 3709 relationships triggered
by 160 papers. After the processings in Section 3, this network is
simplified to 158 nodes and 395 edges.

Figure 4 illustrates the EgoNetCloud system interface on Prof.
Tang’s egocentric network. The main EgoNetCloud visualization is
given in Figure 4(b). The height of the trend graph above the hor-
izontal line represents the dynamics on the number of co-authors
collaborating with Prof. Tang over time. Inside this cloud, the sim-
plified version of his egocentric network is displayed. Each node in
the network (aka the alter node) is drawn in a filled blue disk, indi-
cating one single or group of his co-authors. For the group nodes,
a hollow circle is drawn outside the disk to indicate the group na-
ture. The size of the disk shows the importance of the co-author
(group) in the egocentric network. A few importance measures can
be applied by setting in the control panel (Figure 4(a)). Between the
nodes, network edges are drawn to represent the co-authorship rela-
tionship among the alters. Three display modes of the network edge

4

(a) (b) (c)

(d)

Figure 4: The EgoNetCloud system interface of Prof. Tang’s egocentric network from AMiner: (a) the control panel in the Left; (b) the main
EgoNetCloud visualization in the center; (c) the static egocentric network view in the top-right; (d) the detail panel in the bottom-right. The
NetCloud mode is selected in this figure, so that only the connections among alter nodes are drawn.

(a) (b) (c)
Figure 5: EgoNetCloud interactions: (a) EgoCloud mode, only the connections between Prof. Tang and his co-authors are drawn; (b) display the
number of joint citations with Prof. Tang by the node size of the alter; (c) drill down to the network on data mining from 2007 to 2013.

can be configured: the NetCloud mode (Figure 4(b)) that only dis-
plays the edges between the alter nodes, in straight lines; the Ego-
Cloud mode (Figure 5(a)) which only displays the edges between
the alter nodes and the ego node, in curved and bundled lines; and
the full mode when all edges are displayed.

Below the horizontal line of Figure 4(b), the stacked trend graphs
indicate the number of papers published by Prof. Tang over time
(i.e., the events), which is split by the topic of the paper (e.g., data
mining, semantic web), and filled in different colors. Inside these
trend graphs, several anchor icons are placed in certain positions
to represent the high-citation papers on each topic. In Figure 4(c),
a static view aggregating the egocentric network over time is dis-
played in a radial layout, which works as an overview to the egocen-
tric network, where users select a group of interesting co-authors to
check their dynamics in the main EgoNetCloud visualization.

4.2 Interaction
After an interview with the management team of AMiner, we sum-
marize four interactive analysis tasks they expect from any ad-
vanced visualizations. T1. Find out one’s key collaborators. T2.
Find out one’s core teams. T3. Find out one’s representative pa-
pers. T4. Find out one’s major research topics and how they evolve
over time. To fulfill these tasks, we have designed rich interactions
on EgoNetCloud. They are described in a typical user trail in ana-
lyzing Prof. Tang’s egocentric network.

The user starts from the overview in Figure 4. To identify Prof.
Tang’s key collaborators (T1), he can switch to the EgoCloud mode
in Figure 5(a) by clicking the toggle buttons on top of the visual-
ization. Both the node size and the node degree in this graph indi-
cates the number of collaborations with Prof. Tang. The top two
researchers are found to be two “J. Li” in separate locations. By

hovering the nodes, their full names are discovered as “Juan-zi Li”
and “Juanzi Li”. In fact, they are the same person, Prof. Juanzi
Li in the same lab with Prof. Tang, who removed the short dash
from her publication name around the year of 2008. Back to Figure
4(b), the user can locate 8∼10 nontrivial subgraphs, which indicate
the teams collaborating with Prof. Tang. To find out which teams
are core to Prof. Tang’s performance (T2), the user specifies in the
control panel (Figure 4(a)) to map the total number of citations an
author (alter) received together with Prof. Tang (ego) to the node
size. This is shown in Figure 5(b), where three core teams in large
node sizes are discovered. Two have Prof. Li in the center, another
has Prof. Sun as the key people. These findings were confirmed to
be true by checking with Prof. Tang in person.

On T3, the high-citation papers are directly shown as the anchor
icons inside the event trends below the horizontal line in Figure
4(b). To get more details, the user can hover one icon to highlight
the team working on the corresponding paper. To study Prof Tang’s
research topics (T4), the user can examine the stacked event trends
below the horizontal line in Figure 4(b). Two topics seem to dom-
inate Prof. Tang’s research, the semantic web (pink) before 2007
and data mining (orange) after 2007. The user can drill down to
one topic by clicking on the corresponding event trend. He can also
filter the data by time with the range selector at the bottom of the
main EgoNetCloud visualization. In Figure 5(c), only the authors
collaborating with Prof. Tang in the data-mining topic from 2007
to 2013 are displayed. The node size is switched to represent the
number of citations each author received in the entire career. The
name of Prof. Han showed up as the key senior people in the data
mining community that ever collaborated with Prof. Tang.

5

(a) (b)

(c) (d)
Figure 6: EgoNetCloud visualization of the news propagation on Sina Weibo when the H7N9 bird flu outbroke in 2013: (a) dynamic forwarding
tree raised by all types of users; (b) the forwarding pattern initiated by the celebrity; (c) the forwarding pattern raised by the media in the follow-up;
(d) the activities of ordinary users. The nodes are colored in green for media, pink for celebrity, blue/light-blue for the advanced/ordinary user.

4.3 Layout Algorithm
The position of the alter nodes in the 2-dimensional space is of spe-
cial significance to our design. Given the egocentric dynamic net-
work, the final layout should satisfy our design rationale. Take the
AMiner scenario as an example, the co-authors that collaborated
frequently should be placed close to each other, and horizontally,
each node should be close to the average time point of its collabo-
ration events with the ego. Additionally, the nodes should be well
separated to avoid visual clutter.

We first set the initial position for all the nodes, X =
{X1, . . . ,Xn}, according to the alter’s interaction time and fre-
quency with the ego. However, for an ego node having multiple
interactions over a short time, even with our filtering process, there
may still be a high concentration of nodes in certain part of the
cloud space. To make full use of the cloud space, we divide the
cloud into several parts according to time periods, relocating nodes
according to each part’s size. Then, mapping the nodes in the can-
vas into the cloud space according to the ratio of the cloud boundary
height and the canvas height.

After setting the initial positions, we compute the final layout
by taking into account the ideal locations of the nodes, as well
as ensuring that the final layout fully reflect the connectivity of
the graph. We can not simply apply the standard force-directed
layout algorithm [14] or the stress majorization algorithm [15]
to layout the graph, because neither takes into account position
constraints. Therefore we propose a constrained stress majoriza-
tion approach. The original stress model attempts to achieve
graph-theoretic target distances, by minimizing the stress energy
∑i< j wi j(‖Xi − X j‖ − di j)

2. Here, the distance di j is the graph-
theoretical distance between node i and node j. The weights wi j

equals d−2
i j . While the model does not take into account the de-

sired location of the nodes, we actually want to derive a layout that
constrains the nodes to be near their ideal position, and at the same
time reflects the connectivity of the graph. We minimize the stress
function α ∑i< j wi j(‖Xi−X j‖−di j)

2 +(1−α)∑i≤n ‖Xi−Xi‖2

We expand this function to α ∑i< j wi j‖Xi − X j‖2 −
2α ∑i< j δi j‖Xi − X j‖ + (1 − α)∑i≤n X2

i − 2(1 − α)∑i≤n XiXi,
where δ = wi jdi j Since ∑i< j δi j‖Xi − X j‖ can be bounded by

the Cauchy-Schwartz inequality and the rest are quadratic,
so a lower bound for the stress function is defined as
αTr(XT LwX) − 2αTr(XT LZZ) + (1 − α)Tr(XT I(X − 2X)).
The minimum of this quadratic function is achieved when

(αLw +(1−α)I)X = αLZZ +(1−α)X (1)

Following the stress majorization process [15], we start with Z =
X , and solve (1) for X . We then replace Z by the solution X . We
repeat this process until convergence.

5 EVALUATION

5.1 Case Study for Online Social Networks
The EgoNetCloud system has been demonstrated to work well on
academic collaboration networks (Section 4.1), here we showcase
its usage on general-purpose social networks. We consider Sina
Weibo [2], the largest Chinese microblogging website, known as
the Twitter in China and providing exactly the same service. In Mar.
2013, a new subtype of the bird flu, code name H7N9, was detected
on human in mainland China, which eventually caused more than
a hundred confirmed human cases and 21 deaths. This news was
quickly distributed on the social media and created great panics in
the general public. We study the propagation of the bird flu news
on Sina Weibo using EgoNetCloud, the event-based network visu-
alization system. Note that unlike the co-authorship network, the
forwarding graph of each microblog forms a tree structure. There
is no need for the edge pruning in our analysis framework.

We collected all the messages on Sina Weibo matching the bird
flu related keywords or having the relevant topic tag, within one
month period from the time of the outbreak. In total, there are
30,000 messages and 20,000 users, in both the original and the for-
warded microblogs. We parsed the sending time of each message
and their forwarding tree for visualization. The initial EgoNetCloud
view in the first ten days is shown in Figure 6(a), where the ego-
centric event is defined as all the original messages on this topic.
The trend line in the top illustrates the number of users forwarding
bird flu related messages. In the bottom, the multiple trend lines
depict the number of original messages published by each type of
users. A clear pattern of the event rise and fall is observed: on the

6

(a) Accuracy

AMiner EgoNet AMiner EgoNet AMiner EgoNet AMiner EgoNet AMiner EgoNet AMiner EgoNet AMiner EgoNet

T1 T2 T3 T4 T5 T6 T7

0

100

200

300

Task

C
om

pl
et

io
n

Ti
m

e
(s

)

 AMiner (25%~75%)
 EgoNet (25%~75%)
 Range within 1.5IQR
 Median Line

(b) Completion Time

Figure 7: The user performance of EgoNetCloud v.s. ArnetMiner.

third and fourth day, the event reaches the first peak by the number
of participants. The scale of the event is greatly amplified by the
message forwarding (retweets) in that the number of original mes-
sages shown as the height of the bottom trends is much smaller than
the number of forwarded messages, shown as the height of the top
trend. There is an exception on the fourth day when few original
microblog is published. After manually checking the raw data, we
found that most original messages on that day have been deleted by
the site administrator.

In Figure 6, we display the dynamic message forwarding trees
by compressing users according to their publication date and the
account type on the Sina Weibo. Note that Sina Weibo has ap-
plied a certification mechanism to classify the real-life identity of
registered users as their account types. Besides the ordinary user
without a certification, the account type includes: the celebrity, the
mass media, the enterprise and the advanced user having paid to
the website. Each node in the EgoNetCloud stands for one group
of users, with the node size representing the number of their orig-
inal+forwarded messages on the bird flu topic. The user/account
type is shown by the node color (green for media, pink for celebri-
ties, blue for advanced users and light-blue for ordinary users). Two
nodes are connected if the messages from the user group of the first
node are dominantly forwarded by users in the second node. The
second node is placed at the top of the first node in the vertical di-
rection, so that the forwarding tree pattern is revealed. In the bottom
trends of EgoNetCloud, the original messages are split into multiple
colored stacks according to the author’s account type.

An overview picture is displayed in Figure 6(a) to analyze the
overall trend of the outbreak, including the related users in all ac-
count types, their messages and forwarding relationships. How-
ever, this picture does not given a clear indication on which group
of users are the most influential in the discussion. We then apply
the topic-based interaction in EgoNetCloud to only display the for-
warding network initiated by celebrities, as shown in Figure 6(b).
In the same vertical scale with Figure 6(a), it can be found that the
initial rise of the event on the third day is mostly contributed by
the celebrities. On the detailed network inside the cloud metaphor,
the celebrity’s messages are frequently forwarded by the ordinary
and advanced users on either the original or celebrity-forwarding
messages (pink nodes are connected to the blue nodes above them).
In another view, by clicking the topic trend for the media in Figure
6(c), it is shown that the peak on the fourth day is mainly con-
tributed by the forwarding of the media’s messages, while ordinary
and advanced users are the main driving force in intensifying the
discussion. Lastly, we look at the activity initialized by the ordi-
nary user, as shown in Figure 6(d). It is interesting to notice that
though ordinary users account for the largest number of users and
messages (the light blue trend in the bottom), their messages are not
forwarded as much as the celebrities and the media. Instead, their
trend is relatively smooth and does not exhibit any abrupt peak.

In summary, by analyzing the event-based egocentric network on
Sina Weibo, we can find that the discussions there on the Mar. 2013
bird flu event is driven by different types of users in a three-stage
manner: at first, the celebrities initiated the discussions, then the
media relayed on the story, and finally, the ordinary users continued
to talk about the topic even after the peak.

5.2 User Study on EgoNetCloud and AMiner

We conducted a controlled user study to compare the performance
of the EgoNetCloud system with the AMiner [26]. We selected
AMiner as the baseline system because most other relevant web-
sites (e.g., DBLP, Microsoft Academic Search) implement a similar
design in displaying the publication profile of a researcher. AMiner
enjoys an advantage in our scenario by integrating an egocentric
network visualization, see Prof. Tang’s home page on AMiner as
an example (http://cs.aminer.org/person/jie-tang-1458619.html).

Experiment design. We applied a between-subject design in
this study to eliminate the learning effect. Twenty subjects were
recruited, who are graduated students majoring in computer science
or visualization. Ten subjects started from Figure 4, the default
view for Prof. Tang by EgoNetCloud. The other ten subjects started
from Prof. Tang’s home page in the AMiner website. Note that all
the subjects know little about Prof. Tang’s research work, so their
performance largely depend on the experiment system in use.

Each subject was asked to complete seven tasks expanded from
Section 4.2 and answer the following questions in a best-effort man-
ner. A six-minute deadline is set for each task. T1: Which year
(2003∼2013) did Prof. Tang publish the most papers? (name one)
T2: Who has collaborated the most times with Prof. Tang in terms
of the number of papers? (name one) T3: In Prof. Tang’s ego-
centric network, who has collaborated the most times with Prof.
Juanzi Li? (name one) T4: In which years did Prof. Tang collab-
orate with Prof. Jiawei Han? (name three) T5: Which researchers
have the most overall citations in Prof. Tang’s egocentric network?
(name two) T6: Which researchers have the most citations together
with Prof. Tang? (name two) T7: Who has collaborated the most
times with Prof. Tang in the data mining field (name one)? These
tasks are designed according to an interview with the management
team of AMiner, and revised after pilot studies with another group
of subjects. The tasks can be categorized into three classes: (1)
the temporal information related (T1); (2) the egocentric network
related (T2, T3, T5, T6); (3) a combination of the two (T4, T7).

Before the test session, we introduced a training session to make
sure that each subject understood all tasks well and got familiar
with the EgoNetCloud/AMiner system interfaces. The training ses-
sion included three sample tasks from each task type with another
researcher as the ego node. The organizer checked the answer of
each training task and explained any ambiguity on the task imme-
diately. In the test session, we recorded the subject’s answer and the
completion time in each task. The task completion time was mea-
sured after the subject read the question, so that the reading skill
variation was factored out.

Result. We collected 140 entries (20 subjects × 7 tasks) on both
the user’s answer and their completion time. These results were
analyzed separately on each task, by comparing the group using
EgoNetCloud with the group using AMiner. The significant level
was set at 0.05 throughout the analysis.

Accuracy: The accuracy of each answer is calculated as the per-
centage of correctness, by comparing with the ground truth. Figure
7(a) illustrates the average accuracy on each task. It is shown that,
except T1 (90% v.s. 100%), EgoNetCloud achieves higher task
accuracies than AMiner on all the other tasks. We conducted bi-
nary logistic regressions to capture the boolean value of the task
accuracy. It is shown that, the contribution of the choice of system
to the task accuracy variation is statistically significant (p < .001),
when all tasks are considered together. The EgoNetCloud system
increases the likelihood (odds) of correctly answering each task to
6 times of that of AMiner (95% CI = [2.4, 15]). The goodness of fit
of the logistic regression is 0.176 (Nagelkerke R Square).

Completion Time: The distribution of completion times on each
task is summarized as grouped box plots in Figure 7(b). It can be
found that on all tasks, the subjects answered questions faster with
the EgoNetCloud system than with the AMiner system. Applying

7

the one-way ANOVA test, the difference is significant on T1 (p =
0.04), T4 (p < 0.001), T5 (p < 0.001) and T6 (p = 0.001).

Summary and Discussion. The user study results demon-
strate that, on several important egocentric network analysis tasks,
EgoNetCloud performs better than the baseline AMiner system. On
the task related to the temporal information only (T1), our system
is faster, but does not have an advantage in accuracy, nor a big dis-
advantage. On the egocentric network related tasks (T2, T3, T5,
T6), EgoNetCloud achieves the largest performance gain in both
efficiency and accuracy, especially on hard tasks (T5, T6). On tasks
combining temporal and egocentric network information (T4, T7),
EgoNetCloud improves over the baseline on the efficiency, though
the task accuracy is not increased significantly.

Through the user and case studies, we find that the single-view
static visualization design of EgoNetCloud enjoys several advan-
tages in real-life analysis tasks. Most notably, the capability to an-
swer advanced user questions by combining temporal, structural
and contextual information together into the same egocentric net-
work visualization. The rich interactions also help a lot in drilling
down to details to answer specific questions. On the other hand,
such a design does bring overheads in certain aspects and scenarios.
First, compared with the list and simple visualization based system,
the training time for users to work well with EgoNetCloud is much
longer. Some users find the initial view to be too information-dense.
They suggest to apply more aggressive network simplification set-
tings. Second, EgoNetCloud is currently designed to visualize dy-
namic networks with all the data set pre-processed offline. No sup-
port is provided for the streaming dynamic network, which can be
more important to study the real-time behavior through networks,
such as the information diffusion on social media.

6 CONCLUSION

In this paper we presented EgoNetCloud, a visual design as well as
an interactive data visualization system for displaying and explor-
ing both the network structure and the temporal dynamics of event-
based egocentric networks. We proposed and employed a number
of algorithms to prune, compress and filter these networks to reduce
visual clutters, and to reveal the salient part of the network. A novel
constrained stress majorization algorithm computes a graph layout
for the egocentric network within the cloud metaphor. The result-
ing network display can exhibit both the relationship between the
ego and the alters in the time dimension, and the connection among
alters, while maintaining a good graph readability. Case studies on
the co-authorship network and the online social network show that
EgoNetCloud is able to uncover network patterns and help to com-
plete user tasks, in a way that is more effective than existing text-
based discovery systems. A controlled user studies confirmed that
users achieve better performance with EgoNetCloud than a baseline
system on both the task efficiency and accuracy. We are now work-
ing towards making the EgoNetCloud system available, initially as
a visual interface for online academic search engines.

ACKNOWLEDGEMENTS

This work is supported by China 973 project 2014CB340301,
NSFC projects (No. 61379088, 61222212), National Social Sci-
ence Foundation of China (No. 13&ZD190). We thank Dr. Linjia
Xu from college of humanities social sciences, UCAS, for provid-
ing the microblog data set.

REFERENCES

[1] ArnetMiner dataset. http://arnetminer.org/billboard/citation.
[2] Sina Weibo. http://weibo.com.
[3] A. Apostolico and G. Drovandi. Graph compression by BFS. Algo-

rithms, 2(3):1031–1044, 2009.
[4] F. Beck, M. Burch, and S. Diehl. Towards an aesthetic dimensions

framework for dynamic graph visualisations. In IV’09, pages 592–
597, 2009.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in
visualizing dynamic graphs. In EuroVis 14–State of The Art Reports,
pages 83–103, 2014.

[6] A. Bezerianos, P. Dragicevic, J. Fekete, J. Bae, and B. Watson. Ge-
neaQuilts: A system for exploring large genealogies. IEEE Trans. Vis.
Comput. Graph., 16(6):1073–1081, 2010.

[7] Z. W. Birnbaum. On the importance of different components in a
multicomponent system. Technical report, DTIC Document, 1968.

[8] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel
edge splatting for scalable dynamic graph visualization. IEEE Trans.
Vis. Comput. Graph., 17(12):2344–2353, 2011.

[9] C. Dunne and B. Shneiderman. Motif simplification: improving net-
work visualization readability with fan, connector, and clique glyphs.
In CHI’13, pages 3247–3256, 2013.

[10] M. Farrugia, N. Hurley, and A. Quigley. Exploring temporal ego net-
works using small multiples and tree-ring layouts. In ACHI’11, pages
79–88, 2011.

[11] P. Federico, W. Aigner, S. Miksch, F. Windhager, and L. Zenk. A
visual analytics approach to dynamic social networks. In i-KNOW’11,
pages 1–8, 2011.

[12] J.-D. Fekete. GraphDiaries: Animated transitions and temporal nav-
igation for dynamic networks. IEEE Trans. Vis. Comput. Graph.,
20(5):740–754, 2013.

[13] D. Fisher. Using egocentric networks to understand communication.
IEEE Internet Computing, 9(5):20–28, 2005.

[14] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991.

[15] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress ma-
jorization. In GD’04, pages 239–250, 2004.

[16] S. Ghani, N. Elmqvist, and J. S. Yi. Perception of animated node-link
diagrams for dynamic graphs. In Computer Graphics Forum, vol-
ume 31, pages 1205–1214, 2012.

[17] M. Girvan and M. E. Newman. Community structure in social and
biological networks. PNAS, 99(12):7821–7826, 2002.

[18] S. Hadlak, H.-J. Schulz, and H. Schumann. In situ exploration of large
dynamic networks. IEEE Trans. Vis. Comput. Graph., 17(12):2334–
2343, 2011.

[19] Y. Hu. Algorithms for visualization large networks. In Computational
Scientific Computing, pages 525–549. CRC Press, 2012.

[20] S. Moen. Drawing dynamic trees. IEEE Software, 7(4):21–28, 1990.
[21] C. W. Muelder, T. Crnovrsanin, A. Sallaberry, and K.-L. Ma. Egocen-

tric storylines for visual analysis of large dynamic graphs. In IEEE
BigData, pages 56–62, 2013.

[22] S. C. North. Incremental layout in dynadag. In GD’95, pages 409–
418, 1995.

[23] H.-W. Shen and A.-L. Barabási. Collective credit allocation in science.
PNAS, 111(34):12325–12330, 2014.

[24] L. Shi, Q. Liao, X. Sun, Y. Chen, and C. Lin. Scalable network traffic
visualization using compressed graphs. In IEEE BigData, pages 606–
612, 2013.

[25] L. Shi, C. Wang, Z. Wen, H. Qu, C. Lin, and Q. Liao. 1.5 d egocentric
dynamic network visualization. IEEE Trans. Vis. Comput. Graph.,
21(5):624–637, 2015.

[26] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Ex-
traction and mining of academic social networks. In KDD’08, pages
990–998, 2008.

[27] H. Toivonen, S. Mahler, and F. Zhou. A framework for path-oriented
network simplification. In IDA’10, pages 220–231. 2010.

[28] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression
of weighted graphs. In KDD’11, pages 965–973.

[29] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: can it fa-
cilitate? International journal of human-computer studies, 57(4):247–
262, 2002.

[30] C. Wang, Y. Zhang, X. Chen, Z. Liu, L. Shi, G. Chen, F. Qiu, C. Ying,
and W. Lu. A behavior-based SMS antispam system. IBM Journal of
Research and Development, 54(6):1–16, 2010.

[31] F. Zhou, S. Mahler, and H. Toivonen. Simplification of networks by
edge pruning. In Bisociative Knowledge Discovery, volume 7250 of
LNCS, pages 179–198. 2012.

8

	Introduction
	Related Work
	Network simplification
	Dynamic Network Visualization
	Graph Layout Algorithm

	Event-based Egocentric Dynamic Network
	Definition
	Analysis Framework
	Edge Pruning
	Computing Edge Weights
	Pruning the Edges

	Node Compression
	Graph Filtering

	EgoNetCloud
	Visualization Design
	Interaction
	Layout Algorithm

	Evaluation
	Case Study for Online Social Networks
	User Study on EgoNetCloud and AMiner

	Conclusion

