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Abstract—Mobile is becoming a ubiquitous platform for e —

context-aware intelligent computing. One fundamental but
usually ignored issue is how to efficiently manage (e.g., ied

and query) the mobile context data. To this end, we present
a unified framework and have developed a toolkit, referred

to as MQuery. More specifically, the mobile context data is
represented in the standard RDF (Resource Description Fram-

work) format. We propose a compressed-index method which
takes less than 50% of the memory cost (of the traditional HowoNe
method) to index the context data. Four query interfaces (&) THREE HOURS MAYBE
have been developed for efficiently querying the context dat | HATE LONG LECTURES

ME TOO, HOW ABOUT

including: instance query, neighbor query, shortest path gery, B concourror .

and connection subgraph query. Experimental results on two & on
real datasets demonstrate the efficiency of MQuery.
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Mobile devices have become one of the most important 5 i Ml 19]20(21 22 23 24]25
sources of one’s personal information. In our daily life, =~ 26/27126(2930/31

people use mobile phones to send/receive messages and
emails, take photos/videos, organize calendars, and manag
address book. There is little doubt that mobile is becoming
a ubiquitous platform for relationship-building, leargin
entertainment, commerce, and social networking. At thedlso a tag assigned to the picture taken on the event day.
same time, allowed by the rapid growth of flash memory,In Some use cases, the mobile user needs to navigate from
the data generated from the above activities can be store?e object (e.g., a calendar event) to another object (e.g.,
on the mobile phone for a long period of time. With the @ photo) through some common attributes. For example,
large amount of mobile data, a lot of new applications carthe user might be willing to call “Wenchang” when he/she
be developed such as user preference learning, context awgi€es the photo. Other use cases may require efficient query

computing [3] and GPS-aware based social networkingn€chanisms to discover the relationship between two or
services [13][16]. more objects, such as finding the common interests of two

Now, an important problem is how to manage the mo-contacts based on the text messages received from them.

bile context data. Since the mobile data are generated by There are primarily two research trends for searching the
different applications, e.g. camera, calendar, and messagnobile data. The first one follows the thread of cloud com-
applications, a straightforward requirement is to linknthe puting. Basically, all data are uploaded to a server (ora)pu
together to support “semantic’-based search. For examplé¢hen index and search are performed by the server. Finally
we can find relevancy between a photo and an event vithe search results are sent back to the mobile devices. There
the calendar if the photo is taken in the same period whemre two limitations of the mobile cloud computing: data
the event is happening. Figure 1 illustrates the example of &ransfer cost and privacy. Frequent data upload/download
“graduation ceremony” event on July 5th. Besides the photowill result in unnecessary power consumption and high
calendar relationship we just mentioned, the calendayentrcommunication cost; while the privacy issue restricts many
can be associated to text messages that talk about the eveimiportant personal information to be uploaded onto the
In addition, the annotated tags to a photo can be linked tserver. This leads to another research trend to perform the
a contact in the address book. In this example, “Wenchangfuery/search directly on the mobile devices referred to as
is the name of a contact in the address book and there imobile search.

Figure 1. An example of the mobile context.



For mobile search, a fundamental issue is to design & is a set of nodes collected from the mobile devices,
mechanism to efficiently store and access the context datuch as text messages, photos, and calerfdas; a set of
(e.g., emails, messages, photos, and events). However, fexdges/relationships between different nodésdenotes the
research systematically investigate this problem. lmktda set of words that appear in the description of all noties
is tackled as an engineering issue and various applicatiori denotes the set of types of the nodes. Each nodé/ is
on mobiles manage their data separately. Obviously, thisepresented by a triple = (id, ¢, D), whereid is the index
may result in redundancy and inconsistency. A common dataf objectv, t € T is the type ofv, and D C W is a set
representation and management framework is thus needeaf. words (text content) associated with nodeln the rest
RDF, as a standard semantic data model, can be used part of the paper, we will uséi,, t, and D, to represent
represent the mobile context. However, despite of manyd, type and description of respectively.

RDF storage and query solutions have been developed, few Given this, our problem can be formalized as follows:
of them consider the mobile environment. In particular,Mobile context: Mobile context includes all the heteroge-
how to achieve acceptable time and memory performanceous data on mobile devices, which can be represented as
is the key to the success of using RDF as a mobile storagihe graphG = (V, E, W, T).

solution. Recently, several studies have been conducted tdobile querying task: Given a mobile contextG =
develop various data mining applications on mobile devices(V, E, W, T') and a user-specific query the task of mobile
For example, MobileMiner [18] is a platform for mining query is to find the most relevant objects (or subgraph) from
user profiles from the users’ continuous moving and callinghe graphG.

records. Works [21] try to discover the transportation mode The above definition of mobile query is very general. In
and classical travel sequences from the GPS informatiopractice, the intentions of users’ queries on the heterogen
collected from mobile devices. However, most of them dograph may be different. Without loss of generality, we define
not emphasize the fundamental question: how to efficientlfour kinds of queries, i.e., Instance Query, Neighbor Query
store and query the mobile context data? The problem iShortest Path Query, and Connection Subgraph Query.

non-trivial and poses several unique challenges: « Instance Query: Given a keyword-based query=

« Mobile restriction. It is necessary to consider the fol- {wg,, gy, ..., wg,, } C W and a node type € T,
lowing restrictions for mobile devices: limited com- which nodes/’ C V' of typet are the most relevant to
puting power, limited memory, and limited battery the queryq?
capacity. « Neighbor Query: Givert7, a nodev; and a set of node

« Index compressiorDue to the memory limitation, it is typesT’ C T, find all nodes{v;} of typet € T’ from
infeasible to directly adopt the conventional indexing the graphG within the length bound (i.e., v; has a
technique to the mobile context. It is important to shortest path less thdno v;).
design a method to compress the graph index while « Shortest Path Query: Givefd, two nodesvs,v; € V,
preserving the accessing efficiency. find the shortest path from; to v,.

« Efficient query interfaceAnother challenge is how to « Connection Subgraph Query: Givefd, two nodes
design a general and efficient query interface for the vs,v; € V, find a connection subgraghf with & nodes
mobile context data. and containing, v, which maximizes the value of a

To address the above challenges, we formulate and tackle ~goodness functiod/ (G').

the problem of querying the mobile context data, and make The instance query is similar to the document retrieval on
the following contributions. First, to address the limiat the Web, except that we have more than one type objects.
of computing power and memory capacity, we present aifhe other three queries are general for graph query. In
index compression method, which significantly improve thethis way, our method for dealing with the queries can be
memory efficiency. Second, we formalize the mobile searcleasily adapted to different applications such as contexira
problem and design four general query interfaces to dealecommendation and knowledge reasoning. Our formulation
with the usual query of the mobile context data and develomf the mobile query task is different from existing works
a practical toolkit, MQuery. Third, we apply MQuery on on graph query. For querying on RDF data, Miller et al.
two real-world datasets, Kaleio Photo and Simple Context[12] propose the RDQL language. However, the language is
Experimental results on the two datasets demonstrate thaesigned to answer all kinds of queries and results in a low
effectiveness and the efficiency of the MQuery toolkit. efficiency in some queries (e.g., the above queries).

Il. PROBLEM FORMULATION I11. THE PROPOSEDAPPROACH OFMQUERY

To manage the various heterogenous data resident on In order to address the query problem on mobile devices,
mobile devices in a common framework, we use RDF towe have developed a toolkit MQuery, which provides one
represent the mobile context. In general, the mobile cdntexndex and four query interfaces. The input of MQuery can
data can be represented as a graph (V, E,W,T), where  be any graph or text data from the file system or database on



the mobiles. As the memory of mobile devices is limited, wed-gap This approach sorts the sequence to guaramtge<
propose an index compression method, which significantlyd,, < ... < iy () - Then the original id sequence is
reduces the memory cost for storing the index of content andeplaced byid,, , id,, — id,,, . .. ,iva(w” — z‘va(wi)fl and

graph structure. Furthermore, we propose a novel conmectiove compress the new d-gap sequence. Because the average
subgraph query, which aims to find a subgraph connectingalue of the sequence becomes smaller, it is expected that a
two nodes in the graph data. We propose a polynomiaB2-bit integer can store more values, thus achieving a highe
approximation algorithm to solve the problem. compression ratio.

SGI To index and compress the graph, the situation would
be a bit different. Generally, the graph structure is stagd
We can build an inverted index for the content of theadjacency lists, in which each nodeis associated with a
nodes. For efficient query, we need load the index andist of neighboring nodesd,, ,id,,, . .. ,id.,, whered(v)
the graph structure into memory. However, loading such ais the degree of. For consistent purpose, we refer to the
index and a graph into the limited memory of mobile devicesadjacency lists as graph index and the problem is still how
is expensive. This leads us to think about the compressioto compress the index. Similarly we can use S9 or d-gap
technology. There are several state-of-art compressidh-me to compress the graph index; however, we see that different
ods toward this purpose, for example, Variable-Byte Codingassignments of the id to nodes on the graph will result in
[14], S9 [1], Rice Coding [22], and PForDelta Coding [23]. very different compression ratios of the index. For example
In our work, as the input data is usually a (RDF-based)f the five numbers are all smaller than 20, then we can use
graph, directly applying the existing compression methisds a 5bit x 5 mode, thus one 32-bit integer is enough; while if
also infeasible. We propose an extension of S9 to compressnumber is 100 and the other four numbers are smaller than
both the index for text content and graph structure. In thelO, we have to use @it x 4 mode, which finally requires
experimental section, we will show that the size of thetwo 32-bit integers and leads to an inevitable waste of some
index can be significantly reduced while the time cost formemory. By revisiting this problem, we find that carefully
compression and decompression is very limited. re-allocating id to nodes on the graph to make the ids in
The basic idea of S9 [1] is to pack as many values asin adjacency list as close as possible can result in a better
possible into a 32-bit word. This is done by dividing eachcompression performance.
word into 4 status bits and 28 data bits. S9 uses nine ways Based on these considerations, we propose a method,
to divide up the 28 data bits, such as twenty-eight 1-bitcalled SGI (S9 for Graph Index), for indexing graph data
numbers, fourteen 2-bit numbers, nine 3-bit numbers (onend compressing the graph index. The basic idea is to find
bit unused), four 7-bit numbers, or two 14-bit numbers.an id assignment such that for each node the difference of
Decompression can be optimized by hardcoding each of thadjacent nodes’ id is as small as possible. This is because

A. Index and Compression

nine cases using fixed bit masks. a small difference can easily achieve a higher compression
ratio. Specifically, we first re-allocate the id ofrom id,, to
13 20 50 100  Mode 4: 7bit X 4 id,, satisfying thatid;, < id,, . Then we compress the d-
¢ l ¢ ¢ l gap sequencel, ,id, —id, ,.. . z‘d@dw - z’d’vd(w1 using
S9. The sum of the sequence is
| 0001101 | 0010100 | 0120010 | 1100100 | 0100 | s
. gl . g . . gl
Figure 2. An example of S9 (Simple9 coding). sum(v) = idy, + ;(Zd”i o Zd”iﬁ) = Zd”d(v) @)

, , Our goal is then to minimizesum(v)/d(v) for each
Figure 2 shows an example of compressing four numberg e thusy" sum(v)/dw) = 3 id, " Jd(v) for
13, 20, 50 and 100. Because the maximum number 100 o vel )

i | han2” but | ham2® il ch q odes, wheréd;,, » is the maximum neighbors’ id af.
is less than2’ but larger than2”, S9 will choose mode  1ig hroplem itself is an intractable problem. We propose
4: 7bitx4, using four 7bits number. We can see that the

) _ an approximation algorithm to re-allocate the ids of nodes.
storage size for the four numbers is decreased from fouf ;. main idea is as follows: given a graph comprisediof

32-bit mtggers to c_>n|y 32-bit integer. ) ) nodes, we always allocate larger id to the node with smaller
In the inverted index for the content information, eaChweight The weight of a node is defined as follows:

word w; is associated with a sequence of node ids )

idy, iy, idy g, ) which indicates wordv; appears in weight(v) = Z o) )
Dvl,sz,...,DvN(wi). Before compression, storing these uEneigh(v)

ids needsN (w;) integers. After packing them using S9, where neigh(v) represents the neighbors of node
the memory cost will decrease significantly. [19] and [15] weight(v) can be used to evaluate the influenceidif on
further introduce an approach, called d-gap, to obtain & _, sum(v)/d(v). For each neighbou, if the maximum

higher compression ratio. neighbor id ofu is id}, thensum(u)/d(u) = id., /d(u).



Algorithm 1: Re-allocate id of nodes

Input: A data graphG = (V, E, W, T);
Output: Node id:d., for eachv € V;

1.1 Vv € V calculate and insert its weighteight(v) into the
priority queue;

1.2 SV,

1.3 for i +— 1ton do

14 Extract minimumweight(v) from the queue and let

dy=n—i+1;

15 S +— S\ {v};

1.6 foreachu € S,3w € V, (v,w) € E, (w,u) € E do

1.7 | Updateweight(u) < weight(u) — 1/d(w);

1.8 end

1.9 end

contain the wordw;. After building the index, calculation
of the relevance scores can be done in a complexity of
O(>,eq N(wi)), where N(w;) is what in the definition
of idf (w;).

With the instance query interface, we can develop some
basic keyword-based search applications, such as findihg te
messages containing specific keywords.

C. Neighbor Query

Given a specific node;, a set of node types’ c T and
a length bound, the goal of neighbor query is to find a set

of nodesV; = {v; € V|d(vs,v:) < I} of typet € T’, where
d(vs,vy) denotes the shortest paths betwegrandv;, and
[ is a length bound (usually set as 6, following the concept

smallest weight. We greedily minimize the influenceidf of small-world theory). Basically, this interface is dasigl
and thus minimize the sum ofum(v)/d(v). In summary, find neighbors of certain types for a given node, which is
our algorithm consists of two steps (1) sort the node common requirement in recommendation and navigation
according to their weight. (2) given the sorted nodes in term Scenarios, for example, finding the most relevant photos to
of weight: weight(v,) < weight(vs) ... < weight(v,), we & friend (via connections of events or messages).

assign their ids asid, = n,id, =n—1,...,id, = 1. To deal with this problem, we employ a heap-based Dijk-
The time complexity of this algorithm i€ (m). stra algorithm [4] based on the built index. Two differences

This algorithm can be further improved by an updatedfrom the original Dijkstra algorithm lies in (1) we use a heap

greedy strategy that is elaborated in Algorithm 1. Diffaren {0 Store and sort the traversed path and (2) the algorithm
from the previous oneweight(v) is updated during the terminates when the minimum distance exceeds a baukd

execution of the new algorithm. In our algorithm, the id special case is that, when all weights are 1, we use Breadth-
First-Search instead of Dijkstra, because in this case BFS
can achieve a lower complexity.

For example, ich should be given to the nodewith the

is assigned in decreasing order. If we have assignedy,
for each neighbotw of v, the maximum neighbors’ id ab
is no less thar. Let S be the of nodes which not assigned
an id yet. Thus for each’'s neighboru andu € S, its  D- Shortest Path Query
weight can be decreased byd(w) becausav’s maximum The objective is to find the shortest path between two
neighbors’ id can not be the id ef. We use priority queue nodesvs and v; in a graphG = (V,E,W,T). Finding
to maintain the value ofveight(v) and get the minimum shortest path is especially useful in revealing how close
weight(v). Finally, the time complexity i¥)(n +mlogn).  two nodes are in the graph. In the graph, we assume the
weights of all edges are positive. Then we can use a heap-
B. Instance Query based Dijkstra algorithm to find the shortest path. More
Based on the built index, we can design various queryaccurately, in our implementation, we use a bi-directional
functions. The first, also the simplest query interface lleda  Dijkstra to make it faster. We provide an approximate
instance query, the goal of which is to find nodes that arelgorithm to deal with really large graphs. The algorithm
mostly relevant to a given keyword-based query based ogenerates a small candidate subgraph [6] first and then
the content information. performs Dijkstra search on the subgraph. We carefully grow
Formally, given a graptG = (V, E,W,T) and a query the neighbors around the two nodes. Initially the candidate
q = {wq1,we2, ..., wgn,} C W, which is a set of key- subgraph is empty and each time a node is added into it. The
words, we use a classical information retrieval methodj9] t process terminates when some terminal condition is satisfie
calculate the relevance of each nadéo the queryg by: Suppose the set of nodes expanded frons V; and the
set of nodes expanded fromis V;. We set a connectivity

3 tfp, (wi)t fq(w;)idf? (w;) thresholdd and the stopping condition i8; NV;| > 6.

w; €q,w; €Dy

B 2. [tfp, (wa)idf(wi)]? | 30 [¢fq(ws)idf (wi)]?

w; €Dy w;Eq

(©)

sv(q)

E. Connection Subgraph Query

_ _ We propose a novel query, called connection subgraph

wheretfp, (w;) is the term frequency of word; in D,  query for the graph data. It aims to identify a subgraph that

andtf,(w;) is that in the queryjdf(w;), the inverse term  connects two input nodes in a graph. In many cases, a single
Vi (shortest) path from to v; only offers limited information.

frequency of wordw;, is defined asdf (w;) = 1ogm,
here N(w;) is the number of nodes whose descriptionsideally, it is desirable to identify a subgraph that encaties



Algorithm 2: Connection Subgraph Query A. Kaleido Photo
Input: A data graphG = (V, E), two nodesvs andwv¢, bound
k

Kaleido Photo is a project aiming to help users manage

Output: SubgraphG’ = (V', E') with k nodes which and share their photos taken by a mobile phone. In Kaleido
approximately maximizes?(G”) Photo, users can navigate to other objects, e.g. the calenda
21 G — 0 the address book and the SMS from a photo based on the
2.2 while |V'| < kdo R relevance of their meta data. To support this, Kaleido Photo
2.3 Find the augmenting pat® which minimizes the number .
of new nodes added i6': uses a richer meta data schema for JPEG photos, and many
2.4 Increment units of flow through; information like photo owner's phone number and user-

2.5 G — G uUP;

26 end generated tags can be associated with a photo. Here we

describe three tasks required by Kaleido Photo, and see how
our query interfaces can help.

most “significant” connection information between the two 1aSk 1 Photo clustering: When a user builds an album with
nodes, with some given constraints. t|tle_and description information, Instance Query can belus
Formally, we can define the query as follows. The conneclo discover all photos related to thelalbum..I.:or gxample, the
tion subgraph query is to find a connection subgrépkr G "esult photos may have a tag that is specified in the album
containingk nodes includingu,, v;, which maximizes the title, or is taken in the same location/time period.
value of a goodness functiaff (G’). Two natural measures Task 2 Relation searching: If the user is interested in a
of the goodness would be the shortest distance and thghoto, he might want to know who took this photo and the
maximum flow. In our work, we choose the latter and therelationship between the owner and himself. Here Shortest
definition follows the network flow theory. The graph can Path Query can be used to find out the path.

be regarded as a flow network, where the weight of eachask 3 Photo recommendation: It finds photos related to
edge is formalized as the capacity of the edge. We defmge.g_’ taken by) a user’s friends and recommend them to the

the functionH (G’) as follows, user. Here we can use Neighbor Query to find the photos
/ hose distance from the friend is less than 3.
H(G') = max{|f]} = max{3_ fu.} @ " ' ene!
_ veV _ o B. Nokia Simple Context
where f,, is the flow on edgeu, v) which satisfies the flow  Nokia Simple Context (https://simplecontext.com/eb@/) |

constraint. _ _ ) L ) another project in Nokia Research Center. The project tries
Thus, our 90"?" Is 10 flnd.suchi to maximize H(G ),' to provide a common framework for collecting, storing and
The problem is in NPC, which can be proved by making agharing mobile context data (e.g., SMS, call log, tags, GPS,

reduction to _the Set Cover pro_blem, a classical NPC prObGSM, and calendar). We apply the proposed query interfaces
lem. We design a greedy algorithm based on EdmondsKar{b support four interesting search scenarios.

maximum flow algorithm [5] to achieve an approximate but _ ) )

high quality solution. The framework of our algorithm is 12SK 1 The first one is to find related short messages,
shown in Algorithm 2. First let¢’ = (V’, E') be empty calendar entries and notes via Instance Query.

and in each iteration, we find the augmenting path whichfask 2 Given two nodes; and v of type contact, find
minimizes the number of its nodes not i’. The idea the paths fromv; to ve using Connection Subgraph Query.
behind this is that we war’’| to grow as slowly as possible It can mine the relations between two persons.

in order to maximize the times of incrementing the units ofTask 3 Given the name of a person, find the easiest way to
flow. The augmenting path can be found as follows: in eactyontact this person. It is particularly useful if this perse
iteration of the EdmondSKarp algorithm, it finds the shdrtes not in one’s address book but mentioned in a text message
augmenting path on the residual graph = (Vy, Ef) and  from another one, so the message sender who probably
the Iength of the path is the number of edges. The Welght O&nows the person is Suggested_ This can be done by a
each edge can be viewed as 1. In our work, we change theombination of Instance Query and Neighbor Query.
weights of the edge&/(u,v) € Ef, w(u,v) =0 if v € V’,
otherwisew(u,v) = 1. In this way, the length of a path is
equivalent to the number of its nodes which are no¥in
Thus the shortest path after changing the weights satisfieguery'
the requirement in Algorithm 2. V. EXPERIMENTAL RESULTS

IV. APPLICATION We_ conduct various exp_e_riments to validate bth com-
putational and memory efficiency of MQuery on different
datasets. All data sets and codes are publicly avaifable.

Task 4 Find information of all participants of a meeting
stored as a calendar entry. This can be done by Neighbor

The graph query interfaces can help with many applica
tions. Here we illustrate two real applications in Nokia i@hi
Research Center. http://arnetminer.org/mobilequery/



Table I

A. Experimental Setup THE OVERALL MEMORY COST(KB) ON TWO DATASETS M, dex AND
. MW.aph IS THE MEMORY USED FOR STORING INVERTED INDEX AND
Dataset We apply the MQuery toolkit on two real-world GRAPH. Myiper 1S THE REST PART OF MEMORY USAGE
datasets: a Kaleido Photo dataset and a Nokia Simple Con-
text dataset, both provided by Nokia Research Center(NRC). 5 Photo dataset Context dataset
riginal | Compressed| Original | Compressed
Mindes 384 152 1612 604
Table | Mgyraph 208 187 864 542
DETAIL INFORMATION ABOUT THE DATASETS. ) v, | Dy| IS THE M othor 1,976 2,037 1,772 1,881
NUMBER OF WORDS OF ALL DESCRIPTIONS Miotal 2,568 2,376 4,248 3,028
Dataset V] |E| W[ | > evIDvl
Photo | 5,729 | 5832 | 786 23,861 10"
Context | 16,354 | 25544 | 3,837 | 117,223 R s *[ —orgna
10000t |—e—Simple9 5t | —e—Simple9
—A—d-gap —a—d-gap
Table | shows statistics of the two datasets. The Photg *%| =% g o=
dataset consists of 5,672 photos uploaded by 57 users. Eaé* 6000 g3
. . . O]
photo is associated with several tags and comments creat: 4% 2
by the users and each user has a name and an email addre 200 1

The nOdeS Sev Of grath = (‘/7 Ea VV7T) InCIUdeS bOth OO ZOODD 4000 6000 O0 5000 b 10000 15000
. ata size ata size

the user nodes and the photo nodes. If a ppatouploaded (@) Photo Dataset (5) Contoxt Dataset

by useru, then we create an edge between nageanduv,.

Each user can also add the other users in his/her friend liskigure 3. Performance of graph index compression on twesdttaGraph

We represent each friendship as an edae in the gfhpNe size is the number of 32-bit integers needed to store thehgrafex, not
p, P 9 . including weights of edges

set weights of all edges as one. Moreovey, _,, | D, | is the

total number of words in all descriptions. From Table I, we

can see that on average, each node has aboiwrds in its andM,,..,, because they are related to the size of data while
description and each word appears in abdutescriptions  \ye also provide the result a¥;ozq; and Mosner.

of nodes. . _ The time cost of MQuery is defined as:
The second dataset, Simple Context, consists of 6 types
of data: 5,942 SMS, 4193 call logs, 6 GPSs, 5,000 GSMs,  Ltotat = Tinitiatize + Touery + Toutpur ©)

izsl?eu?zg-egrizgrjgdatangoséeari\g fﬁecalrzgmtﬁng'?';;ﬁ:h d%ﬁere Tinitialize 1S the time cost of loading data into the
vpe pWe use the content of SMS gta and calenpdar as thnemory and build the compressed inverted index and graph
ype. Ve . » g . Index. Tyyery is the time cost that MQuery needs to process
description of the corresponding nodes and the latitudds an v . )
: . : .~ . aquery and it is the main part we concern. In the following
longitudes information of GPS and GSM as the description . : X
. . . . experiment result, the time cost13,.,, unless mentioned
of the location nodes. To build the relationship between the . . .
especially. Toytpy: is the time cost that MQuery needs to

nodes, we build another two types of nodes: 724 phone . ; ;
. . utput the results and retrieve some extra information ebou
number nodes and 221 time nodes. Each piece of SM ;
e results from the database if necessary.

or call log has a phone number which indicates an edge In all the experiments, the time cost of each query is the
between the phone number nodes and the SMS nodes. An b ' query

edge exists between a time nodeand a data node if the average cost by e-xecu'ung the same-query for 10,000 times.
data is generated during the timeOn average, each node Experimental Environment All experiments are performed

has about’ words as its description and each word appear®n a Nokia N900 (600MHz, 256M RAM) smartphone with
in about30 description of nodes. Maemo linux operating system. The program is written in

Evaluation Measures To evaluate the performance of C/C++ compiled with gec/g++.

MQuery, we consider the memory cost and the time cost. Iy parformance of SGI Compression

MQuery, the memory cost can be defined as, ] )
We first evaluate the compression performance of the pro-

Miotal = Mindez + Mgraph + Mother (5) posed method, SGI. Given the photo dataset and the context
dataset, we randomly pick out%, 25%,40% ...100% of

whereM;, q4¢. IS the memory used to store the inverted indexthe data to test the performance. We compare the graph size
andM g4, is the memory used to store the graph, includingwithout (w/o0) compression and with compression by three
the weights of edgesi ;.. is the rest part of memory different methods: Simple9, d-gap and our proposed SGI.
usage including linking the library, some constant datdeco Graph size is measured by the number of 32-bit integers
data and other things which have no relations with the sizeieeded to store the graph index (adjacency lists of the
of data. In our experiment, we focus on evaluating, 4., graph), not including weights of edges.
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Figure 4. Memory cost of the inverted index and graph storBpecially, index size is the number of 32-bit integers eeetb store the inverted index

and graph size is the the number of 32-bit integers needetbte both the graph index and weights on the edges.

SGI can achieve a higher compression ratio on the graph

. .. . Table Il
_Flgure 3 _ShOWS the 0”9'”_5" graph size and the graphr e cost(ms) oF INITIALIZATION , INSTANCE QUERY AND SHORTEST
size after different compression methods. We see that ourPATH QUERY ON TWO DATASETS IT’S USED TO EVALUATE THE TIME

COST OF COMPRESSION AND DECOMPRESSION

size. Here, we define the compression ratio @S =
graph size wio compressionrhay oy gverage, for the photo dataset

graph size with compression .
we obtain C'Sgg 1.4218, CS4gap = 1.7516, while

CSsar = 1.9301. Clearly, we see that for compressing th

graphical data, SGI significantly outperforms (35.75% and
10.19% reduction respecitively) the two baseline methods

Photo dataset Context dataset
Original | Compressed| Original [ Compressed
F* Initialization 760 1080 1010 2030
Instance Query 0.053 0.071 0.621 0.640
eShortest Path Query 1.78 2.36 54.2 79.7
Table IV

SUMMARY OF TIME COST(MS) OF MQUERY ON TWO DATASETS

(S9 and d-gap). For the context dataset, SGI also achieves

Context datasef

a better improvement (37.92% and 16.82%) than the two
baseline methods (S9 and d-gap).

C. Memory Cost of MQuery

We test the memory cost of the inverted index and the

Query Interfaces Photo datasef
Instance Query 0.473
Neighbor Query(Dijkstra) 28.84
Neighbor Query(BFS) 1.15
Shortest Path Query(Dijkstralf 15.83
Shortest Path Query(BFS) 1.12
Connection Subgraph Query 5.90

0.561
58.72
2.62
18.79
2.72
18.79

graph storing on the two datasets. To accurately evaluate
the performance, we do not simply conduct experiments on
the whole datasets. Instead, we randomly pick out some of =" ="' ° ; _ ) o
data from the datasets and test on different data size, as [Aitidlization Tinitiatize, including storing graph and building

Section V-B. The memory cost of inverted index is measureddex. From the table, SGI takes about 300 ms more to

by index size and the memory cost of graph storing isinitialize for photo dataset and about 1000 ms more for

measured by the graph size. The index size is measuréP"text dataset compared with the original one. This extra
by the number of 32-bit integers that are needed to recordMe COStis mainly for compression, but it needs to initieli
the whole inverted index. The graph size is measured by th"€ time-
number of 32-bit integers needed to store the graph index Second, we evaluate the time cost of decompression with
and the weights of edges. SGI. We conduct Instance Query to see the time cost of
We use S9 with d-gap to compress the inverted index andecompressing the inverted index and execute Shortest Path
use SGI to compress the graph. Figure 4 shows the index siZ@uery to test the time cost of decompressing the graph
and graph size with and without compression. It shows thathdex. From Table IlI, we can find that the additional time
our method achieves a significant reduction on the memorf)€¢eded for decompressing both the inverted index and the
cost. Averagely, the compression ratio is about 3. Moreovedraph index accounts for a little part of the total time cost.
we see a trend that the compression ratio grows with the datbherefore, our SGI algorithm achieves a good performance
size, which indicates that we may have a better compressid?? both memory and computational efficiency.
performance when dataset becomes larger. Table Il shows Finally, Table IV shows that each query interface is time
the memory cost for two datasets. For the context datasegfficient. Specially, for Neighbor Query and Shortest Path
the total memory compressed by SGI is decreased by abo@uery, we test the performance using different implemen-
30% compared with the original memory cost. Also, sincetations, Dijkstra and BFS. In this experiment, we randomly
M1, accounts for a smaller part for larger dataset, we carselect different queries for the four different query ifdees
save more memory with SGl for large dataset. and calculate their average time cost. This eliminates the
_ influence of the case speciality and we get time costs of
D. Time Cost of MQuery average performance. From the table, we see that all query
We conduct another experiment to evaluate the time codhterfaces can perform with a very low time cost, which
of MQuery. First, we test the time cost of compression withconfirms the necessity and success of this method.

Gl on the two datasets. Table Il shows the time cost of



Table V
TIME(MS)/MEMORY(KB) COST OF APPLICATIONS ON TWO DATASETS

Photo dataset| Context dataset
Task 1 0.085/2,540 0.735/4,108
Task 2 0.971/2,580 2.462/4,120
Task 3 0.337/2,584 2.433/4,024
Task 4 - 7.814/4,188

methods. Experiments also demonstrate that MQuery can
perform different kinds of queries efficiently.
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Table V shows the time and memory cost of the different
tasks in the two applications described in Section IV. All
tasks can be done in less than 10ms and some of them caff!

even be done in 1ms. The memory cdst,,,; is also ac- 2]

ceptable. Therefore, MQuery can support these application

very well in terms of both efficiency and effectiveness. 3l
VI. RELATED WORK [4]

The ubiquitous platform of mobile devices attract con- [5]
siderable interest from the research community. In [18], a
demo called MobileMiner, is presented to show how data (6]
mining techniques can help in mobile communication data7]
analysis. In [20] and [2], the authors study the charadtesis
of search queries submitted from mobile devices using[g]
various applications on Yahoo!. In [8], the authors present
log-based comparison of search patterns among computerd?]
smart mobile phones and conventional ones. Kamvar et al.
[7] provide an overview of the trends in mobile search. In[10]
[11], the authors make use of the predefined categories for
proper Web image handing and develop an automatic Wef ;
image classification method to solve the problem of poor
input interfaces on mobile devices. [12]

Mobile users want to access and manipulate information
and services specific to certain situation. In order to manag13]
the mobile context, a precise definition of shared inteace
is required. In [17], the authors present an overview of thet14
Mobile Ontology and highlight its advantages by defining
such a semantic model. Korpipaa et al. [10] propose a

. : . i o [15]
uniform mobile terminal software framework that provides
systematic methods for acquiring and processing useful
context information from a user’s surroundings. Recently[16]
with the pervasiveness of GPS-enabled devices, a few re17)
searches also study the spatial mining problem on mobiles.
In [21], the authors propose an approach based on supervised
learning to infer transportation mode from raw GPS data. |15

VIl. CONCLUSION AND FUTURE WORK 1
In this paper, we study the problem of semantic indexing[ ]
for mobile context data and present a unified framework20l
called MQuery to index and query the mobile data. We proq,q
pose an efficient index compression method for graph data
and develop four interfaces for querying them. Experimlent
results on two different real world data sets show that th
index compression greatly decreases the memory cost arnzh]
also clearly outperforms (+10%-37%) existing compression

22]
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