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Abstract—Mobile is becoming a ubiquitous platform for
context-aware intelligent computing. One fundamental but
usually ignored issue is how to efficiently manage (e.g., index
and query) the mobile context data. To this end, we present
a unified framework and have developed a toolkit, referred
to as MQuery. More specifically, the mobile context data is
represented in the standard RDF (Resource Description Frame-
work) format. We propose a compressed-index method which
takes less than 50% of the memory cost (of the traditional
method) to index the context data. Four query interfaces
have been developed for efficiently querying the context data
including: instance query, neighbor query, shortest path query,
and connection subgraph query. Experimental results on two
real datasets demonstrate the efficiency of MQuery.

Keywords-mobile social network; graph query; MQuery; SGI

I. I NTRODUCTION

Mobile devices have become one of the most important
sources of one’s personal information. In our daily life,
people use mobile phones to send/receive messages and
emails, take photos/videos, organize calendars, and manage
address book. There is little doubt that mobile is becoming
a ubiquitous platform for relationship-building, learning,
entertainment, commerce, and social networking. At the
same time, allowed by the rapid growth of flash memory,
the data generated from the above activities can be stored
on the mobile phone for a long period of time. With the
large amount of mobile data, a lot of new applications can
be developed such as user preference learning, context aware
computing [3] and GPS-aware based social networking
services [13][16].

Now, an important problem is how to manage the mo-
bile context data. Since the mobile data are generated by
different applications, e.g. camera, calendar, and message
applications, a straightforward requirement is to link them
together to support “semantic”-based search. For example,
we can find relevancy between a photo and an event via
the calendar if the photo is taken in the same period when
the event is happening. Figure 1 illustrates the example of a
“graduation ceremony” event on July 5th. Besides the photo-
calendar relationship we just mentioned, the calendar entry
can be associated to text messages that talk about the event.
In addition, the annotated tags to a photo can be linked to
a contact in the address book. In this example, “Wenchang”
is the name of a contact in the address book and there is
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Figure 1. An example of the mobile context.

also a tag assigned to the picture taken on the event day.
In some use cases, the mobile user needs to navigate from
one object (e.g., a calendar event) to another object (e.g.,
a photo) through some common attributes. For example,
the user might be willing to call “Wenchang” when he/she
sees the photo. Other use cases may require efficient query
mechanisms to discover the relationship between two or
more objects, such as finding the common interests of two
contacts based on the text messages received from them.

There are primarily two research trends for searching the
mobile data. The first one follows the thread of cloud com-
puting. Basically, all data are uploaded to a server (or cloud),
then index and search are performed by the server. Finally
the search results are sent back to the mobile devices. There
are two limitations of the mobile cloud computing: data
transfer cost and privacy. Frequent data upload/download
will result in unnecessary power consumption and high
communication cost; while the privacy issue restricts many
important personal information to be uploaded onto the
server. This leads to another research trend to perform the
query/search directly on the mobile devices referred to as
mobile search.



For mobile search, a fundamental issue is to design a
mechanism to efficiently store and access the context data
(e.g., emails, messages, photos, and events). However, few
research systematically investigate this problem. Instead, it
is tackled as an engineering issue and various applications
on mobiles manage their data separately. Obviously, this
may result in redundancy and inconsistency. A common data
representation and management framework is thus needed.
RDF, as a standard semantic data model, can be used to
represent the mobile context. However, despite of many
RDF storage and query solutions have been developed, few
of them consider the mobile environment. In particular,
how to achieve acceptable time and memory performance
is the key to the success of using RDF as a mobile storage
solution. Recently, several studies have been conducted to
develop various data mining applications on mobile devices.
For example, MobileMiner [18] is a platform for mining
user profiles from the users’ continuous moving and calling
records. Works [21] try to discover the transportation mode
and classical travel sequences from the GPS information
collected from mobile devices. However, most of them do
not emphasize the fundamental question: how to efficiently
store and query the mobile context data? The problem is
non-trivial and poses several unique challenges:

• Mobile restriction. It is necessary to consider the fol-
lowing restrictions for mobile devices: limited com-
puting power, limited memory, and limited battery
capacity.

• Index compression.Due to the memory limitation, it is
infeasible to directly adopt the conventional indexing
technique to the mobile context. It is important to
design a method to compress the graph index while
preserving the accessing efficiency.

• Efficient query interface.Another challenge is how to
design a general and efficient query interface for the
mobile context data.

To address the above challenges, we formulate and tackle
the problem of querying the mobile context data, and make
the following contributions. First, to address the limitation
of computing power and memory capacity, we present an
index compression method, which significantly improve the
memory efficiency. Second, we formalize the mobile search
problem and design four general query interfaces to deal
with the usual query of the mobile context data and develop
a practical toolkit, MQuery. Third, we apply MQuery on
two real-world datasets, Kaleio Photo and Simple Context.
Experimental results on the two datasets demonstrate the
effectiveness and the efficiency of the MQuery toolkit.

II. PROBLEM FORMULATION

To manage the various heterogenous data resident on
mobile devices in a common framework, we use RDF to
represent the mobile context. In general, the mobile context
data can be represented as a graphG = (V, E, W, T ), where

V is a set of nodes collected from the mobile devices,
such as text messages, photos, and calendar;E is a set of
edges/relationships between different nodes;W denotes the
set of words that appear in the description of all nodesV ;
T denotes the set of types of the nodes. Each nodev ∈ V is
represented by a triplev = (id, t, D), whereid is the index
of object v, t ∈ T is the type ofv, andD ⊂ W is a set
of words (text content) associated with nodev. In the rest
part of the paper, we will useidv, tv and Dv to represent
id, type and description ofv respectively.

Given this, our problem can be formalized as follows:
Mobile context: Mobile context includes all the heteroge-
nous data on mobile devices, which can be represented as
the graphG = (V, E, W, T ).
Mobile querying task: Given a mobile contextG =
(V, E, W, T ) and a user-specific queryq, the task of mobile
query is to find the most relevant objects (or subgraph) from
the graphG.

The above definition of mobile query is very general. In
practice, the intentions of users’ queries on the heterogenous
graph may be different. Without loss of generality, we define
four kinds of queries, i.e., Instance Query, Neighbor Query,
Shortest Path Query, and Connection Subgraph Query.

• Instance Query: Given a keyword-based queryq =
{wq1 , wq2 , . . . , wqnq

} ⊂ W and a node typet ∈ T ,
which nodesV ′ ⊂ V of type t are the most relevant to
the queryq?

• Neighbor Query: GivenG, a nodevs and a set of node
typesT ′ ⊂ T , find all nodes{vt} of type t ∈ T ′ from
the graphG within the length boundl (i.e., vs has a
shortest path less thanl to vt).

• Shortest Path Query: GivenG, two nodesvs, vt ∈ V ,
find the shortest path fromvs to vt.

• Connection Subgraph Query: GivenG, two nodes
vs, vt ∈ V , find a connection subgraphG′ with k nodes
and containingvs, vt, which maximizes the value of a
goodness functionH(G′).

The instance query is similar to the document retrieval on
the Web, except that we have more than one type objects.
The other three queries are general for graph query. In
this way, our method for dealing with the queries can be
easily adapted to different applications such as context-aware
recommendation and knowledge reasoning. Our formulation
of the mobile query task is different from existing works
on graph query. For querying on RDF data, Miller et al.
[12] propose the RDQL language. However, the language is
designed to answer all kinds of queries and results in a low
efficiency in some queries (e.g., the above queries).

III. T HE PROPOSEDAPPROACH OFMQUERY

In order to address the query problem on mobile devices,
we have developed a toolkit MQuery, which provides one
index and four query interfaces. The input of MQuery can
be any graph or text data from the file system or database on



the mobiles. As the memory of mobile devices is limited, we
propose an index compression method, which significantly
reduces the memory cost for storing the index of content and
graph structure. Furthermore, we propose a novel connection
subgraph query, which aims to find a subgraph connecting
two nodes in the graph data. We propose a polynomial
approximation algorithm to solve the problem.

A. Index and Compression

We can build an inverted index for the content of the
nodes. For efficient query, we need load the index and
the graph structure into memory. However, loading such an
index and a graph into the limited memory of mobile devices
is expensive. This leads us to think about the compression
technology. There are several state-of-art compression meth-
ods toward this purpose, for example, Variable-Byte Coding
[14], S9 [1], Rice Coding [22], and PForDelta Coding [23].

In our work, as the input data is usually a (RDF-based)
graph, directly applying the existing compression methodsis
also infeasible. We propose an extension of S9 to compress
both the index for text content and graph structure. In the
experimental section, we will show that the size of the
index can be significantly reduced while the time cost for
compression and decompression is very limited.

The basic idea of S9 [1] is to pack as many values as
possible into a 32-bit word. This is done by dividing each
word into 4 status bits and 28 data bits. S9 uses nine ways
to divide up the 28 data bits, such as twenty-eight 1-bit
numbers, fourteen 2-bit numbers, nine 3-bit numbers (one
bit unused), four 7-bit numbers, or two 14-bit numbers.
Decompression can be optimized by hardcoding each of the
nine cases using fixed bit masks.0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 0 01 3 2 0 5 0 1 0 0 M o d e 4 :

Figure 2. An example of S9 (Simple9 coding).

Figure 2 shows an example of compressing four numbers
13, 20, 50 and 100. Because the maximum number 100
is less than27 but larger than25, S9 will choose mode
4: 7bit×4, using four 7bits number. We can see that the
storage size for the four numbers is decreased from four
32-bit integers to only 32-bit integer.

In the inverted index for the content information, each
word wi is associated with a sequence of node ids
idv1 , idv2 , . . . , idvN(wi)

, which indicates wordwi appears in
Dv1 , Dv2 , . . . , DvN(wi)

. Before compression, storing these
ids needsN(wi) integers. After packing them using S9,
the memory cost will decrease significantly. [19] and [15]
further introduce an approach, called d-gap, to obtain a
higher compression ratio.

d-gap This approach sorts the sequence to guaranteeidv1 <
idv2 < . . . < idvN(wi)

. Then the original id sequence is
replaced byidv1 , idv2 − idv1 , . . . , idvN(wi)

− idvN(wi)−1
and

we compress the new d-gap sequence. Because the average
value of the sequence becomes smaller, it is expected that a
32-bit integer can store more values, thus achieving a higher
compression ratio.

SGI To index and compress the graph, the situation would
be a bit different. Generally, the graph structure is storedas
adjacency lists, in which each nodev is associated with a
list of neighboring nodesidv1 , idv2 , . . . , idvd(v)

whered(v)
is the degree ofv. For consistent purpose, we refer to the
adjacency lists as graph index and the problem is still how
to compress the index. Similarly we can use S9 or d-gap
to compress the graph index; however, we see that different
assignments of the id to nodes on the graph will result in
very different compression ratios of the index. For example,
if the five numbers are all smaller than 20, then we can use
a 5bit× 5 mode, thus one 32-bit integer is enough; while if
a number is 100 and the other four numbers are smaller than
10, we have to use a7bit× 4 mode, which finally requires
two 32-bit integers and leads to an inevitable waste of some
memory. By revisiting this problem, we find that carefully
re-allocating id to nodes on the graph to make the ids in
an adjacency list as close as possible can result in a better
compression performance.

Based on these considerations, we propose a method,
called SGI (S9 for Graph Index), for indexing graph data
and compressing the graph index. The basic idea is to find
an id assignment such that for each node the difference of
adjacent nodes’ id is as small as possible. This is because
a small difference can easily achieve a higher compression
ratio. Specifically, we first re-allocate the id ofv from idv to
id′v satisfying thatid′vi

< id′vi+1
. Then we compress the d-

gap sequenceid′v1
, id′v2

− id′v1
, . . . , id′vd(v)

− id′vd(v)−1
using

S9. The sum of the sequence is

sum(v) = id
′

v1
+

d(v)
∑

i=2

(id′

vi
− id

′

vi−1
) = id

′

vd(v)
(1)

Our goal is then to minimizesum(v)/d(v) for each
node, thus

∑

v∈V sum(v)/d(v) =
∑

v∈V id′vd(v)
/d(v) for

all nodes, whereid′vd(v)
is the maximum neighbors’ id ofv.

This problem itself is an intractable problem. We propose
an approximation algorithm to re-allocate the ids of nodes.
Our main idea is as follows: given a graph comprised ofn
nodes, we always allocate larger id to the node with smaller
weight. The weight of a node is defined as follows:

weight(v) =
∑

u∈neigh(v)

1

d(u)
(2)

where neigh(v) represents the neighbors of nodev.
weight(v) can be used to evaluate the influence ofid′v on
∑

v∈V sum(v)/d(v). For each neighboru, if the maximum
neighbor id ofu is id′v, thensum(u)/d(u) = id′v/d(u).



Algorithm 1 : Re-allocate id of nodes
Input : A data graphG = (V, E, W, T );
Output : Node id id′v for eachv ∈ V ;

∀v ∈ V calculate and insert its weightweight(v) into the1.1
priority queue;
S ← V ;1.2
for i← 1 to n do1.3

Extract minimumweight(v) from the queue and let1.4
id′v = n− i + 1;
S ← S \ {v};1.5
foreach u ∈ S,∃w ∈ V, (v, w) ∈ E, (w, u) ∈ E do1.6

Updateweight(u)← weight(u)− 1/d(w);1.7
end1.8

end1.9

For example, idn should be given to the nodev with the
smallest weight. We greedily minimize the influence ofid′v
and thus minimize the sum ofsum(v)/d(v). In summary,
our algorithm consists of two steps (1) sort the nodes
according to their weight. (2) given the sorted nodes in terms
of weight:weight(v1) ≤ weight(v2) . . . ≤ weight(vn), we
assign their ids as:id′v1

= n, id′v2
= n − 1, . . . , id′vn

= 1.
The time complexity of this algorithm isO(m).

This algorithm can be further improved by an updated
greedy strategy that is elaborated in Algorithm 1. Different
from the previous one,weight(v) is updated during the
execution of the new algorithm. In our algorithm, the id
is assigned in decreasing order. If we have assignedi to v,
for each neighborw of v, the maximum neighbors’ id ofw
is no less thani. Let S be the of nodes which not assigned
an id yet. Thus for eachw’s neighboru and u ∈ S, its
weight can be decreased by1/d(w) becausew’s maximum
neighbors’ id can not be the id ofu. We use priority queue
to maintain the value ofweight(v) and get the minimum
weight(v). Finally, the time complexity isO(n + m log n).

B. Instance Query

Based on the built index, we can design various query
functions. The first, also the simplest query interface is called
instance query, the goal of which is to find nodes that are
mostly relevant to a given keyword-based query based on
the content information.

Formally, given a graphG = (V, E, W, T ) and a query
q = {wq1, wq2, . . . , wqnq

} ⊂ W , which is a set of key-
words, we use a classical information retrieval method[9] to
calculate the relevance of each nodev to the queryq by:

sv(q) =

∑

wi∈q,wi∈Dv

tfDv (wi)tfq(wi)idf
2(wi)

√

∑

wi∈Dv

[tfDv (wi)idf(wi)]2
√

∑

wi∈q

[tfq(wi)idf(wi)]2
(3)

where tfDv
(wi) is the term frequency of wordwi in Dv

and tfq(wi) is that in the query;idf(wi), the inverse term
frequency of wordwi, is defined asidf(wi) = log |V |+1

N(wi)+1 ,
here N(wi) is the number of nodes whose descriptions

contain the wordwi. After building the index, calculation
of the relevance scores can be done in a complexity of
O(

∑

wi∈q N(wi)), whereN(wi) is what in the definition
of idf(wi).

With the instance query interface, we can develop some
basic keyword-based search applications, such as finding text
messages containing specific keywords.

C. Neighbor Query

Given a specific nodevs, a set of node typesT ′ ⊂ T and
a length boundl, the goal of neighbor query is to find a set
of nodesVt = {vt ∈ V |d(vs, vt) < l} of type t ∈ T ′, where
d(vs, vt) denotes the shortest paths betweenvs andvt, and
l is a length bound (usually set as 6, following the concept
of small-world theory). Basically, this interface is designed
to find neighbors of certain types for a given node, which is
a common requirement in recommendation and navigation
scenarios, for example, finding the most relevant photos to
a friend (via connections of events or messages).

To deal with this problem, we employ a heap-based Dijk-
stra algorithm [4] based on the built index. Two differences
from the original Dijkstra algorithm lies in (1) we use a heap
to store and sort the traversed path and (2) the algorithm
terminates when the minimum distance exceeds a boundl. A
special case is that, when all weights are 1, we use Breadth-
First-Search instead of Dijkstra, because in this case BFS
can achieve a lower complexity.

D. Shortest Path Query

The objective is to find the shortest path between two
nodesvs and vt in a graphG = (V, E, W, T ). Finding
shortest path is especially useful in revealing how close
two nodes are in the graph. In the graph, we assume the
weights of all edges are positive. Then we can use a heap-
based Dijkstra algorithm to find the shortest path. More
accurately, in our implementation, we use a bi-directional
Dijkstra to make it faster. We provide an approximate
algorithm to deal with really large graphs. The algorithm
generates a small candidate subgraph [6] first and then
performs Dijkstra search on the subgraph. We carefully grow
the neighbors around the two nodes. Initially the candidate
subgraph is empty and each time a node is added into it. The
process terminates when some terminal condition is satisfied.
Suppose the set of nodes expanded froms is Vs and the
set of nodes expanded fromt is Vt. We set a connectivity
thresholdθ and the stopping condition is|Vs ∩ Vt| ≥ θ.

E. Connection Subgraph Query

We propose a novel query, called connection subgraph
query for the graph data. It aims to identify a subgraph that
connects two input nodes in a graph. In many cases, a single
(shortest) path fromvs to vt only offers limited information.
Ideally, it is desirable to identify a subgraph that encodesthe



Algorithm 2 : Connection Subgraph Query
Input : A data graphG = (V, E), two nodesvs andvt, bound

k
Output : SubgraphG′ = (V ′, E′) with k nodes which

approximately maximizesH(G′)

G′ ← ∅;2.1
while |V ′| ≤ k do2.2

Find the augmenting pathP which minimizes the number2.3
of new nodes added inG′;
Increment units of flow throughP ;2.4
G′ ← G′ ∪ P ;2.5

end2.6

most “significant” connection information between the two
nodes, with some given constraints.

Formally, we can define the query as follows. The connec-
tion subgraph query is to find a connection subgraphG′ ⊂ G
containingk nodes includingvs, vt, which maximizes the
value of a goodness functionH(G′). Two natural measures
of the goodness would be the shortest distance and the
maximum flow. In our work, we choose the latter and the
definition follows the network flow theory. The graph can
be regarded as a flow network, where the weight of each
edge is formalized as the capacity of the edge. We define
the functionH(G′) as follows,

H(G′) = max{|f |} = max{
∑

v∈V

fvsv} (4)

wherefuv is the flow on edge(u, v) which satisfies the flow
constraint.

Thus, our goal is to find suchG′ to maximizeH(G′).
The problem is in NPC, which can be proved by making a
reduction to the Set Cover problem, a classical NPC prob-
lem. We design a greedy algorithm based on EdmondsKarp
maximum flow algorithm [5] to achieve an approximate but
high quality solution. The framework of our algorithm is
shown in Algorithm 2. First letG′ = (V ′, E′) be empty
and in each iteration, we find the augmenting path which
minimizes the number of its nodes not inV ′. The idea
behind this is that we want|V ′| to grow as slowly as possible
in order to maximize the times of incrementing the units of
flow. The augmenting path can be found as follows: in each
iteration of the EdmondsKarp algorithm, it finds the shortest
augmenting path on the residual graphGf = (Vf , Ef ) and
the length of the path is the number of edges. The weight of
each edge can be viewed as 1. In our work, we change the
weights of the edges.∀(u, v) ∈ Ef , w(u, v) = 0 if v ∈ V ′,
otherwisew(u, v) = 1. In this way, the length of a path is
equivalent to the number of its nodes which are not inV ′.
Thus the shortest path after changing the weights satisfies
the requirement in Algorithm 2.

IV. A PPLICATION

The graph query interfaces can help with many applica-
tions. Here we illustrate two real applications in Nokia China
Research Center.

A. Kaleido Photo

Kaleido Photo is a project aiming to help users manage
and share their photos taken by a mobile phone. In Kaleido
Photo, users can navigate to other objects, e.g. the calendar,
the address book and the SMS from a photo based on the
relevance of their meta data. To support this, Kaleido Photo
uses a richer meta data schema for JPEG photos, and many
information like photo owner’s phone number and user-
generated tags can be associated with a photo. Here we
describe three tasks required by Kaleido Photo, and see how
our query interfaces can help.

Task 1 Photo clustering: When a user builds an album with
title and description information, Instance Query can be used
to discover all photos related to the album. For example, the
result photos may have a tag that is specified in the album
title, or is taken in the same location/time period.

Task 2 Relation searching: If the user is interested in a
photo, he might want to know who took this photo and the
relationship between the owner and himself. Here Shortest
Path Query can be used to find out the path.

Task 3 Photo recommendation: It finds photos related to
(e.g., taken by) a user’s friends and recommend them to the
user. Here we can use Neighbor Query to find the photos
whose distance from the friend is less than 3.

B. Nokia Simple Context

Nokia Simple Context (https://simplecontext.com/eb2/) is
another project in Nokia Research Center. The project tries
to provide a common framework for collecting, storing and
sharing mobile context data (e.g., SMS, call log, tags, GPS,
GSM, and calendar). We apply the proposed query interfaces
to support four interesting search scenarios.

Task 1 The first one is to find related short messages,
calendar entries and notes via Instance Query.

Task 2 Given two nodesv1 and v2 of type contact, find
the paths fromv1 to v2 using Connection Subgraph Query.
It can mine the relations between two persons.

Task 3 Given the name of a person, find the easiest way to
contact this person. It is particularly useful if this person is
not in one’s address book but mentioned in a text message
from another one, so the message sender who probably
knows the person is suggested. This can be done by a
combination of Instance Query and Neighbor Query.

Task 4 Find information of all participants of a meeting
stored as a calendar entry. This can be done by Neighbor
Query.

V. EXPERIMENTAL RESULTS

We conduct various experiments to validate both com-
putational and memory efficiency of MQuery on different
datasets. All data sets and codes are publicly available.1

1http://arnetminer.org/mobilequery/



A. Experimental Setup

Dataset We apply the MQuery toolkit on two real-world
datasets: a Kaleido Photo dataset and a Nokia Simple Con-
text dataset, both provided by Nokia Research Center(NRC).

Table I
DETAIL INFORMATION ABOUT THE DATASETS.

∑

v∈V |Dv| IS THE
NUMBER OF WORDS OF ALL DESCRIPTIONS

Dataset |V| |E| |W|
∑

v∈V
|Dv|

Photo 5,729 5,832 786 23,861
Context 16,354 25,544 3,837 117,223

Table I shows statistics of the two datasets. The Photo
dataset consists of 5,672 photos uploaded by 57 users. Each
photo is associated with several tags and comments created
by the users and each user has a name and an email address.
The nodes setV of graphG = (V, E, W, T ) includes both
the user nodes and the photo nodes. If a photop is uploaded
by useru, then we create an edge between nodesvp andvu.
Each user can also add the other users in his/her friend list.
We represent each friendship as an edge in the graphG. We
set weights of all edges as one. Moreover,

∑

v∈V |Dv| is the
total number of words in all descriptions. From Table I, we
can see that on average, each node has about4 words in its
description and each word appears in about31 descriptions
of nodes.

The second dataset, Simple Context, consists of 6 types
of data: 5,942 SMS, 4193 call logs, 6 GPSs, 5,000 GSMs,
215 user-generated tags, and 53 calendar entries. Each data
is represented as a node in the graphG with a specific
type. We use the content of SMS, tag and calendar as the
description of the corresponding nodes and the latitudes and
longitudes information of GPS and GSM as the description
of the location nodes. To build the relationship between the
nodes, we build another two types of nodes: 724 phone
number nodes and 221 time nodes. Each piece of SMS
or call log has a phone number which indicates an edge
between the phone number nodes and the SMS nodes. An
edge exists between a time nodevt and a data node if the
data is generated during the timet. On average, each node
has about7 words as its description and each word appears
in about30 description of nodes.

Evaluation Measures To evaluate the performance of
MQuery, we consider the memory cost and the time cost. In
MQuery, the memory cost can be defined as,

Mtotal = Mindex + Mgraph + Mother (5)

whereMindex is the memory used to store the inverted index
andMgraph is the memory used to store the graph, including
the weights of edges;Mother is the rest part of memory
usage including linking the library, some constant data, code
data and other things which have no relations with the size
of data. In our experiment, we focus on evaluatingMindex

Table II
THE OVERALL MEMORY COST(KB) ON TWO DATASETS. Mindex AND

Mgraph IS THE MEMORY USED FOR STORING INVERTED INDEX AND
GRAPH. Mother IS THE REST PART OF MEMORY USAGE.

Photo dataset Context dataset
Original Compressed Original Compressed

Mindex 384 152 1612 604
Mgraph 208 187 864 542
Mother 1,976 2,037 1,772 1,881
Mtotal 2,568 2,376 4,248 3,028

0 2000 4000 6000
0

2000

4000

6000

8000

10000

12000

Data size

G
ra

ph
 s

iz
e

(a) Photo Dataset

 

 

Original
Simple9
d−gap
SGI

0 5000 10000 15000
0

1

2

3

4

5

6
x 10

4

Data size

G
ra

ph
 s

iz
e

(b) Context Dataset

 

 

Original
Simple9
d−gap
SGI

Figure 3. Performance of graph index compression on two datasets. Graph
size is the number of 32-bit integers needed to store the graph index, not
including weights of edges

andMgraph because they are related to the size of data while
we also provide the result ofMtotal andMother.

The time cost of MQuery is defined as:

Ttotal = Tinitialize + Tquery + Toutput (6)

whereTinitialize is the time cost of loading data into the
memory and build the compressed inverted index and graph
index.Tquery is the time cost that MQuery needs to process
a query and it is the main part we concern. In the following
experiment result, the time cost isTquery unless mentioned
especially.Toutput is the time cost that MQuery needs to
output the results and retrieve some extra information about
the results from the database if necessary.

In all the experiments, the time cost of each query is the
average cost by executing the same query for 10,000 times.

Experimental Environment All experiments are performed
on a Nokia N900 (600MHz, 256M RAM) smartphone with
Maemo linux operating system. The program is written in
C/C++ compiled with gcc/g++.

B. Performance of SGI Compression

We first evaluate the compression performance of the pro-
posed method, SGI. Given the photo dataset and the context
dataset, we randomly pick out10%, 25%, 40% . . .100% of
the data to test the performance. We compare the graph size
without (w/o) compression and with compression by three
different methods: Simple9, d-gap and our proposed SGI.
Graph size is measured by the number of 32-bit integers
needed to store the graph index (adjacency lists of the
graph), not including weights of edges.
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Figure 4. Memory cost of the inverted index and graph storing. Specially, index size is the number of 32-bit integers needed to store the inverted index
and graph size is the the number of 32-bit integers needed to store both the graph index and weights on the edges.

Figure 3 shows the original graph size and the graph
size after different compression methods. We see that our
SGI can achieve a higher compression ratio on the graph
size. Here, we define the compression ratio asCS =
graph size w/o compression
graph size with compression. Then on average, for the photo dataset,
we obtain CSS9 = 1.4218, CSdgap = 1.7516, while
CSSGI = 1.9301. Clearly, we see that for compressing the
graphical data, SGI significantly outperforms (35.75% and
10.19% reduction respecitively) the two baseline methods
(S9 and d-gap). For the context dataset, SGI also achieves
a better improvement (37.92% and 16.82%) than the two
baseline methods (S9 and d-gap).

C. Memory Cost of MQuery

We test the memory cost of the inverted index and the
graph storing on the two datasets. To accurately evaluate
the performance, we do not simply conduct experiments on
the whole datasets. Instead, we randomly pick out some of
data from the datasets and test on different data size, as in
Section V-B. The memory cost of inverted index is measured
by index size and the memory cost of graph storing is
measured by the graph size. The index size is measured
by the number of 32-bit integers that are needed to record
the whole inverted index. The graph size is measured by the
number of 32-bit integers needed to store the graph index
and the weights of edges.

We use S9 with d-gap to compress the inverted index and
use SGI to compress the graph. Figure 4 shows the index size
and graph size with and without compression. It shows that
our method achieves a significant reduction on the memory
cost. Averagely, the compression ratio is about 3. Moreover,
we see a trend that the compression ratio grows with the data
size, which indicates that we may have a better compression
performance when dataset becomes larger. Table II shows
the memory cost for two datasets. For the context dataset,
the total memory compressed by SGI is decreased by about
30% compared with the original memory cost. Also, since
Mother accounts for a smaller part for larger dataset, we can
save more memory with SGI for large dataset.

D. Time Cost of MQuery

We conduct another experiment to evaluate the time cost
of MQuery. First, we test the time cost of compression with

Table III
T IME COST(MS) OF INITIALIZATION , INSTANCEQUERY AND SHORTEST

PATH QUERY ON TWO DATASETS. IT’ S USED TO EVALUATE THE TIME

COST OF COMPRESSION AND DECOMPRESSION

Photo dataset Context dataset
Original Compressed Original Compressed

Initialization 760 1080 1010 2030
Instance Query 0.053 0.071 0.621 0.640

Shortest Path Query 1.78 2.36 54.2 79.7

Table IV
SUMMARY OF TIME COST(MS) OF MQUERY ON TWO DATASETS

Query Interfaces Photo dataset Context dataset
Instance Query 0.473 0.561

Neighbor Query(Dijkstra) 28.84 58.72
Neighbor Query(BFS) 1.15 2.62

Shortest Path Query(Dijkstra) 15.83 18.79
Shortest Path Query(BFS) 1.12 2.72

Connection Subgraph Query 5.90 18.79

SGI on the two datasets. Table III shows the time cost of
initializationTinitialize, including storing graph and building
index. From the table, SGI takes about 300 ms more to
initialize for photo dataset and about 1000 ms more for
context dataset compared with the original one. This extra
time cost is mainly for compression, but it needs to initialize
one time.

Second, we evaluate the time cost of decompression with
SGI. We conduct Instance Query to see the time cost of
decompressing the inverted index and execute Shortest Path
Query to test the time cost of decompressing the graph
index. From Table III, we can find that the additional time
needed for decompressing both the inverted index and the
graph index accounts for a little part of the total time cost.
Therefore, our SGI algorithm achieves a good performance
on both memory and computational efficiency.

Finally, Table IV shows that each query interface is time
efficient. Specially, for Neighbor Query and Shortest Path
Query, we test the performance using different implemen-
tations, Dijkstra and BFS. In this experiment, we randomly
select different queries for the four different query interfaces
and calculate their average time cost. This eliminates the
influence of the case speciality and we get time costs of
average performance. From the table, we see that all query
interfaces can perform with a very low time cost, which
confirms the necessity and success of this method.



Table V
T IME(MS)/MEMORY(KB) COST OF APPLICATIONS ON TWO DATASETS

Photo dataset Context dataset
Task 1 0.085/2,540 0.735/4,108
Task 2 0.971/2,580 2.462/4,120
Task 3 0.337/2,584 2.433/4,024
Task 4 - 7.814/4,188

E. Performance of Application

Table V shows the time and memory cost of the different
tasks in the two applications described in Section IV. All
tasks can be done in less than 10ms and some of them can
even be done in 1ms. The memory costMtotal is also ac-
ceptable. Therefore, MQuery can support these applications
very well in terms of both efficiency and effectiveness.

VI. RELATED WORK

The ubiquitous platform of mobile devices attract con-
siderable interest from the research community. In [18], a
demo called MobileMiner, is presented to show how data
mining techniques can help in mobile communication data
analysis. In [20] and [2], the authors study the characteristics
of search queries submitted from mobile devices using
various applications on Yahoo!. In [8], the authors presenta
log-based comparison of search patterns among computers,
smart mobile phones and conventional ones. Kamvar et al.
[7] provide an overview of the trends in mobile search. In
[11], the authors make use of the predefined categories for
proper Web image handing and develop an automatic Web
image classification method to solve the problem of poor
input interfaces on mobile devices.

Mobile users want to access and manipulate information
and services specific to certain situation. In order to manage
the mobile context, a precise definition of shared interfaces
is required. In [17], the authors present an overview of the
Mobile Ontology and highlight its advantages by defining
such a semantic model. Korpipaa et al. [10] propose a
uniform mobile terminal software framework that provides
systematic methods for acquiring and processing useful
context information from a user’s surroundings. Recently,
with the pervasiveness of GPS-enabled devices, a few re-
searches also study the spatial mining problem on mobiles.
In [21], the authors propose an approach based on supervised
learning to infer transportation mode from raw GPS data.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we study the problem of semantic indexing
for mobile context data and present a unified framework
called MQuery to index and query the mobile data. We pro-
pose an efficient index compression method for graph data
and develop four interfaces for querying them. Experimental
results on two different real world data sets show that the
index compression greatly decreases the memory cost and
also clearly outperforms (+10%-37%) existing compression

methods. Experiments also demonstrate that MQuery can
perform different kinds of queries efficiently.
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