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ABSTRACT
As the rapid development of all kinds of online databases,

huge heterogeneous information networks thus derived are
ubiquitous. Detecting evolutionary communities in these
networks can help people better understand the structural
evolution of the networks. However, most of the current
community evolution analysis is based on the homogeneous
networks, while a real community usually involves different
types of objects in a heterogeneous network. For example,
when referring to a research community, it contains a set of
authors, a set of conferences or journals and a set of terms.

In this paper, we study the problem of detecting evolu-
tionary multi-typed communities defined as net-clusters in
dynamic heterogeneous networks. A Dirichlet Process Mix-
ture Model-based generative model is proposed to model the
community generations. At each time stamp, a clustering of
communities with the best cluster number that can best ex-
plain the current and historical networks are automatically
detected. A Gibbs sampling-based inference algorithm is
provided to inference the model. Also, the evolution struc-
ture can be read from the model, which can help users bet-
ter understand the birth, split and death of communities.
Experiments on two real datasets, namely DBLP and Deli-
cious.com, have shown the effectiveness of the algorithm.
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1. INTRODUCTION
As the rapid development of all kinds of online databases,

huge heterogeneous information networks thus derived are
ubiquitous, which contain different types of objects. Exam-
ples include online bibliographic databases such as DBLP1,
social websites such as Flickr2, and tagging websites such as
Delicious3. The networks derived contain different types of
objects, which are different from traditional homogeneous
networks, such as friendship networks and co-author net-
works. Detecting evolutionary communities from these het-
erogeneous networks will benefit the users of these online
databases better understanding the structures of the com-
plex networks and their evolution along with time. Also,
such knowledge will help users make good predictions on the
future trends of the community. In contrast to community
defined in a homogeneous network, which is a set of objects
from a single type, a community in a heterogeneous network
should be heterogeneous itself. Using the bibliographic net-
work as an example, the communities we are interested in are
research areas, which contain objects of authors, venues and
terms. We call such multi-typed communities net-clusters,
following our previous work [19].

However, most existing methods only study the commu-
nity evolution in homogeneous networks. The traditional
network evolution analysis on homogeneous networks, which
is only able to track one type of objects’ evolution, cannot
correctly model the real evolution of a community that ac-
tually contains multiple types of objects. For example, if
we only study the evolution of co-author network extracted
from the DBLP bibliographic network, we may make two
mistakes: (1) detect false research communities by consid-
ering the newly joined authors with existing research inter-
ests as new communities; or (2) miss new research commu-
nities by considering the same group of authors with new
research topics as an old community. Other recent works
on evolution study on heterogeneous networks, such as in
[20], have considered the interaction of communities among
different types, however, their community definition is still
single-typed, and cannot reflect the concept of multi-typed
communities like research areas.

By intuition, a good evolutionary model of communities

1http://www.informatik.uni-trier.de/∼ley/db/
2http://www.flickr.com/
3http://delicious.com/

137



t0 t1 t2

AI

DB

DM

DB

DM

DB

AI
AI

t0 t2t1

Figure 1: Illustration of Detecting Evolutionary Net-Clusters

should contain two properties: (1) the number of communi-
ties in each time stamp should be flexible and automatically
learned; (2) the communities in adjacent timestamps should
be consistent. In this paper, we propose a novel method to
model the community evolution in heterogeneous informa-
tion networks. First, we use net-clusters which are designed
for heterogeneous networks to model the communities. Each
net-cluster contains different types of objects and follows the
same schema of the original networks. Second, a Dirichlet
Process Mixture (DPM) Model-based net-cluster generative
model (Evo-NetClus) is proposed to model the generation
process of net-clusters at each time window, which is able
to decide the natural cluster number and consider historical
impacts from net-clusters of previous time windows simul-
taneously. By solving this model, net-clusters that with the
best cluster number and best consistent with the historical
net-clusters are generated. Explicit evolution structure can
thus be obtained from the prior dependency among differ-
ent net-clusters between adjacent timestamps. The problem
of evolutionary community detection process is illustrated
in Figure 1. The experiments using the bibliographic net-
work extracted from DBLP and Delicious.com have shown
the effectiveness of our method.

The major contributions of this paper are:

1. Propose the problem to detect multi-typed evolutionary
communities in a heterogeneous network.

2. Propose a novel DPM model-based generative model (Evo-
NetClus) to model the generation of net-clusters, which
can automatically learn the best cluster number, and
keep consistency between adjacent net-clusters. A Gibbs
sampling-based method is proposed to inference the model.

3. We apply the method on two real datasets, the DBLP
network and Delicious network, and the results show the
power of our model which are able to use both heteroge-
neous information and time information of the networks.

2. RELATED WORK
Community detection and clustering in networks have been

studied for quite a long time, which is trying to split a
gigantic network into several relatively independent parts
and group similar nodes into the same clusters. The study
of community detection problem is first on homogeneous
networks, such as spectral clustering methods [16, 22, 23],
modularity-based methods [13, 12], and probabilistic model-
based methods [17, 8, 7, 1], and later to bipartite networks

[26, 5], and recently on heterogeneous networks [18, 19]. In
this paper, we will consider the heterogeneous networks with
star network schema as in [19], which is a very popular case
in real world. However, different from our previous work
and other static community detection methods, this study
mainly focuses on how to model the dynamic evolution of
the net-cluster-based multi-typed communities.

In practice, new nodes will join in the network, while some
nodes will leave, and thus a sequence of networks with dif-
ferent timestamps can be collected from dynamic evolving
networks. Detecting evolutionary clusters on such network
sequences can help people better understand the evolution
of communities. Some studies have been devoted on ho-
mogeneous networks, extended from static clustering meth-
ods, such as in [4, 20, 9, 15, 6]. A recent work [20] studied
the evolution on heterogeneous networks. However, their
communities are defined on each single type of objects, and
cluster numbers for each type need to be fixed and specified
by users. While our community evolution studies a more
comprehensive concept of community, which can also auto-
matically decide the cluster numbers.

The most challenging problem in studying community evo-
lution is how to decide the correct cluster number in each
timestamp. In this paper, we propose a Dirichlet Process
Mixture Model-based generative model to detect evolution-
ary net-clusters in heterogeneous networks with star network
schema, which is able to model the cluster number in each
timestamp and smoothness between net-clusters from con-
secutive timestamps simultaneously. Dirichlet Process [11,
21] provides a way to add priors to the cluster number for
mixture models, and thus is very helpful to decide the cluster
number automatically. Recently, some works have extended
the Dirichlet Process into considering time information, such
as in [27] and [14]. Some other DP-based extensions [24, 25]
have been proposed to model evolutionary clustering. The
differences of our model from these methods include: (1) we
provide a specific solution to net-cluster evolution in hetero-
geneous networks; (2) we defined a novel generative model
for net-cluster evolution, which can model the evolution of
the same cluster in different timestamps, while many exist-
ing works require the same clusters (atom distributions) do
not change among different timestamps; (3) we do not claim
a global inference of the model, but greedy inference at each
time stamp, which is more practical for timely updating the
evolution.

Another related work to evolutionary network clustering is
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evolutionary topic modeling, which tries to extract the best
topic models in each timestamp that satisfy constraints of
temporal smooth, such as in [3, 10]. However, merely study-
ing the evolution of topics without considering the link in-
formation in the networks cannot fully reflect the evolution
of communities. On one hand, a community containing dif-
ferent types of objects is more meaningful and useful; on
the other hand, links in the network can tell more about the
connection between clusters and can help detect more accu-
rate evolutionary clusters. In this paper, terms are treated
as objects of one of the attribute types and evolutionary
net-clusters are instead modeled and detected.

3. PRELIMINARIES
In this section, we will introduce some definitions and pre-

liminary knowledge of this work, including the concept of
net-cluster and the Dirichlet Process Mixture (DPM) Model.

3.1 Net-Cluster

Definition 1. Information Network. An information
network is defined as G = (V, E, W ;A, ψ), where V is the
vertex set, E ⊆ V × V is the link set, W : E → R+ is
a weight function defined on E, A is an alphabetical table
denoting names of different types of vertices, and ψ : V → A
is the mapping from each vertex to its type. If the number of
types |A| > 1, G is called a heterogeneous information
network; otherwise, G is a homogeneous information
network.

A net-cluster is the cluster defined on information net-
works.

Definition 2. Net-cluster. Given a network G = 〈V, E, W 〉,
a net-cluster C is defined as C = 〈G′, pC〉, where G′ is a sub-
network of G, i.e., V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
∀eij = 〈xi, xj〉 ∈ E(G′), W (G′)xixj = W (G)xixj . Function
pC : V (G′) → [0, 1] is defined on V (G′), for all x ∈ V (G′),
0 ≤ pC(x) ≤ 1, which denotes the probability that x belongs
to cluster C, i.e., P (x ∈ C).

From topology point of view, a net-cluster is a sub-network
of the original network, following the same network schema.
In this paper, we only consider the networks with star net-
work schema, i.e., links only exist between center type of
objects (e.g., papers), which we called target objects, and
several other types of objects (e.g., authors, conferences, and
terms), which we called attribute objects. At the same time,
a net-cluster is attached with statistical information that de-
scribes the net-cluster. The statistical information includes
the posterior probability that each object belongs to the net-
cluster, which is defined as pC in Definition 2, and ranking
distribution Pψ(x)(X|Gk) ([18, 19]) for attribute objects x
from the type ψ(x), which denotes the probability of object
x ∈ X appearing in the net-cluster Gk. Finally, each net-
cluster Gk is also referring to a statistical model that defines
the probability p(oi|Gk) to generate a target object oi, given
the attribute objects linked to it, in the net-cluster Gk.

To better illustrate the idea of the evolutionary net-cluster
problem and the algorithms, we will use the bibliographic
network extracted from DBLP as an example. However,
the algorithm can be used in any heterogeneous network
with a star network schema. In the bibliographic network
derived from DBLP, there are four types of objects, namely

the papers (O), the authors (A), the venues (conferences
and journals) (C), and the terms (D), where links are only
existing between papers and the remaining three types of
objects. For each target object (paper) oi ∈ O, it can be
represented as a tuple (ai, ci,di), where ai = (ai1, . . . , ai|A|)
is a vector with length of |A| and aij denotes the weight of
the link between oi and author aj ∈ A. ci and di are with
similar meanings, which are the conference vector and term
vector associated with paper oi.

Let φk be the statistical model associating with net-cluster
Gk (thereafter k for short), and θk = (θA

k , θC
k , θD

k ) be the
parameters of the cluster model, where θA

k represents the
conditional ranking distributions of objects from Type A in
net-cluster k, i.e., θA

k (a) = pA(A = a|k) (similarly for θC
k

and θD
k ). The probability for generating oi in net-cluster

k is then p(oi|k) = p(ai|k)p(ci|k)p(di|k), where p(ai|k) =∏|A|
j=1 pA(aj |k)aij , which is a multinomial distribution, and

similarly for p(ci|k) and p(di|k).

Definition 3. Network Sequence. A dynamic network
sequence GS = (G1, G2, . . . , Gt, . . .) is a sequence of net-
works, where Gt = 〈Vt, Et, Wt〉 is the network associated
with timestamp t.

Objects in the networks are usually associated with time.
For example, papers are associated with publication years
in bibliographic networks. A dynamic network can then be
extracted into network sequence according to such time in-
formation. In the DBLP case, each Gt is a network com-
prised of all the papers published in year t, as well as all
the authors, conferences and terms linking to them. In the
Delicious Case, each Gt is a network comprised of all the tag-
ging events happened in the time window t, and all the users,
websites and tags associated with these tagging events.

3.2 Dirichlet Process Mixture Model
Mixture model is a frequently used method in cluster-

ing, which assumes an observation oi is generated from a
fixed number, say K, of different statistical models {φk}K

k=1

(clusters), with different component weights πk. By max-
imizing the log-likelihood of all the observations, both the
component weights and the parameters for each cluster are
obtained, and a soft clustering can be achieved accordingly.
A mixture model can be formalized as

oi ∼
K∑

k=1

πkp(oi|zi = k) (1)

where zi denotes the hidden cluster label associated with
object oi.

However, it is usually difficult for people to specify the
correct cluster number K in the mixture model. Dirichlet
Process Mixture Model is a typical way to solve the problem,
where the cluster number is considered as countable infinite,
and the distribution of component weights follows a Dirichlet
Process (an extension of Dirichlet Distribution to infinite
space) with a base distribution G0. We follow the work [11]
and define the DPM model as in Eq. (2):

oi|θi ∼ f(θi)

θi|G ∼ G

G ∼ DP(G0, α)

(2)

where θi is the parameter of the cluster associated with oi

and it follows the distribution of G. The distribution G is
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generated by a Dirichlet Process with the base measure αG0.
α is the concentration parameter.

According to [11], this model is equivalent to the following
finite mixture models (Eq. (3)), with the cluster number K
goes to infinity:

oi|zi, {θk}K
k=1 ∼ f(θzi)

zi|π ∼ Discrete(π1, . . . , πK)

θk ∼ G0

π ∼ Dirichlet(α/K, . . . , α/K)

(3)

where zi stands for the latent class label of the observation
oi. In this model, given the cluster number K, the parame-
ters for all the clusters are drawn from the same prior dis-
tribution G0, and the component weights are drawn from
a Dirichlet Distribution as the prior. In Section 4, we will
show why and how the DPM model can be extended and
used to model the generation and evolution of net-clusters,
where different net-clusters may be generated using different
priors and the evolutionary structure can be build explicitly
accordingly.

4. EVOLUTIONARY NET-CLUSTER DETEC-
TION

In this section, we will introduce the method of detect-
ing evolutionary net-clusters in a heterogeneous network us-
ing the DBLP bibliographic network as an example. In the
DBLP data, the publication year of the papers naturally di-
vides the original dynamic networks into different network
shots. Each network contains all the papers published in
one year, as well as the authors, venues and terms linked to
these papers. Given the network sequence, without the need
to specify the cluster number for each timestamp, our algo-
rithm is able to output the best net-clusters that are not
only consistent with the current timestamp network, but
also consistent with the networks from the previous times-
tamps.

4.1 Evolutionary Net-Cluster Generative Model:
Evo-NetClus

We now first introduce our novel DMP model-based gen-
erative model, Evo-NetClus, for evolutionary net-clusters.
When considering the evolution of communities, different
situations should be modeled: some minor changes may hap-
pen to an existing community, some new communities can
be generated, some small communities may disappear, some
communities will be split into several sub areas, and sev-
eral communities may be merged into one big community.
Therefore, it requires: (1) the number of clusters in each
timestamp cannot be fixed and is impossible to be speci-
fied by users; (2) the generative model should be flexible
to describe different statistical information under different
timestamp for the same net-cluster; and (3) the evolution
of net-clusters should be smooth between adjacent times-
tamps, and the smoothness should be modeled in the gen-
erative model as well. We therefore propose Evo-NetClus,
whose graphical model is given in Figure 2. At each times-
tamp t, we build a DPM for the target objects {oi,t}Nt

i=1 in
network Gt. For t = 1, namely the first timestamp, the
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Figure 2: Graphical Model for Evo-NetClus

target objects are modeled as a standard DPM:

oi,t|θi,t ∼ f(θi,t)

θi|Gt ∼ Gt

Gt ∼ DP(Dir(βtHt), αt)

(4)

where Dir(βtHt) is the base measure, which is a Dirichlet
distribution with the expectation distribution as Ht and the
precision βt, and αt is concentration parameter for Gt. For
later networks Gt that t > 1, the target objects are also
modeled as a DPM, but with the base measure for Gt a
mixture model of Dirichlet distribution with the expectation
distributions as the historical model Gt−1 and a background
model Ht respectively:

oi,t|θi,t ∼ f(θi,t)

θi|Gt ∼ Gt

Gt ∼ DP(λtDir(βtHt) +
∑

k

(1− λt)πk,t−1Dir(βtGk,t−1), αt)

(5)

where λt is the mixture portion of background.
We now specify the distributions used in Eq. 4 and 5

in their mixture model view as in Eq. 3. Suppose the
proper but unknown number of net-clusters is K, let Θt =
{θk,t}K

k=1, with each θk,t = (θA
k,t, θ

C
k,t, θ

D
k,t). θA

k,t, θ
C
k,t and θD

k,t

denote the parameters for types A, C, and D respectively,
where θA

k,t(j) = pA(aj |k, t) stands for the probability of ob-
ject aj in net-cluster Gk,t, aij,t is the weight of link between
oi and aj at timestamp t. Similar definitions are for θC

k,t(j),

θD
k,t(j), cij,t and dij,t. For each net-cluster Gk,t, the statisti-

cal model for target objects oi,t = (ai,t, ci,t,di,t) mentioned
in Section 3.1 and originally from [19] is then:

p(oi,t|zi,t = k,Θt) = p(oi,t|θk,t)

= p(ai,t|θA
k,t)p(ci,t|θC

k,t)p(di,t|θD
k,t)

=

|A|∏
j=1

θA
k,t(j)

aij,t

|C|∏
j=1

θC
k,t(j)

cij,t

|D|∏
j=1

θD
k,t(j)

dij,t

(6)

For the base measures G0,t = Dir(βtHt), they are inde-
pendent symmetric Dirichlet distributions for parameters as-
sociated with each type, namely, Ht(Θt) = (P (θA

k,t), P (θC
k,t), P (θD

k,t)),
with each component defined as a uniform distribution over
all the objects. Each component of the base measure G0,t(Θt)
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is then defined as:

θA
k,t ∼ Dirichlet(βA/|A|t, . . . , βA/|A|t)

θC
k,t ∼ Dirichlet(βC/|C|t, . . . , βC/|C|t)

θD
k,t ∼ Dirichlet(βD/|D|t, . . . , βD/|D|t)

(7)

where βA, βB and βC are precise for each Dirichlet distri-
bution component, and |A|t, |C|t and |D|t denote the car-
dinality of the objects in each type at timestamp t. No-
tice that, other reasonable distributions may also be used as
base measures for G0,t. We use symmetric Dirichlet distri-
butions, because it can be served as conjugate priors for the
conditional rankings of objects in each type, which follow
multinomial distributions.

Instead of finding a global optimization on {Θt}T
t=1, given

a network sequence GS = (G1, G2, . . . , GT ), as did in HMM
inference and some dynamic Dirichlet Process model [14,
27], our goal is to find greedy optimization configuration Θt

based only on the history. Formally, we want to maximize
the posterior probability p(Θt|Ot,Θ

∗
t−1), where Θ∗

t−1 is the
best configuration for Θt−1 in timestamp t − 1. We make
such choice because usually we are not able to observe the
whole network sequence. In practice, networks are coming
in a stream way, with new objects emerging, which makes
the global vocabulary unavailable. Also, we do not want to
compute the whole network sequence when a new network
comes, but be more willing to use new data to update the
model sequentially. Another reason is the global inference
could be rather complex and intractable.

We now show the generative model Evo-NetClus satisfies
the three requirements proposed in the beginning of this
section, by using the DPM model and carefully designing
the prior distribution for each timestamp t as a mixture over
the historical model in t− 1 and a new background model.

4.1.1 Modeling Flexible Cluster Number
First, a DP defines a prior probability over the structure of

the clusters. Let z1, z2, . . . , zi−1 are hidden cluster labels for
existing objects o1, o2, . . . , oi−1, according to DP, the con-
ditional probabilities for a new object oi to join a existing
net-cluster or to create a new net-cluster k are:

• if k is an existing net-cluster, i.e., zi = zj for some j < i,
the probability to generate oi from net-cluster k is then

nk
α+i−1

;

• if k is a new net-cluster, i.e., zi 6= zj for all j < i, the
probability for oi to be generated from a new cluster is
then α

α+i−1
.

The above generative process for cluster labels is also
called Chinese Restaurant Process [2], since it simulates
the table occupation by customers in Chinese restaurants.
When the first customer comes to a restaurant, he will sit at
an empty table; while the next customer will sit at a table if
he knows someone there, with the probability proportional
to the existing people in that table (the more people there,
the higher probability he knows someone there); also there is
a probability that he knows nobody in the current customers
and sit at a new table with a probability α

α+i−1
. Here, a ta-

ble stands for a cluster. Therefore, the number of clusters
are well modeled through this sampling process.

The larger α will result in more clusters, since the proba-
bility of creating a new cluster is larger then. In our model

setting, we will set all αt at different timestamps equally to
α. Experiments in Sec. 5 show that α is not very sensitive
for the cluster number.

4.1.2 Modeling Historical Impacts
Another constraint on the net-clusters is that the net-

clusters at two consecutive timestamps should be similar to
each other, namely, the evolution of net-clusters should be
smooth. Meantime, we hope the same community could
change insignificantly along the time. For example, authors’
rank could be changing in the database community all the
time. Therefore, we do not force different timestamp models
to share the same clusters, as in [14, 25]. Instead, we design
more flexible priors for each Gt, by considering its base mea-
sure as a Dirichlet distribution over mixture priors. In other
words, this makes the empty tables not equally important,
but have different hints denoted by different prior distri-
butions. Namely, each net-cluster will have a prior label,
either form a previous cluster θ∗k,t−1, or from background
Ht. When a new object oi comes, the generative process for
him to join a cluster can be described as:

1. he chooses an existing cluster k with probability nk
α+i−1

,
where nk is the number of objects in cluster k; or,

2. he chooses an empty cluster with probability α
α+i−1

, then
he chooses the prior knowledge for the cluster either as
a previous cluster kt−1 with probability (1 − λt)πk,t−1,
or as a background knowledge with probability λt, where
πk,t−1 is the learned mixture portions in Gt−1 for cluster
kt−1, and λt can be learned empirically through the data.

Once the prior for each new net-cluster is chosen, if it
is from a background model, the base measure G0,t(Θt) is
drawn from Eq. 7; if it is from a previous net-cluster kt−1,
with parameter θk,t−1, G0,t(Θt) is then defined as:

θA ∼ Dirichlet(βAθA
k,t−1(a1), . . . , βAθA

k,t−1(a|A|t))

θC ∼ Dirichlet(βCθC
k,t−1(c1), . . . , βCθC

k,t−1(c|C|t))

θD ∼ Dirichlet(βDθD
k,t−1(d1), . . . , βDθD

k,t−1(d|D|t))

(8)

where βA, βC and βD is the precise of the Dirichlet distri-
bution, which can be viewed as the pseudo objects already
existing in a net-cluster with the defined prior knowledge.
Notice that, for a set of target objects with size β, the sizes
of objects from other types can be largely defined using the
average degree of the target objects for each type. For exam-
ple, in DBLP, a paper in average goes to 1 conference, has
2 authors, and contains 6 terms. In the experiment setting,
we only need to set βC , and set βA = 2βC and βT = 6βC .
Since βC denotes the strength of the background model, the
larger of it, the more smoothing between different clusters ,
and thus the fewer clusters.

4.2 Model Inference
For the first timestamp t = 1, our goal is to get Θ∗

1 that
maximizes the posterior p(Θ1|O1), given H, α, βC . For later
timestamps t > 1, the goal is to derive Θ∗

t that maximizes
posterior p(Θt|Ot,Θ

∗
t−1), where Θ∗

t−1 is the best param-
eter derived in timestamp t − 1. In this paper, we use a
collapse Gibbs sampling following [11] to first sample the
hidden variables zi,t for each object oi,t, and then derive
Θ∗

t = arg maxΘt p(Θt|Ot,Zt). Now we will introduce the
inference algorithm step by step.
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Step 1: Initialization.
For the input network Gt, if t = 1, then initialize the net-

cluster set by partitioning the target objects into a tempo-
rary cluster number K0 randomly. If t > 1, we initialize the
net-cluster set by assigning them into Kt−1 + 1 empty clus-
ters with priors either from net-clusters in timestamp t − 1
or the background model Ht, according to model probabil-
ity p(oi,t|k), where Kt−1 is the cluster number in timestamp
t−1. Also, assign λt as the proportion of objects with prior
Ht over the whole target objects.

Step 2: Hidden Cluster Label Assignment.
Repeatedly sample each of the objects into existing clus-

ters or new clusters, following the posterior distribution

p(zi,t|oi,t, z−i,t).

For simplicity, we now omit the sub-index t in the following
unless they are necessary.

For each target object oi(i = 1, 2, . . . , n), always consider-
ing it as the last observation,4 the conditional distribution
for its hidden cluster label zi given all the other cluster la-
bels, denoted as z−i, and the value of oi integrating out Θ
can be derived as:

p(zi = k|z−i, oi) ∝ p(zi = k|z−i)

∫

θk

p(oi|zi = k, θk) (9)

Specifically, there are four situations when sampling zi:
(1.1) If k is a new cluster with background prior H, i.e.,

zi 6= zj for all j 6= i:

p(zi 6= zj(∀j 6= i)|z−i, oi, G0,H) ∝ αλt

n− 1 + α

∫
p(oi|θ)G0,H(θ)dθ

(10)

where
∫

p(oi|θ)G0,H(θ)dθ =

∫
p(ai|θA

)p0,H(θ
A

)dθ
A

∫
p(ci|θC

)p0,H(θ
C

)dθ
C

∫
p(di|θD

)p0,H(θ
D

)dθ
D

and according to the Dirichlet-multinomial conjugate, the
posterior probability for ai can be calculated as:

∫
p(ai|θA)p0,H(θA)dθA =

Γ(βA)

Γ(βA + nai )

∏|A|
j=1 Γ( βA

|A| + naij )
∏|A|

j=1 Γ( βA
|A| )

(11)

where nai is the total number of authors for paper oi and
naij is the number of author aj in paper oi, and which are
similar for ci and di.

(1.2) If k is a new cluster with net-cluster prior θk,t−1:

p(zi 6= zj(∀j 6= i)|z−i, oi, G0,kt−1 )

∝α(1− λt)πk,t−1

n− 1 + α

∫
p(oi|θ)G0,kt−1 (θ)dθ

(12)

with the posterior probability for ai be calculated as:

∫
p(ai|θA

)p0,kt−1 (θ
A

)dθ
A

=
Γ(βA)

Γ(βA + nai
)

∏|A|
j=1 Γ(βAθA

k,t−1(j) + naij
)

∏|A|
j=1 Γ(βAθA

k,t−1(j))

(13)

(2.1) If k is an existing cluster with background prior H,
i.e., zi = zj for some j 6= i:

p(zi = k|z−i, oi, G0,H) ∝ n−i
k

n− 1 + α

∫
p(oi|θk)p(θk|z−i, O−i, G0,H)dθk

(14)

4Due to the exchangeability of the data, this assumption
does not affect the model result.

where n−i
k stands for the number of times that label z = k

has been assigned, excluding the current (i.e., the i-th) in-
stance; p(θk|z−i,O−i, G0,H) is a posterior distribution given
current observation in cluster k without oi, and the prior
distribution G0,H . The component probability p(ai) in the
formula should be

∫
p(ai|θA)p0,H(θA)dθA

=
Γ(βA + n−i

k,A)

Γ(βA + nai + n−i
k,A)

∏|A|
j=1 Γ( βA

|A| + naij + n−i
k,A(j))

∏|A|
j=1 Γ( βA

|A| + n−i
k,A(j))

(15)

where n−i
k,A is the total author number in cluster k without

paper oi and n−i
k,A(j) is the number of author aj in cluster k

without oi, and which are similar for other types of objects.
(2.2) If k is an existing cluster with net-cluster prior θk,t−1,

i.e., zi = zj for some j 6= i:

p(zi = k|z−i, oi, G0,kt−1 )

∝ n−i
k

n− 1 + α

∫
p(oi|θk)p(θk|z−i,O−i, G0,kt−1 )dθk

(16)

The component probability p(ai) in the formula should be

∫
p(ai|θA)p0,kt−1 (θA)dθA

=
Γ(βA + n−i

k,A)

Γ(βA + nai + n−i
k,A)

∏|A|
j=1 Γ(βAθA

k,t−1(j) + naij + n−i
k,A(j))

∏|A|
j=1 Γ(βAθA

k,t−1(j) + n−i
k,A(j))

(17)

Notice that, if the only object for some cluster is as-
signed to other clusters, this cluster should be then removed.
The Gibbs sampling process described are repeated multi-
ple times and the average value for the assignment is used to
estimate the expectation of the real distribution of hidden
variables. Since different cluster numbers may be obtained
in different samples (only occasionally, when the sampling
converges to real distribution), we use hierarchical clustering
to merge clusters into the average cluster number.

Step 3: Cluster Parameter Estimation.
Once the assignment for each object is fixed, the parame-

ter θk for each cluster can be estimated accordingly. Specif-
ically, each component of θk = (θA

k , θC
k , θD

k ) is a Dirichlet
distribution given the observations in cluster k, and has the
MLE estimation as

θA
k (j) =

βA/|A|+ nA
j

βA + nA
; θC

k (j) =
βC/|C|+ nC

j

βC + nC
; θD

k (j) =
βD/|D|+ nD

j

βD + nD

(18)

if the prior for the net-cluster is from background model H;
otherwise, the MLE estimation is

θA
k (j) =

βAθk,t−1(j) + nA
k (j)

βA + nA
k

;

θC
k (j) =

βCθk,t−1 + nC
k (j)

βC + nC
k

;

θD
k (j) =

βDθk,t−1 + nD
k (j)

βD + nD
k

(19)

if the prior is from a previous net-cluster θk,t−1. They are
exactly the simple ranking used in [18] and [19] smoothed
with background model. Other empirical parameter esti-
mation methods can also be used here, for example, the
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Input: Network Gt, Θ(t−1); α, βC ;
Output: The net-clusters {Gk,t}; the parameters

Θt = {θA
t , θC

t , θD
t };

Initialize the net-clusters either using random partitioning
for the first time, or according to the conditional probability
for each prior;
repeat

%Assign the hidden cluster labels;
1. Calculate the posterior probability for each oi in

each existing cluster k and new cluster k + 1 ;
2. Sampling the object to the k, if it is a new cluster,

k + +, and record its prior distribution ;
3. if net-cluster kold for oi contains no objects, remove

the cluster;
until reaches iteration number ;
Extract net-clusters {Gk,t} and estimate their parameters
Θt;

Algorithm 1: Model inference algorithm.

authority ranking used in [18] and [19]. The posterior prob-
ability that each object is belonging to each cluster can also
be calculated.

The inference algorithm is summarized as in Algorithm
1. In our experiment setting, the Gibbs sampling iteration
number is set as 1500, the burning period is 1000, and the
sample gap is 10.

5. EXPERIMENT
In this section, we will study the effectiveness of the evo-

lutionary net-cluster model using real datasets.

5.1 Dataset
We first use the DBLP data to extract the network se-

quences between the years 1990 and 2008, where authors
publishing more than 10 papers and conferences containing
more than 200 papers in this period are kept. The network
contains four types of objects, namely papers, authors, con-
ferences(journals) and terms, and follows the star network
schema. Terms are extracted from paper titles. Stop words
and low frequency terms (less than 20) are removed. The
papers associated with each timestamp range from 8K to
65K.

The second dataset is extracted from Delicious.com, from
Jan. 1 to Jan. 28, 2010. The network also contains four
types of objects, namely tagging events, users, websites and
tags, following star network schema. Users, websites and
tags appearing less than twice are removed. The tagging
events are grouped into four weeks according to their tagging
time, and thus a sequence of four consecutive networks are
obtained.

5.2 Parameter Setting Study
There are two parameters defined in Evo-Netclus model,

namely α and βC , where α defines the cluster structure prob-
ability, and βC controls the smoothness between different
net-clusters. We use the DBLP network of year 1991 as the
test network, which contains 9574 papers, to study the rela-
tion between cluster number and parameters α and βC (See
Fig. 3). As expected, larger α will result in more cluster
numbers. However, the impact is not that sensitive. Also,
lager βC leads to smaller cluster numbers, as the strength
of smoothing between different net-clusters grows. Actually,
difference βC can provide different scale’s view of cluster evo-

lution. In our experiments, we set α = 0.1 and βC = 1000.
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Figure 3: Parameter Study: α and βC vs. Cluster
Number

5.3 Comparative Performance Study
As we claimed, there are two advantages of Evo-NetClus

model, first is that it can consider different types of ob-
jects, and second is that each clustering results can carry
historical information. We now compare Evo-NetClus with
three other degenerated clustering models using DBLP data,
namely using fewer types of objects or not using historical
priors, by evaluating the similarity compactness of papers
within the same conference and among different conferences
on the test dataset. We define similarity compactness of
papers considering conferences as ConfCompact:

ConfCompact =

∑
k

∑
oi∈k s(oi, ck)/|O|∑

k

∑
l6=k s(ck, cl)/(k(k − 1))

where oi is considered as a (n + 1)th object and can be
represented as a vector of posterior probability given each
existing net-cluster in the training model (Eq. 13-16), ck is
the center of conference k, and s(., .) denotes some similar-
ity function, where we use cosine similarity. Intuitively, the
papers in the same conference should be more similar than
in different conferences. Therefore, the larger the value of
ConfCompact, the better the posterior probability vector
is, and the better the model is. To overcome the sparsity
of conferences in the test data, we only use top-5 confer-
ences containing most testing papers into within-conference
similarity calculation. From Table 1, we can see that Evo-
NetClus that considers both multiple types of objects and
historical impact information indeed gives the best perfor-
mance for both test datasets, in terms the ability to provide
better similarity feature given by the training model. By
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Year Training Type Testing Type Test Size 10% (cluster number K) Test Size 20% (cluster number K)
1992 Term Term 1.600 (4) 1.390 (4)
1992 Term+Author Term+Author 2.205 (8) 1.697 (6)
1992 Term+Author+Conf. Term+Author 2.434 (8) 2.095 (8)

1992|1991 Term+Author+Conf. Term+Author 2.8365 (8) 2.671 (8)

Table 1: Conference Compactness of Different Models on Test Dataset

the comparison between Row 2 and Row 3, we can see that
additional type, i.e., conference, in training dataset can en-
hance the ranking for author and term type, and derive bet-
ter performance on test dataset where only author and term
type are used. From the comparison between the last two
rows, we can see that Evo-NetClus model considering his-
torical information gives much better results, which means
independently deriving net-clusters at each timestamp, and
then construct evolution structure between different times-
tamps may not be a good option, since the net-clusters thus
derived will be overfitting the current dataset. The cluster
numbers generated by each algorithm for each training data
set are shown in Table 1 as well.

Perplexity is a measure for evaluating the goodness for
statistical models, which is defined as:

perplexity = 2−
∑N

i=1
1
N

log2 q(oi)

where q(oi) is the estimated probability for object oi deter-
mined by the mixture model defined in Eq. 1 and Eq. 6, us-
ing estimated parameters obtained by Eq. 18 and 19. From
perplexity comparison between the two models in Table 2,
we can similarly find that Evo-NetClus with historical im-
pact (Row 2) has lower perplexity for both testing datasets,
which means including historical impacts indeed enhances
the performance of the model.

5.4 Case Study
We now show a small portion (see Fig. 4) of net-clusters

derived from DBLP dataset, and their evolution structure
via priors, through year 1991-2000 (only the year 1991, 1994,
1997 and 2000 are shown), which is generated using param-
eter α = 1 and βC = 1000. For each net-cluster, top-5
conferences and top-5 terms are output. A link exists be-
tween two net-clusters, if the previous one is the prior of the
latter. Notice that, using the prior dependency, we can read
the split, birth and death easily. For cluster merge, it still
needs some postprocessing effort to judge whether a cluster
disappears because of a real death or because of a merge into
other clusters. From the case study, we can see that the data
mining community is evolved from the database community
in the year 2000. Notice that, though KDD conference first
appeared in the year 1995, but the community had not been
well formed until other data mining conferences appeared,
such as PKDD, PAKDD and so on.

Another case study is from Delicious (see Fig. 5), which
is generated using parameter α = 1 and βurl = 500. Three
communities are shown, which corresponding to politics, ap-
ple, and world news. Fig. 5(a) shows the top-10 tags used
in each community, and Fig. 5(b) shows the trends of the
size of the related tagging events for each community. For
example, Apple announced its new product “iPad” on Jan.
27, which results in the significantly increasing of the related
tagging events happened in Apple community in the fourth
week of January.

6. CONCLUSIONS
In this paper, we study the problem of detecting evolu-

tionary net-clusters, i.e., clusters defined on heterogeneous
networks, which are able to describe a community that con-
tains different types of objects. A Dirichlet Process Mixture
Model-based generative model Evo-NetClus is proposed to
model the net-cluster generation process with the time infor-
mation. At each time stamp, a net-clustering with the best
cluster number and smoothing with net-clusters at previous
time stamps are automatically detected. A Gibbs sampling-
based algorithm is proposed to inference model. Experi-
ments on DBLP and Delicious dataset have shown the ef-
fectiveness of the algorithm.
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