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ABSTRACT
It is often challenging to incorporate users’ interactions into
a recommendation framework in an online model. In this
paper, we propose a novel interactive learning framework
to formulate the problem of recommending patent partners
into a factor graph model. The framework involves three
phases: 1) candidate generation, where we identify the po-
tential set of collaborators; 2) candidate refinement, where a
factor graph model is used to adjust the candidate rankings;
3) interactive learning method to efficiently update the ex-
isting recommendation model based on inventors’ feedback.
We evaluate our proposed model on large enterprise patent
networks. Experimental results demonstrate that the rec-
ommendation accuracy of the proposed model significantly
outperforms several baselines methods using content similar-
ity, collaborative filtering and SVM-Rank. We also demon-
strate the effectiveness and efficiency of the interactive learn-
ing, which performs almost as well as offline re-training, but
with only 1 percent of the running time.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Miscellaneous;
H.3.3 [Information Search and Retrieval]: Text Min-
ing

General Terms
Algorithms, Experimentation

Keywords
Cross collaboration, Social network, Predictive model

1. INTRODUCTION
Collaboration exists almost everywhere, for example

patent application, academic research, product develop-
ment, and decision making. 98% of US patents are results
of collaborations. Figure 1(a) shows a rapid increase of the
co-invention relationships between inventors in the past 35
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years (1975-2010). Today’s patent collaborations are almost
6 times higher than that of 35 years before. In particular,
the number of new collaborations has an even more rapid
increase. Figure1(b) shows another interesting analysis, the
changes of average number of patents by each individual
and the average number of inventors for each patent over
the past 35 years. We see the number of inventors for each
patent has a clear increasing trend.

Indeed, collaboration is becoming so important that the
Open Government Initiative has given high priority to in-
crease the use of collaboration in the federal government1.
In most of the industries, employees only use part of their
time to create patents. Time constraint often limits their
scope for choosing new collaborators. In general, collabora-
tors should be ideally in closer proximity (i.e, within same
company and geography), engaged in similar interests, and
working on similar product. However, it is often challenging
for researchers to establish successful collaborations. This is
sometimes even more challenging within a company. IBM
has 300,000 employees distributed in many different loca-
tions across the globe. How can healthcare researchers find
the right data mining experts with right skills and are willing
to help?

There are a few systems for patent search and analysis
such as Google Patent, WikiPatent, PatentMiner, FreeP-
atentsOnline, Patents, PatentLens, and PriorArtSearch.
However, most of these systems focus on search and provide
limited micro-level analytic functions. Few systems provide
the function of patent partner recommendations. For re-
search on the patent data, Tang et al. [26] propose a topic-
driven patent analysis and mining method and develop a
system named as PatentMiner. Jin et al. [11] propose a
method to evaluate the quality of patents. Liu et al. [18]
and Mann [19] study how to estimate patent quality from
the perspective of court validity rulings or the number of for-
ward citations. However, all these works focus on analyzing
patent content, but ignore the collaborative relationships
between inventors. In the space of data mining and web
search, a number of relevant works have been conducted,
such as collaborator recommendations [13, 27], friends sug-
gestions [22], and reviewer finding [21, 29]. Kautz et al.
[13] introduce a system called ReferralWeb which attempts
to combine social networks for collaborative filtering. None
of the above works directly target at patent collaborations,
which is the focus of this paper.

1http://www.crosscollaborate.com
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Figure 1: Trends of co-invention relationships from
1975 to 2010.

Challenges and Contributions. In this work, we study
the problem of recommending patent partners in enterprise
social networks. We address three challenges: First, what
are the fundamental factors that influence the formation of
co-invention relationships? Will inventors with similar in-
terests tend to collaborate, or they collaborate because they
have complementary research interest, or simply due to the
geographical proximity? Second, how to design an interac-
tive mechanism so that the user can provide feedback to the
system to refine the recommendations? Third, technically,
how to learn the interactive recommendation framework in
an online mode?
We formulate the problem and propose a ranking model

to recommend patent collaborators according to the user’s
profile. More specifically, we propose an interactive learn-
ing framework to formulate the problem of recommending
patent partners into a factor graph model. The framework
involves three phases:

• Candidate generation, where we identify the po-
tential set of collaborators by performing similarity
retrieval on various features including homophily, re-
ferral chaining, and recency;

• Candidate refinement, where a factor graph model
RankFG is used to adjust the candidate rankings;

• Interactive learning, where we propose an efficient
online update algorithm RankGF+ to adjust the ex-
isting recommendation model based on inventors’ feed-
back.

We evaluate the proposed model on large patent data sets.
We show that the proposed model can significantly improve
(up to 30% in terms of Precision@5) the recommendation
performance of collaborations, compared with several base-
line methods.

Organization. Section 2 formulates the problem; Section
3 explains the proposed model and describes the algorithm
for learning the model; Section 4 introduces the data set
and our observations to verify the hypotheses. Section 5
presents the results; finally, Section 6 discusses related work
and Section 7 concludes this paper.

2. PROBLEM DEFINITION
The patent data set can be considered as an inventor so-

cial network G = (V,E), where V is a set of |V | = N in-
ventors and E ⊆ V ×V is a set of co-invention relationships
between inventors. Let xi be a set of attributes associated
with inventor vi. An attribute can be the inventor’s interest,
her employed company or the number of published patents.
We use X = {x1, · · · ,xN} to denote the attributes of all
inventors. Our goal is to suggest future collaborators for a
specific inventor vq, based on her historic attributes xq, her
existing co-invention relationships, and the idea she wants to
patent. More precisely, we are concerned with the following
problem:

Problem 1. Suggesting co-invention relationships.
Let G = (V,E,X) be an attribute augmented inventor net-
work. For a particular inventor vq ∈ V and the topic t she
wants to find co-invention relationships, the task of suggest-
ing co-invention relationships is to find a predictive function
such that we can suggest (infer) co-invention relationships
between vq and other inventors on topic t, i.e.,

f : (G, vq, t) → Y,

where Y = {y1, · · · , y|V |} is a set of inferred results between
inventor vq and all inventors in the network G; yk ∈ {0, 1} is
binary score indicating whether the corresponding inventor
vk ∈ V will have a co-invention relationship with v.

In addition, we consider how to interactively refine the
learned predictive function. Specifically, the inventor can
provide feedback on the recommendation list and then the
technical objective is to incrementally update the predic-
tion at a real time. The problem can be also generalized
to suggest top-K collaborators (under some constraints) for
any social networks. To keep things concrete, we focus on
studying this problem in the inventor social network.

The problem formulation is different from existing work
on patent quality analysis [11, 18, 19, 26], which has focused
on mining patent content. It is also different from existing
works on collaborator recommendations [13] and friends sug-
gestions [22]. Here we mainly consider how to provide an
interactive mechanism for supporting inventors to provide
feedback to the recommended collaborators so as to refine
the recommendations at a real time.

3. MODEL FRAMEWORK
A major motivation for our work comes from the intuition

that inventors’ content and social networks are both impor-
tant for establishing co-invention relationships. At a high
level, the proposed approach framework consists of three
stages.



• Candidate generation. First, given a user vq and
the topic t on which she/he wants to establish co-
invention relationships, we extract potential collabora-
tion candidates through the similarity on several fea-
tures.

• Candidate refinement. Second, the candidate list
is fed to a ranking factor graph (RankFG) model to
refine the ranking. The model incorporates various
factors and the correlation among the collaboration
candidates.

• Interactive feedback. Third, users can provide feed-
back to the suggested co-invention relationships. An
interactive learning algorithm is designed to update
the ranking model incrementally based on the user’s
feedback.

3.1 Candidate Generation
For a given user vq and the topic t (i.e., query keywords),

we consider three factors to generate the candidate list, i.e.,
Homophily, Referral chaining, and Recency.
The idea of homophily comes from the principle of “birds

of a feather flock together” [20], which suggests that “con-
nected” inventors tend to have similar characteristics (e.g.,
social status or interests). Regarding the homophily between
inventors, we consider the following inventors’ attributes:
geographical proximity and interest homophily. Because of
the companies’ specific policies, the inventors can barely col-
laborate with other inventors in other companies. So we
consider that geographical proximity indicates that if two
inventors in one company come from the same country or
geographical close places, they are more likely to collabo-
rate. In this work, we simply consider the company and
country information extracted from patents, and accordingly
define the geographical proximity as a binary score (which
stands for whether the two inventors in one company are
from the same country or not). Interest homophily repre-
sents that significant interest overlapping between two in-
ventors implies a higher likelihood of the two inventors to
have a co-invention relationship. Formally the interest ho-
mophily is defined based on Jaccard coefficient. We did try
different similarity algorithms such as cosine similarity and
found that the inferring accuracy is not very sensitive to the
similarity algorithms.

CI(vi, vj) =
Ivi ∩ Ivj
Ivi ∪ Ivj

(1)

where Ivi is a set of keywords describing inventor vi’s inter-
ests.
Regarding to referral chaining, the idea is that if two in-

ventors can be connected via a short referral chain, then
they are more likely to collaborate. Regarding to Recency,
the idea is that a more recent collaboration tends to be more
important. To quantify the length of a chain, we define the
closeness measure of a referral link by considering the con-
cept of recency. For any two inventors (vi and vj) who co-
invented a set of patents S, we define the closeness of their
referral link (in this case their co-inventing relationship) as:

R(vi, vj) =
∑

di∈S

e
−(

tnow−tdi
λ

) (2)

where tnow is the current year; tdi is the year when patent
di has been published; and λ is a tunable parameter. (We
empirically set λ as 0.5.) This definition comes from our
observation that an inventor’s recent collaborator is usually
closer than those of many years ago. A similar definition is
also used in [22]. Based on Eq. 2, given two inventors (vi and
vj), we first find the shortest path in terms of accumulative
closeness scores on the path.

Finally, given an attribute augmented inventor network
G = (V,E,X), and a particular inventor vq and the topic t,
we first use the keywords contained in topic t to retrieve a list
of “related” inventors using vector space model or language
model [2]. We then calculate the homophily scores and the
referral chaining score between inventor vq and all inventors
in the list. We combine the different scores together with
the same weight and use the combination score to select top
K inventors as the candidate collaborators for suggesting to
inventor vq

2.

3.2 RankFG: Ranking Factor Graph Model
After the initial retrieval of potential collaborator candi-

dates, we now propose a ranking factor graph (RankFG)
model to refine the co-invention relationships. Figure 2
shows the graphical structure of the RankFG model. For
a given inventor vq, we feed the model with the candidate
list {v1, v2, v4, v5} obtained in the initialization stage; v3
and v6 are two existing collaborators of vq. The graphi-
cal model has two layers of variables: observations and la-
tent variables. The observations are a collection of inven-
tor pairs {(vq, vi)}. The corresponding latent variable yi to
each inventor pair (vq, vi) represents whether the two inven-
tors have a co-invention relationship. We define two types
of functions to capture the underlying factors that may in-
fluence the formation of co-invention relationships.

• Pairwise factor function: It captures the charac-
teristics of the two inventors, e.g., the relationships
between attributes of the two inventors. It is defined
as an exponential function

f(vq, vi, yi) =
1

Za

exp{
∑

k

αkψk(xq,xi, yi)} (3)

where ψk(.) is the k
th feature function defined between

vq and vi with respect to the value of yi; αk is the
weight of the feature; xq and xi are attributes associ-
ated with vq and vi. Za is a normalization factor.

• Correlation factor function: It captures the corre-
lation between latent variables. It is also defined as an
exponential function

g(yi, yj) =
1

Zb

exp{
∑

l

βlφl(yi, yj)} (4)

where φl(yi, yj) is the lth feature function defined be-
tween yi and yj ; βl is the weight of the feature.

2The number of K is empirically set as 50 in the experi-
ments. We will study how the number affects the inferring
accuracy.
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Figure 2: Graphical representation of the RankFG
model. vq is the given inventor who intends to find

patent partners; {v1, v2, v4, v5} are four candidate collab-

orators obtained in the initialization stage; v3 and v6 are

two existing collaborators of vq; {y1, · · · , y4} are latent

variables defined for pairs of inventors, with each repre-

senting whether the corresponding pair of inventors will

have a co-invention relationship; f(.) represents a factor

function defined for each pair of inventors; g(.) represents

a correlation factor function defined between latent vari-

ables.

In general, the pairwise factor captures the characteristics
on each potential co-invention relationship and the correla-
tion factor captures correlations between the suggested re-
sults. By integrating the defined factor functions, and also
following the Markov assumption [8], we can define the fol-
lowing log-likelihood objective function:

logP (Y |X, θ) =
∑

yi∈Y

∑

k

αkψk(xq,xi, yi)

+
∑

vi∼vj

∑

l

βlφl(yi, yj)− logZ
(5)

where Z = ZaZb is the normalization factor; vi ∼ vj in-
dicates that there is a (directed or indirected) correlation
between vi and vj ; θ = ({α}, {β}) are parameters to esti-
mate.

Feature definitions. We now introduce possible ways to
define the factor functions ψk(xq,xi, yi) and φl(yi, yj). In
principle, the factor functions can be instantiated in differ-
ent ways to reflect our prior knowledge (or intuitions) for
different applications. It can be defined as either a binary
function or a real-valued function. For example, for the pair-
wise factor function, we can define a binary feature function
according to an attribute in X: if two inventors are from the
same country and they have a co-invention relationship, then
a feature ψ(xqk = xik, yi) = 1, where k is the attribute of
country. More specifically, in total, we define nine pairwise
factor functions which can be divided into four categories:
Basic statistics of co-inventors, Link homophily, Interest ho-
mophily, and Correlation.
Basic statistics. We calculate a set of statistics for each

potential co-inventor, the number of patents published by
the inventor, the number of existing patent partners, and
the number of patents published per year.

Table 1: Features defined for co-invention relation-
ship (vi, vq).

Feature Description

#Patent Number of patents published by vi

#Co-inventor Number of existing co-inventors of vi

Ratio #Patent / #Collaborator

Experience Difference of the years of the first patent published
by vq and vi

CS-interest Cosine similarity of interests between vq and vi

#C-interests Number of common interests between vq and vi

#P-interests Percentage of common interests between vq and vi

Cat-similarity Similarity between patents’ categories of vq and vi

#C-neighbor Number of common co-inventors of vq and vi

#2-C-neighbor Number of 2-step common co-inventors of vi and vj

Referral Referral chaining length between vq and vi

Recency Difference of current year and last collaborated year
between vq and vi over the referral chaining

Correlation Represent whether two candidates have a co-
invention relationship.

Input: Query inventors Q = {vq} with corresponding topics
{q}, G = (V,E,X), and the learning rate η;

Output: learned parameters θ;
θ ← 0;
repeat

foreach vq ∈ Q and q do
//Initialization;
L← initialization list;
Factor graph FG← BuildFactorGraph(L);
// Learn the parameter θ for factor graph model;
repeat

foreach vi ∈ order do
Update the messages of vi by Eqs. 8 and 9;

end

until (all messages µ do not change);
foreach θi ∈ θ do

Calculate gradient ∇i according to Eq. 7;
Update θnew = θold + η · ∇i;

end

end

until converge;

Algorithm 1: Learning algorithm for RankFG.

Link homophily. This feature represents the number
of common co-inventors between the candidate inventor and
the query user.

Interest homophily. We use keywords appearing in
patents published by each inventor as her interest. Three
features are then defined as: the number of common inter-
ests, percentage of common interests between each inventor
and the query inventor, cosine similarity of the interests be-
tween two inventors.

Correlation. If two candidate inventors in the initial
list have a co-invention relationship, we define a correlation
factor here.

In addition, we define two features based on the referral
chain length and the recency. Table 1 summarizes the main
features defined in the RankFG model.

Model learning. Learning the RankFG model is to find
a parameter configuration θ = ({α}, {β}) from a given his-
toric data set, such that the log-likelihood objective function
L(θ) = logP (Y |X, θ) can be maximized,



θ
⋆ = argmax

θ
logP (Y |X, θ) (6)

We can use a gradient ascent algorithm (or a Newton-
Raphson method) to solve the objective function L(θ). The
gradient of each parameter θ wrt L(θ) is:

∂L(θ)

∂θi
=

∑

j

f(xi,yi)−
Z(θ)′

Z(θ)

= E[φ(xi,yi)]− EP (xi,yi)
[φ(xi,yi)]

(7)

Here, we use φ to indicate both φ and ψ. The first term
E[φ(xi,yi)] in Eq. 7 is easy to calculate. However, in the
second term, it is intractable to estimate the marginal prob-
ability P (xi,yi) as the graph structure may contain cycles.
There are several methods to approximately solve the prob-
lem. In our work, we choose the sum product algorithm [14]
(also known as Loopy Belief Propagation (LBP) [31]). To
perform the sum product algorithm, we first derive a factor
graph from the original graph G. The likelihood P (Y |X)
is a factorization of the graph and we can flexibly add fac-
tor nodes for feature functions. Then we perform the sum-
product algorithm on the factor graph to compute the ap-
proximate marginal distributions. In particular, the sum-
product algorithm operates according to the sum-product
update rule: the message sent from variable v to factor f
(or g) is the product of local function at v with all messages
received at v from all factors other than f and the mes-
sage sent from factor f to variable v is the sum of all factor
functions associated with v, i.e.,

µv→f (xv) =
∏

f∗∈N(v)\f

µf∗→v(xv) (8)

µf→v(xv) =
∑

∼xv

f(xf )
∏

v∗∈N(f)\{v}

µv∗→f (v
∗) (9)

where N(v) are neighborhood variables of factor f and N(f)
are neighborhood factors of variable v; xf is the set of argu-
ments of f(.);

∑
∼x indicates the summation over all vari-

ables except x. Algorithm 1 describes the learning process
in the RankFG model. In each iteration, the messages are
updated sequentially in a certain order. We randomly se-
lect a node as the root and perform breadth-first search on
the factor graph to construct a tree. We update the mes-
sages from the leaves to the root, then from the root to the
leaves. The process repeats updating messages until the con-
vergence or until the number of iterations is large enough.
Based on the received messages from factors, we can calcu-
late the marginal probabilities for each variable. Then we
compute the gradient according to Eq. 7 and update the

parameters by θnew
j = θoldj + η · ∂L(θ)

∂θj
, with η the learning

step.

Recommending patent partners. Given the observed
value x and the learned parameters θ, the patent partner
recommendation is to find the most likely configuration of
Yq for a given inventor vq. This can be obtained by:

Yq = argmax
Yq

P (Yq|X, θ) (10)

y2=?
y4=?

1-step

forward

2-step

backward

y5

y7

yN+1

y2

y4

Figure 3: Illustration of the l-step message passing
update.

For inference, we use the max-sum algorithm (the max
version of Eqs. 8 and 9) to find the values of Yq that maxi-
mizes the likelihood. This max-sum algorithm is similar with
the sum-product algorithm, except for the message passing
functions, which calculate the message according to max

instead of sum.

3.3 Interactive Learning
Now, we introduce how to interactively update the rank-

ing model based on the feedback given by the inventor. The
idea is to allow the user to provide feedback to the recom-
mended patent partners and then use an efficient algorithm
to refine the ranking model by leveraging the user feedback.
The algorithm supports both online interactive update and
offline complete update.

For the interactive learning, the technical challenge is how
to update the learned RankFG model efficiently and effec-
tively. We design an algorithm to incrementally update the
parameters. The key is still how to calculate the gradient.
According to Eq. 7, for the first term, it is easy to obtain an
incremental estimation, i.e.,

E
new[.] =

N

N + 1
E
old[.] +

1

N + 1

∑

k

θkφk(xN+1,yN+1)

where {θkφk(xN+1,yN+1)} denotes a set of k factor func-
tions defined for the new learning instance with the inven-
tor’s feedback (yN+1 = 1 for relevant or 0 for not). For the
second term, it is again intractable to compute the marginal
probabilities. Performing message passing on the complete
factor graph is obviously time-consuming. We approximate
this by performing a local message passing. Specifically, we
first add new factor nodes (variable node and factor nodes)
to the factor graph built in the model learning process. Then
an l-step message passing is performed on the new factor
graph starting from the new variable node yN+1. More pre-
cisely, we take the new variable node yN+1 as the root node,
begin by calculating messages µyN+1→f , and then send mes-
sages to all of its neighborhood factors. We propagate the
messages according to a function similar to Eqs. 8-9 up to
l-depth, and then perform a backward messages passing,
which propagates all messages back to the root note yN+1.
In this way, based on the messages sent between variables
and factors, we can calculate an approximate value of the
marginal probabilities of the newly added factors/variables.
Accordingly, we can estimate the second term of Eq. 7.

Figure 3 illustrates the update algorithm with an l-step
message passing. The interactive update is approximate and
may lead to biased results. To avoid this, we perform an
offline update (a complete model learning) when the number
of inventors’ feedback reaches a threshold.



Table 2: Statistics of four test data: IBM and Sony
have much higher numbers in both measures than
Intel and Exxon. Values in parenthesis are the stan-
dard deviation

Data #inventors per patent #patents per inventor

IBM 3.06(+/-1.68) 7.57(+/-0.76)

Intel 2.65(+/-1.49) 2.63(+/-0.69)

Sony 2.94(+/-1.47) 5.66(+/-0.82)

Exxon 2.42(+/-1.66) 3.00(+/-0.77)

4. DATA AND OBSERVATIONS
Before presenting the empirical results, we describe the

datasets and observations on the datasets. All the datasets
and codes used in this paper are publicly available.3

4.1 Data Collection
As patents represent intellectual properties of compa-

nies, co-invention relationships across different companies
are merely impossible. Thus we mainly focus on analyzing
co-invention relationships within companies. We have col-
lected patent information from USPTO4, which consists of
2,445,350 inventors and 3,770,411 patents with issued date
from 1976 to 2010. We select four companies who own a
large number of patents in our study: IBM, Intel, Exxon-
Mobil and Sony. For each company, we select all its owned
patents and extract all inventors and co-inventor relation-
ships from the patents. More specifically, the data charac-
teristics are:
IBM: with largest number of patents in the patent

database, owns 55,967 patents published by 46,782 inven-
tors. On average, each patent has three inventors, there are
269,333 co-invention relationships in total. It has a 8.26%
average increase on the patent number and 11.9% increase
on the number of co-invention relationships year over year.
Intel: one of the largest semiconductor chip maker cor-

porations. We collect 18,264 patents for Intel, which in-
clude 54,095 co-invention relationships within Intel. Intel
has a 18.8% increase on patent number and 35.5% average
increase on the number of co-invention relationships.
ExxonMobil: the largest oil and gas corporation. For

ExxonMobil, we have collected 8,505 patents and 31,569 co-
invention relationships. Per day, ExxonMobil has a 11.7%
increase on patent number and 13.0% increase on the num-
ber of co-invention relationships.
Sony: one of the largest electronics companies. For Sony,

we obtain 19,174 patents and 53,671 co-invention relation-
ships. Sony has a 10.6% average increase on the patent
number and 14.7% average increase on the number of co-
invention relationships.

4.2 Observations
We focus on studying the interplay between several basic

factors and the co-invention relationships via the following
statistics:

1. Inventor history and collaboration scale vary across
companies;

3http://arnetminer.org/patents/
4Home page of the United States Patent and Trademark
Office’s main web site. http://www.uspto.org/
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Figure 4: Patent collaboration probability vs. sim-
ilarity between inventors. (a) Interest similarity.
X-axis: interest similarity between co-inventors; Y-
axis: the collaboration likelihood of the two inven-
tors. (b) patent experience difference: X-axis: time
difference in years from the first patent published by
the two inventors; Y-axis: the collaboration proba-
bility of the two inventors.

2. Probability that two inventors have similar interest,
conditioned on whether or not they have a co-invention
relationship;

3. Probability that two inventors have a co-invention re-
lationship, conditioned on the referral chaining length;

4. Probability that two inventors maintain a co-invention
relationship, conditioned on whether they have a co-
invention relationship recently.

Inventor history and collaboration scale. We present
the average number of inventors per patent and the aver-
age number of patents per inventor in Table 2. The former
shows the collaboration scale, i.e., how many collaborators
work together on a single patent. The latter shows the in-
vention history, i.e., how many patents an inventor typically
generates. In particular, IBM and Sony have much higher
measures than Exxon and Intel. Both measures turn out to
affect the recommendation performance as we will present in
the next section. Intuitively, the higher these two measures
are, the better the recommendation will be.

Similar inventors tend to collaborate. Figure 4 shows
that, in general, similar inventors tend to have a co-invention
relationship. For each inventor v, a feature vector is gen-
erated based on the frequencies of words in those patents
published by the inventor. The value of each element in the
vector is normalized by TFIDF [2]. Then Interest Similarity

is computed as Cosine similarity between the two feature
vectors.

Figure 4(a) shows that the collaboration probability in-
creases dramatically as the similarity increases, which con-
firms the homophily feature in our model. Figure 4(b) shows
how the collaboration probability changes with the differ-
ence of patent experience. We use the year from the first
patent published by the inventor as the estimate of her
patent experience. We show that inventors seem to like
to find others of with similar patent experiences to develop
patent with. The likelihood of two inventors with little dif-
ference (difference=0) to collaborate is almost 10 times more
than ones with 10 year difference.
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Figure 5: (a) Patent collaboration probability vs.
referral chaining length; X-axis: referral chaining
length between two inventors; Y-axis: collaboration
likelihood of the two inventors. (b) Patent collabo-
ration conditioned on recency; X-axis: the difference
of the current year and the last collaborated year;
Y-axis: collaboration likelihood of the two inventors.

Inventors with a short referral chain tend to col-
laborate. We study how likely two inventors collaborate
conditioned on the referral chaining length between them.
Figure 5(a) gives two observations. The first one is “Your
friends’ friends are very likely to be your friends”, which
is consistent with the phenomenon of in the social balance
theory [6]. The collaboration probability drops sharply with
the increase of the referral chaining length. When the length
increases to 4, the likelihood becomes less than 1

10
of that

at the length of 2. Another observation is that the analy-
sis validates the theory of “six degrees of separation”. More
than 96% of pairs of inventors can be connected in less than
six referral steps.

Inventors tend to continue collaborating Figure 5(b)
illustrates that people tend to maintain collaborations. The
likelihood of two inventors to maintain a recent co-invention
relationship (in recent 2 years) is more than 10 times higher
than re-establish a co-invention relationship of five years be-
fore.

5. RESULTS AND ANALYSIS
We present quantitative performance of the proposed ap-

proach with the comparison in each settings. After that, we
make some analysis and discussion.

5.1 Experimental Setup
We use the data set described in §4 to evaluate the pro-

posed model and to compare with several baseline meth-
ods. We evaluate our models RankFG and RankFG+ on
the patent datasets from each of the four companies. We
partition the 35 years’ data into the first 25 years as train-
ing and the last 10 years as testing.

Comparison methods. We compare the following meth-
ods for suggesting co-invention relationships:
Content Similarity (Content): it calculates similarity

between inventors based on patents published by the two in-
ventors. It uses word frequencies in one’s published patents
as features and calculates the similarity score Sim(vq, v) be-
tween the query inventor vq and another inventor v based
on the words. The patent partner recommendation is then
made based on the similarity score.
Collaborative Filtering (CF): it leverages the exist-

ing co-invention relationships to make the recommendation.
The basic idea is that if an inventor A has similar patent
partner as another inventor B, A is likely to collaborate with
B’s other patent partners. We employ a memory-based col-
laborative filtering algorithm [5], in which recommendations
are made for a query user vq using the following formula:

CF score(vq, v) =
1

N

∑

vi∈V S

I(vi, v)r(vq, vi)

where r(vq, vi) describes one element of the pairwise sim-
ilarity between inventors, which is typically measured by
Pearson correlation coefficient or cosine similarity based on
links; the indicator variable I(vi, v

′) is 1 if the inventor vi
collaborated with v′ and 0 otherwise; N denotes the size of
|V S |.

Hybrid: it considers a linear combination of the scores
from the Content and the CF methods, specifically,

Hybrid(vq, v) = µCF score(vq, v) + (1− µ)Sim(vq, v)

where µ is a balance parameter. We empirically set it as 0.5.
SVMRank: The above three methods do not use train-

ing data. We then consider a learning approach which use
the same training data as our RankFG. As for the learning
model, we use SVM Light [12].

RankFG: The proposed method, which trains a RankFG
model to suggesting patent partners.

RankFG+: it uses the proposed RankFG model with
1% interactive users’ feedbacks.

Evaluation measures. We use the following performance
metrics: Precision(P): P@5, P@10, P@15, P@20, Mean Av-
erage Precision(MAP) and Recall(R): R@100 [2].

All codes are implemented in C++ and JAVA, and all the
evaluations are performed on an x64 machine with E7520
1.87GHz Intel Xeon CPU and 128GB RAM. The operation
system is Microsoft Windows Server 2008 R2 Enterprise.
All methods yields good performances. The training time
needed for prediction by all algorithm on all data sets less
than 5 minutes.

5.2 Performance Analysis
We compare the performance of all methods for suggest-

ing co-invention relationships in the four companies. Table 3
lists the performance of comparison methods. The proposed
method (RankFG) shows clearly better performance than
the baseline methods. On average, RankFG achieves a +3.2-
20.3% improvement compared with other methods in terms
of MAP. SVM-Rank also uses training data; however, it does
not consider the correlation among suggested inventors, thus
performes worse than our method RankFG and RankFG+.
We can also see that RankFG+ obtains a clear improvement
(2-4% in terms of MAP) than RankFG, which confirms the
effectiveness of interactive learning. The results also sug-
gest that in different companies the co-inventing patterns
are very different. Some interesting observations include

• Content based recommendation method Content per-
forms better than network based method CF in the
patent recommendation, due to the sparsity of the un-
derlying network. This is very different from other
social networks such as publication collaboration net-
work, where CF often performs better than Content.



Table 3: Performance of patent partner recommen-
dation for different companies (%).

Data Method P@5 P@10 P@15 P@20 MAP R@100

IBM

Content 23.0 23.3 18.8 15.6 24.0 33.7

CF 13.8 12.8 11.3 11.5 21.7 36.4

Hybrid 13.9 12.8 11.5 11.5 21.8 36.7

SVM-Rank 13.3 11.9 9.6 9.8 22.2 43.5

RankFG 31.1 27.5 25.6 22.4 40.5 46.8

RankFG+ 31.2 27.5 26.6 22.9 42.1 51.0

Intel

Content 16.4 12.6 11.3 10.3 20.1 22.9

CF 4.8 6.0 5.6 5.6 10.1 18.3

Hybrid 4.9 6.2 5.9 5.7 11.4 18.3

SVM-Rank 8.4 13.6 14.5 14.1 20.4 32.0

RankFG 17.3 14.2 12.9 12.1 26.0 33.0

RankFG+ 17.3 14.2 14.7 14.9 29.3 33.0

Sony

Content 23.0 16.5 13.5 11.6 23.9 34.9

CF 10.0 17.0 16.0 16.5 5.2 20.9

Hybrid 9.0 7.2 6.0 6.8 14.1 20.2

SVM-Rank 28.0 24.0 16.5 14.2 34.8 44.2

RankFG 37.0 34.5 30.7 26.3 39.9 48.8

RankFG+ 38.4 38.5 31.0 26.3 43.3 55.5

Exxon

Content 25.0 20.3 18.1 16.1 23.6 16.1

CF 3.3 5.0 5.4 5.6 8.1 12.8

Hybrid 3.3 5.3 5.4 5.9 8.9 20.7

SVM-Rank 25.5 23.3 21.6 21.5 28.2 29.3

RankFG 26.6 19.2 20.0 23.9 28.5 32.3

RankFG+ 27.1 19.4 20.7 24.7 30.4 34.0

Table 4: Performance comparison of patent part-
ner recommendation with online interactive learning
and offline complete learning for the four companies.

Data Algorithm P@5 P@10 P@20 MAP R@100

IBM
Interactive 31.2 27.5 22.9 42.1 51.0

Complete 31.6 27.9 23.1 42.3 52.1

Intel
Interactive 17.3 14.2 14.9 29.3 33.0

Complete 17.3 15.2 15.4 29.5 34.4

Sony
Interactive 38.4 38.5 26.3 43.3 55.5

Complete 40.0 39.7 26.5 43.5 58.4

Exxon
Interactive 27.1 19.4 24.7 30.4 34.0

Complete 27.2 19.4 24.7 30.4 34.5

• All methods achieve better recommendation accuracy
in IBM and Sony than in Intel and Exxon. This is
because IBM and Sony have higher number of inven-
tors per patent as well as the higher number of patents
per inventor. Longer patent history per inventor and
more common collaborations help improve the recom-
mendation performance.

In all cases, the proposed methods RankFG and RankFG+,
because of incorporating the data correlations and the user
feedback, obtain consistent better performance than all the
baselines.
In Figure 6, we give a detailed comparison between the
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Figure 7: Factor contribution analysis: RankFG-C
stands for ignoring referral chaining factor functions.
RankFG-CH stands for ignoring both referral chain-
ing and homophily. RankFG-CHR stands for fur-
ther ignoring recency.

online interactive learning and the offline complete learn-
ing for the proposed RankFG model. The offline complete
learning re-trains the RankFG model and the interactive
learning only performs the learning on neighborhood nodes.
Thus the offline complete learning can be considered as the
upper bound of the interactive learning. We see that the
proposed interactive learning achieves a close performance
to the complete learning. Notice that the interactive learn-
ing only is usually finished in 3 seconds, 1/100 of the running
time used for complete training (even on a relative small
data set). Figure 6 shows the performance of interactive
learning by varying the number of user feedbacks. We see
that the performance of online interactive learning becomes
very close to the offline complete learning when the num-
ber of feedbacks increases to 1% of the total collaborations,
which confirms the effectiveness of the proposed interactive
learning method.

Factor contribution analysis. We now analyze how
different factors can help us. In the RankFG model, we
consider five major factors: homophily (H), referral chain-
ing length (C), recency (R), basic statistics, and correla-
tion. Here we examine the contribution of different factors
defined in our RankFG model. Specifically, we take basic
statistics and correlation as the basic features in the model
and study the contribution of the other three factors. Figure
7 shows the Mean Average Precision score over the differ-
ent data sets. In particular, RankFG-C represents that we
remove referral chaining based features from our model and
RankFG-CH denotes that we further remove homophily fea-
tures. It can be clearly observed that the performance drops
when ignoring each of the factors. We often observe that for
recommending patent partners the referral chaining length is
more important than others. The analysis confirms that our
model works well when combining all the features together.

Convergence analysis. We conduct an experiment on
the effect of the number of iterations of the loopy belief prop-
agation. Figure 8 shows the convergence analysis results of
the learning algorithm RankFG. We see on all the test cases,
the learning algorithm can converge less than 10 iterations.
After about 7 iterations, the performance becomes stable.
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Figure 6: Interactive learning with different numbers of feedbacks.
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Figure 8: Convergence analysis of learning algo-
rithm for different cross domains.

This suggests that learning algorithm is very efficient and
has a good convergence property.

6. RELATED WORK
Collaboration plays an important role in social networks.

While a large body of works focuses on expert finding [3,
28, 33], friends recommendations [9, 13, 22], and expertise
matching [21, 29], few publications consider the problem of
patenting partner recommendation. Kautz et al. [13] in-
troduced a system called ReferralWeb which attempts to
combine social networks for collaborative filtering. Roth et
al. [22] leveraged the implicit social graphs that are formed
by users’ interactions to suggest recipients in the Google
Gmail system. Shi et al. [24] introduced rank heterogeneous
content to make recommendations, and Sculley et al. [23]
presented a method to rank that combines regression and
ranking. Quan et al. [32] considered social relations: mem-
bership, friendship to recommend top-n people. However,
none consider the cross-field problem. Mimno et al. [21]
and Tang et al. [29] studies the problem of paper reviewers
recommendation, a subtask of expert finding. The proposed
algorithms can be leveraged for collaborator recommenda-
tions. Lappas et al. [15] investigated the problem of finding
a team of experts to fulfill a given task in social networks.
They theoretically proved that the problem is NP-hard and
propose two instantiation models to approximately solve this
problem.
There are a few systems for patent search and analysis

such as Google Patent, WikiPatent, PatentMiner, FreeP-
atentsOnline, Patents, PatentLens, and PriorArtSearch.

However, most of these systems focus on search and provide
limited micro-level analytic functions. Few systems provide
the function of patenting partner recommendations. For re-
search on the patent data, Tang et al. [26] propose a topic-
driven patent analysis and mining method. Jin et al. [11]
proposed a method to evaluate the quality of patents. Liu
et al. [18] and Mann [19] studied how to estimate patent
quality from the perspective of court validity rulings or the
number of forward citations. Tseng et al. [30] introduced a
series of text mining techniques for patent analysis, includ-
ing text segmentation and summary extraction. However,
all these works have focused on analyzing patent content,
but ignore the collaborative relationships between inventors.

Our work is also related to link prediction, which is one
of the core tasks in social networks. For example, Liben-
Nowell et al. [17] presented a unsupervised method for link
prediction. Backstrom et al. [1] proposed a supervised ran-
dom walk algorithm to estimate the strength of social links.
Leskovec et al. [16] employed a logistic regression model to
predict positive and negative links in online social networks.
Cradall et al. [4] studied how to infer the friendship from
geographic coincidence data. Hopcroft et al. [10] studied
the extent to which the formation of a reciprocal relation-
ship can be predicted in a dynamic network. Eric Gilbert et
al. [7] presented a predictive model that maps social media
data to tie strength. Tang et al. [25] developed a framework
for classifying the type of social relationships by learning
across heterogeneous networks. In this work, we focus on
studying the underlying patterns that influence the forma-
tion of co-invention relationships and propose a novel rank
factor graph model to incorporate the discovered patterns
for recommending co-invention relationships.

7. CONCLUSION
In this paper, we study the problem of recommending

patenting partners in enterprise social networks. We pre-
cisely define the problem and propose a ranking factor graph
(RankFG) model for suggesting co-invention relationships.
Through a careful observable investigation, we discover sev-
eral interesting patterns. We incorporate the discovered pat-
terns into the proposed RankFG model. We evaluate our
proposed model on large patent data sets and the experimen-
tal results show that the proposed model can significantly
improves the performance for recommending co-invention re-
lationships compared with several alternative methods.

Finding the right patenting partner is an important step
toward producing successful patents in an enterprise social
network. There are many potential research topics in this di-



rection. It would be interesting to further consider subtopics
in the recommendation. The user may be not aware of the
subtopics of the query topic. It would be helpful to extract
subtopics and to allow the user to refine the recommenda-
tion results according to the subtopics. It is also interesting
to study how the topic trend of a company influence the
enterprise co-invention relationships.
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