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ABSTRACT
We study the problem of active learning for networked data,
where samples are connected with links and their labels are
correlated with each other. We particularly focus on the
setting of using the probabilistic graphical model to model
the networked data, due to its effectiveness in capturing the
dependency between labels of linked samples.

We propose a novel idea of connecting the graphical model
to the information diffusion process, and precisely define the
active learning problem based on the non-progressive diffu-
sion model. We show the NP-hardness of the problem and
propose a method called MaxCo to solve it. We derive the
lower bound for the optimal solution for the active learn-
ing setting, and develop an iterative greedy algorithm with
provable approximation guarantees. We also theoretically
prove the convergence and correctness of MaxCo.

We evaluate MaxCo on four different genres of datasets:
Coauthor, Slashdot, Mobile, and Enron. Our experiments
show a consistent improvement over other competing ap-
proaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Active learning, Non-progressive model, Factor graph model

1. INTRODUCTION
One challenge for a machine learning task is how to collect

sufficient labeled samples for training an accurate classifica-
tion model. Active learning is a method to alleviate this
problem by actively querying experts to obtain the desired
labels of a few samples. For example, Hoi et al. [12] stud-
ied active learning on text categorization problem. Cohn et
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al. [5] proposed two methods: mixtures of Gaussians and
locally weighted regression for efficiently selecting samples
in neural networks. Settles et al. [22] provided a survey
for various sample selection strategies. The underlying idea
for most of these methods is to measure the informativeness
of each unlabeled sample and finally select an “informative”
sample to query each time. The problem becomes more dif-
ficult with the increase of the complexity of the input data.
First, the samples in the input data may be connected and
correlated with each other (i.e., networked data), which im-
plies that selecting the most informative (but isolated sam-
ple) may be not that helpful for classifying the other sam-
ples. Second, in practice, to avoid frequently querying the
experts, it is usually desirable to select a set of samples and
query the users in a batch mode.

In this paper, we try to systematically address the above
questions. The problem can be formally defined as follows:

Definition 1. Batch Mode Active Learning for Net-
worked Data. Given a network G = (VU , VL,yL, E,X),
where VU denotes a set of unlabeled samples, VL denotes
a set of labeled samples, yL corresponds to labels of the
labeled samples, E is the set of edges between samples in
the network G, and X is an (|VU |+ |VL|)× d attribute ma-
trix in which each row xi represents the vector of attributes
for sample vi, our goal is to query a subset of k unlabeled
samples so as to maximize the following utility function:

max
VS⊆VU

Q(VS), with |VS | ≤ k (1)

In the formulation, the utility function Q(VS) is a general
definition on the subset VS , and can be instantiated in differ-
ent ways. Such a definition of active learning for networked
data has been extensively used in the literature [2, 23, 31].

To model the correlation between labels of linked sam-
ples, we consider the probabilistic graphical model. In the
setting of graphical model, we connect the active learning
problem to the theory of non-progressive diffusion [8], and
develop an instantiation model for the above problem. The
active learning problem based on non-progressive diffusion
is proved to be NP-hard. We present an efficient method
named MaxCo to solve the problem with provable approxi-
mation guarantee. Theoretically, we prove the convergence
and correctness of the proposed method and also provide its
approximation ratio.

Empirically, we verify the proposed method on four dif-
ferent genres of datasets: Coauthor, Slashdot, Mobile, and
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Figure 1: Performance Comparison: Five algorithms on four datasets with accuracy and F1 measure. X-axis
denotes the number of labeled samples while y-axis represents the measure score.

Enron. We compare MaxCo with several competing meth-
ods (Cf. §5 for definitions of the competing methods). The
experimental results indicate that the proposed method can
significantly improve the active learning performance over
the other methods. Figure 1 shows the performance com-
parison of the comparison methods on the four datasets. On
average, our method MaxCo outperforms the other methods
by 5%-10% in terms of F1 (t-test, p-value < 0.01).

To summarize, the major contribution of this work lies in
the following aspects:

• Precisely define the problem of active learning for net-
worked data via the non-progressive diffusion model,
which provides an elegant way to model the diffusion
probabilities from the available labeled samples to the
unlabeled samples.

• Prove the NP-hardness of the problem and develop an
efficient algorithm with provable approximation guar-
antee to solve the problem.

• Theoretically analyze the proposed algorithm, prove
its convergence and correctness, and provide an upper
bound and a lower bound of the proposed algorithm.

• Empirically evaluate the proposed algorithm on several
real-world datasets to demonstrate the effectiveness of
our algorithm.

Organization. Section 2 presents the factor graph frame-
work and instantiates the problem in the settings of non-
progressive diffusion model; Section 3 proposes the algo-
rithm; Section 4 provides the theoretical analysis; Section
5 evaluates the algorithm; Section 6 discusses related work,
and finally Section 7 concludes the work.

2. MODEL
The first question we want to address is how to leverage

the link information to improve the effectiveness of active

learning. In a network setting, for example a social network,
users are connected with each other and their behaviors are
strongly correlated. To deal with this, we consider the prob-
abilistic graphical model as our basic framework. We utilize
Loopy Belief Propagation (LBP) [17] to learn parameters in
the probabilistic graphical model.

For active learning, a frequently used method is to select
the most informative samples [23, 31]. However, they do
not consider the fact that in the graphical model learning
process, an instance classified to have label yi after iteration
τ may be classified to have label yj after the next iteration
τ + 1. To this end, we propose a novel idea of connecting
message passing in LBP to the theory of non-progressive
diffusion and instantiate the active learning problem based
on non-progressive diffusion model.

2.1 Factor Graph Model
Factor graph is one type of probabilistic graphical models.

It leverages factorization of probabilistic distribution to cap-
ture dependency and correlation among random variables.

In particular, we consider a partially labeled setting for
the factor graph model, denoted as G = (VL, VU ,yL, E,X),
which is consistent with our definition in active learning
problem for networked data. We associate each sample
vi ∈ VU ∪ VL with a random variable yi taking value in
a discrete space Y. Basically, there are two categories of
nodes in a factor graph, variable nodes and factor nodes. If
a factor function is defined over a clique, a factor node will
be added into the graph and all variable nodes in the clique
will be connected to the factor node respectively. Given this,
let V = VU ∪VL, we can define the joint probability over all
the labeled and unlabeled samples:

P (y|yL; Θ)

=
1

Z
exp

∑
vi∈V

θif(yi,xi) +
∑

(vi,vj)∈E

θi,jg(yi, yj)

 (2)



where f(yi,xi) represents the factor function defined on vari-
able node yi with attribute vector xi and g(yi, yj) denotes
the factor function defined on a factor node that connects
yi and yj ; Θ = ({θi}, {θij}) are parameters to be estimated
and Z is a normalization factor.

Model Learning. Given a training dataset, we aim to
estimate the parameter Θ in the factor graph model. One
challenge here is how to leverage unlabeled data for parame-
ter estimation. When training the parameter, we maximize
the likelihood of labeled samples by summing up all possi-
ble distributions over the unlabeled samples. For the sake of
simplicity, we first rewrite the conditional probability (Eq. 2)
as follows:

P (y|yL; Θ) =
1

Z
exp{ΘTS(y)} (3)

where S(y) denotes all the factor functions defined on the
graph G related to variable y. For maximum likelihood esti-
mation, the log-likelihood objective function can be written
as:

O = P (yL|G)

= log
∑
y|yL

exp{ΘTS(y)} − logZ (4)

where y|yL indicates a label configuration inferred from the
available labels yL. Then we can write the gradient of the
objective function w.r.t. to the parameter Θ:

∂O
∂Θ

=
∂

∂Θ
log

∑
y|yL

exp{ΘTS(y)} −
∂

∂Θ
log

∑
y

exp{ΘTS(y)}

=

∑
y|yL exp{ΘTS(y)} · S(y)∑

y|yL exp{ΘTS(y)}
−

∑
y exp{ΘTS(y)} · S(y)∑

y exp{ΘTS(y)}

= Ep(y|yL;Θ)S(y)− Ep(y;Θ)S(y)

(5)

We can apply gradient descent method to solve the ob-
jective function. However, Ep(y|yL;Θ) and Ep(y;Θ) are in-
tractable when the graph contains cycles [29]. A state-
of-the-art approximate solution is Loopy Belief Propaga-
tion(LBP)[17].

Loopy Belief Propagation. LBP utilizes message pass-
ing to calculate marginal probability. More specifically, for
each iteration, message passing is performed according to
the following update rules.

µτyi→f (xi) =
∏

f∗∈NB(yi)\f

µτ−1
f∗→yi(xi)

µτf→yi(xi) =
∑
∼yi

f(xf )
∏

yj∈NB(f)\{yi}

µτ−1
yj→f (xj)

(6)

For iteration τ , µτy→f represents the message passed from
a variable node y to a factor node f , while µτf→y denotes the
message passed in the reverse direction. NB(y) is the set of
neighbor factor nodes of a variable node y. f(xf ) denotes
the factor function associated with certain factor node f .∑
∼yi means to sum up the factor function over all variables

Figure 2: Modeling LBP with information diffusion:
Streams of label information are diffused from la-
beled samples while flows of statistical bias are in-
trinsically distributed in the network.

except yi. After LBP converges to a fixed point, the belief
probability of each variable node yi can be obtained as the
product of all messages passing toward yi.

2.2 Active Learning on Non-progressive Dif-
fusion Model

We propose a novel idea of connecting the LBP process to
the information diffusion model and develop an instantiation
model for the active learning for networked data.

In the information diffusion theory, there are two state-of-
the-art diffusion models: linear threshold model and inde-
pendent cascaded model [13]. We consider the linear thresh-
old model, where a sample will be activated as long as the
number of its active neighbors exceeds its threshold. Accord-
ing to the diffusion process, the linear threshold model can
be further classified into two categories: progressive model
and non-progressive model.

In the progressive model, a node in the network can only
be activated once and remains its status in the following
diffusion process. More formally, let fτ (v) denote the status
of node v at time τ . If f(v) = 1 then v is activated, otherwise
not. Let NB(v) denote the neighbor set of v, the formal
definition of f is as follows.

fτ (v) =

{
1 if

∑
u∈NB(v) fτ−1(u) ≥ t(v) or fτ−1(v) = 1

0 if
∑
u∈NB(v) fτ−1(u) < t(v) and fτ−1(v) = 0

In the non-progressive model, a node in the network can
reverse its status in both directions, i.e., either from active
to inactive, or vice versa, depending on the status of its
neighbors at the last time step. More formally,

fτ (v) =

{
1 if

∑
u∈NB(v) fτ−1(u) ≥ t(v)

0 if
∑
u∈NB(v) fτ−1(u) < t(v)

Which model is more suitable for modeling the message
passing process in an LBP? As illustrated in figure 2, we
can imagine that there are two types of information diffus-
ing across the social network. One is statistical bias, which
may be caused by insufficiency of labeled data, imbalance of
labeled data or redundancy of selected features. This kind
of information is distributed randomly and intrinsically in
the given network and may cause overfitting of the factor
graph model. The other type is labeled information, which
indicates the ground truth, counterbalances the statistical
bias and thus enhances the capability of generalization of



factor graph model. Suppose statistical bias and labeling in-
formation are spreading across the network simultaneously,
our goal is to maximize the influence of labeling information
and minimize the side effects of statistical bias. In this per-
spective, as for an uncertain variable node, whose “belief”
is around 0.5, it may be alternatively influenced by statisti-
cal bias and labeling information, and thus sway its “belief”
probability between 0.49 and 0.51. For this reason, dur-
ing LBP message passing, except the initially labeled nodes,
a node predicted to have label yi after iteration τ will be
probably predicted to have label yj after the next iteration
τ + 1. Therefore, apparently, it is more acceptable to select
non-progressive model because a variable node in the factor
graph, as we demonstrated above, can reverse its status in
both directions.

Now we utilize non-progressive linear threshold model to
instantiate the utility function in Eq. 1.

Problem 1. Active Learning on Non-progressive
Diffusion Model. Given a factor graph model trained
on the partially labeled network G = (VL, VU ,yL, E,X),
the threshold values and uncertainty values for each sample,
denoted as {t(v)|v ∈ VL ∪ VU} and {µ(v)|v ∈ VL ∪ VU}, and
a budget k, we aim to query a subset of k unlabeled samples,
such that the performance of factor graph model will be best
improved. Suppose the uncertainty of variable v grows as
µ(v) increases, the utility function can be defined as:

max
VS⊆VU

{ max
VT⊆VU

|VT |}, |VS | ≤ k

with the constraints:

f0(v) = 1 ⇐⇒ v ∈ VS (7)

∃τM s.t. ∀v ∈ VT ∀τ > τM fτ (v) = 1 (8)

∀v ∈ VU\VT , ∀u ∈ VT , µ(v) ≤ µ(u) (9)

fτ (v) = 1 ⇐⇒
∑

u∈NB(v)

fτ−1(u) ≥ t(v) (10)

Here we interpret the constraints we made above. Con-
straint (7) indicates that we initially label all samples in
VS . By constraint (8) we require all samples in VT to be
eventually activated, because we assume that only an acti-
vated sample can be effectively influenced by label informa-
tion. By constraint (9), we also require VT is made up of
top k uncertain nodes in VU , instead of simply counting the
number of eventually infected nodes. In this way of defini-
tion we are only interested in those samples that lie on the
edge of right and wrong, which is the key point to the ac-
tive learning problem, rather than treating every unlabeled
sample equally. Constraint (10) indicates that we consider
the active learning problem under non-progressive diffusion
model. Because there may be more than one VT satisfying
the constraints, we select the maximum one in the utility
function.

3. ALGORITHMS
In this section, we solve problem 1 by two steps. First

we reduce the problem to Minimum Source Set problem.
Second we give an approximate solution to Minimum Source
Set problem.

3.1 Reduction
In problem 1, we fix the number of source set VS and try to

maximize the size of target set VT . However, in this section,

we define a Minimum Source Set problem where we fix the
number of target set VT and aim to minimize the number of
queried samples.

Problem 2. Minimum Source Set Given a fac-
tor graph model trained on the networked data G =
(VL, VU ,yL, E,X), the threshold values for each sample, de-
noted as {t(v)|v ∈ VL ∪ VU}, and the target set VT ⊆ VU ,
we aim to find a minimal source set VS ⊆ VU to eventually
activate all samples in VT , i.e.,

min |VS |

with the constraints that if f0(v) = 1 for all v ∈ VS , then
∃τM s.t. ft(v) = 1 for all v ∈ VT and t > τM . The samples
in the graph are updated with the non-progressive rule:

fτ (v) = 1 ⇐⇒
∑

u∈NB(v)

fτ−1(u) ≥ t(v)

We are now to introduce the equivalence of problem 1 and
problem 2.

Theorem 1. The problem of Active Learning on Non-
progressive Diffusion Model(problem 1) and Minimum
Source Set problem(problem 2) are equivalent.

Proof. First, we introduce a reduction from problem 1
to problem 2. For problem 1, given |VS | = k, we aim to find
an instance of VS to maximize |VT |. We build a family of
instances of problem 2 to solve problem 1. We enumerate
|VT | from its maximum possible value |VU | and count down
until |VT | can be achieved with |VS | ≤ k. We build an
instance of problem 2 to find out the optimal solution VS,opt
given |VT |. If |VS,opt| ≤ k, then we can quit the algorithm
and VS,opt is the optimal solution for the problem 1, with

which the maximum size of |VT | is the one being enumerated,
denoted as |VT |m.

Now we prove the reduction above by contradiction. Sup-
pose that there exists another solution V ∗S such that |V ∗S | ≤ k
and |V ∗T | > |VT |m, where V ∗T is the target set correspond-
ing to V ∗S . Therefore, when we build an instance of prob-
lem 2 with |V ∗T |, the optimal solution VS,opt will satisfy

|VS,opt| ≤ |V
∗
S | ≤ k. Thus, the algorithm will quit and

|VT |m will not be enumerated, which leads to contradic-
tion. Therefore, the reduction above gives optimal solution
to problem 1.

Next, we prove that problem 2 can be reduced to prob-
lem 1. For problem 2, given |VT | = l, we aim to find a
smallest source set VS to eventually activate all samples in
VT . Similar to the reduction in the reverse direction, we can
enumerate the value of |VS | in this case. Because we want
to minimize |VS |, we enumerate |VS | from 0 and count up-
wards until VT can be activated by VS . Again we leverage
an instance of problem 1 to find the maximum size of tar-
get set |VT |m with source set of size |VS |. If |VT |m ≥ l, we
terminate the algorithm and the optimal solution is the one
returned by problem 1, denoted as VS,opt.

Now we prove the reduction above by contradiction. Sup-
pose that there exists another solution V ∗S such that |V ∗S | <
|VS,opt| and the size of eventually activated sample set

|V ∗T | ≥ l. When we enumerate |V ∗S |, we can leverage an in-
stance of problem 1 to obtain a target set VT with |VT | ≥ l.
Therefore, |VS,opt| will not be enumerated, which contra-
dicts the assumption.

It follows two problems are equivalent.



Algorithm 1: MaxCo Algorithm part 1: Reduction

Input: G = (VU , VL,yL, E,X), k, threshold function t
Output: VS : the selected set of nodes to be labeled.

1 l← min value for |VT |
2 r ← max value for |VT |
3 VS,opt ← ∅
4 while l < r do
5 |VT | ← l+r

2
6 VS ← MinimumSourceSet(G, |VT |)
7 if |VS | ≤ k then
8 l← |VT |+ 1
9 VS,opt ← VS

10 else
11 r ← |VT |

12 return VS,opt

Lemma 1. For problem 2, if either µ(v1) < µ(v2) or
µ(v2) < µ(v1) ∀v1, v2 ∈ VU ∪ VL and v1 6= v2, |VS,opt| is

monotonically non-decreasing with respect to |VT |.
Proof. To prove the lemma, we only need to prove that

for two target sets VT1 and VT2 and their optimal solutions
VS1 and VS2, if |VT1| > |VT2|, then we have |VS1| ≥ |VS2|.

According to the definition of minimum source set prob-
lem, the target set should be top-l uncertain nodes. Be-
cause samples can be strictly ordered with respect to uncer-
tainty, we can infer VT2 ⊂ VT1 from the assumption that
|VT1| > |VT2|.

Suppose |VS1| < |VS2|. Because VS1 can activate all sam-
ples in VT1 and VT2 ⊂ VT1, VS1 can activate all samples in
VT2 as well. It contradicts the assumption that VS2 is the
optimal solution for VT2. Therefore, |VS1| ≥ |VS2|.

In practice, we can force any two uncertainty values to
be strictly ordered even if they are arithmetically equal.
For example, we can assume that vi is uncertain than vj
if µ(vi) = µ(vj) but i > j. Therefore, because |VS,opt| is

monotonically non-decreasing with respect to |VT |, we can
apply bisection method to optimize the reduction algorithm
introduced in the proof of theorem 1. When reducing from
problem 1 to problem 2, instead of enumerating the value of
|VT | one by one, we can leverage bisection method to bisect
the interval and select a subinterval recursively, which will
largely speed up the algorithm from O(n) to O(logn), where
n indicates the size of domain of |VT |. The complete proce-
dure for reduction from problem 1 to problem 2 is illustrated
in algorithm 1.

3.2 Threshold and Uncertainty
Because the problem of Active Learning on Non-

progressive Diffusion Model can be reduced to Minimum
Source Set problem in polynomial time, we now focus on
solving the Minimum Source Set problem.

Before we solve Minimum Source Set problem, we need to
give a definition of threshold function t(v).

Threshold Definition. The threshold value of a sample
reflects how sensitive it is to the status of its neighbors. In
the factor graph model, if the“belief”probability of a sample
v is quite close to 1

|Y| , i.e., variable node v is very uncertain,

then it is easily activated by the messages passed from its

neighbors. For this reason, samples with higher uncertainty
should obtain a lower threshold. Moreover, because a sample
with high degree will receive a great number of messages,
which may contain both labeling information and statistical
bias, its threshold should be relatively high. Considering
both degree and uncertainty factors, we define the threshold
function as follows.

t(v) = min{dη(µmax − µ(v))d(v)e , d(v)} (11)

where d(v) is the degree, µmax is the maximum value of un-
certainty measure and η is a global constant factor to adjust
the distribution of thresholds. We apply ceiling operation to
the expression to avoid some extreme cases where t(v) = 0.
Also, of course, the value t(v) should not be greater than
d(v), otherwise v will never be activated whatsoever.

Given Eq. 11, it is a nontrivial job to tune the parameter
η because it varies in a wide range in different data sets. To
have a unified representation, we further define η to be

η =
γ

Avg(µmax − µ)
(12)

where Avg means the average value over the given data set,
and γ is a constant factor. Under the definition, we can
instead tune γ between 0 and 1, which is relatively irrelevant
to the specific data set.

Uncertainty Definition. Now what remains to be de-
fined is an uncertainty function. There are several measures
corresponding to the uncertainty of a variable node in a
factor graph. One is to define it as the sum of difference
between expected belief and calculated belief of each class
[21].

µ(v) = −
∑
y∈Y

∣∣∣∣Bv(y)− 1

|Y|

∣∣∣∣+ 2

(
1− 1

|Y|

)
(13)

where Bv(y) is obtained by LBP, indicating the“belief”prob-
ability that v is classified to have label y. We add a constant
term to ensure that µ(v) is always nonnegative.

Another extensively used measure of uncertainty is en-
tropy(aka TTE in [22]). More formally,

µ(v) =
∑
y∈Y

Bv(y) log
1

Bv(y)
(14)

We reserve two ways of definition here and judge them
through experiments in § 5.

3.3 MinSS
After defining the threshold function and uncertainty

function, in this section, we aim to solve Minimum Source
Set problem.

First we claim that Minimum Source Set is an NP-hard
problem, which will be proved in § 4. We design an approx-
imate algorithm MinSS to find the source set VS iteratively
and greedily.

MinSS. The basic idea of MinSS is to find an extended
target set Vτ . An extended target set should satisfy two
constraints. First, Vτ is a superset of VT . Second, Vτ can
be eventually activated if we initially label a subset of Vτ .



Algorithm 2: MaxCo Algorithm part 2: MinSS

Input: G = (VU , VL,yL, E,X), k, threshold function t
Output: VS : the selected set of nodes to be labeled.

1 calculate Bv(y) and µ(v) by LBP
2 Vτ ← VT ← {top k uncertain nodes in VU}
3 VS ← ∅
4 while VS = ∅ do
5 VP ← VU\Vτ
6 sort nodes in VP in descending order of t(v) as

v1, v2, ..., vp
7 foreach v ∈ Vτ do
8 w(v)← 0

9 for i← 1 to p do
10 if w(u) < d(u)− t(u) ∀u ∈ NB(vi) ∩ Vτ then
11 foreach u ∈ NB(vi) ∩ Vτ do
12 w(u)← w(u) + 1

13 VP ← VP \{vi}

14 if VP = ∅ then
15 sort nodes in Vτ in ascending order of d(v) as

v1, v2, ..., vm
16 foreach v ∈ Vτ do
17 w(v)← 0

18 foreach i← 1 to m do
19 if ∃u ∈ NB(vi) ∩ Vτ st. w(u) = d(u)− t(u)

then
20 VS ← VS ∪ {vi}
21 else
22 foreach u ∈ NB(vi) ∩ Vτ do
23 w(u)← w(u) + 1

24 Vτ ← Vτ ∪ VP
25 return VS

MinSS is an iterative algorithm. In each iteration, we greed-
ily select samples to expand the size of Vτ until Vτ satisfies
the constraints made above.

The procedure of MinSS is illustrated in Algorithm 2. We
first select top k uncertain nodes in VU to form the tar-
get set Vτ . Here we may define the uncertainty with either
Eq. 13 or Eq. 14. Then we expand the target set Vτ iter-
atively. For each iteration, we sort all unselected samples
v ∈ VP in descending order of threshold value because a
smaller threshold value indicates less active neighbor sam-
ples required. From line 9 to line 13, we greedily remove
samples from VP with large threshold value while satisfying
the constraint that each node v ∈ Vτ have at least t(v) neigh-
bors in Vτ ∩VP . In line 14, if VP = ∅, then Vτ is an extended
target set. This time we greedily remove samples from Vτ
with small degree and all samples left form the source set
VS , which is done from line 15 to line 23. In algorithm 2,
w(v) is used to count the unselected neighbors of sample v.

So far, we solve the problem of Active Learning on Non-
progressive Diffusion Model by two steps. First, the problem
is reduced to Minimum Source Set problem. Second, we
solve Minimum Source Set problem by algorithm MinSS.
We combine these two steps and refer to the algorithm as
MaxCo.

4. THEORETICAL ANALYSIS
In this section, we theoretically analyze the problems de-

fined in § 2 and the MinSS algorithm proposed in § 3.

4.1 NP-hardness
Now we introduce the tools for proofs in this section.

Lemma 2. Suppose VS,opt is an optimal solution for

problem 2, if α|VU | ≤ |VS,opt| for every bipartite graph H,

then α|VU | ≤ |VS,opt| for every graph G.

Lemma 3. Minimum Source Set problem is NP-hard
when VT = VU .

The proofs of lemma 2 and lemma 3 could be found in
[8]. It is trivial to show that Minimum Source Set problem
is NP-hard.

Lemma 4. Minimum Source Set problem is NP-hard.

Proof. The theorem follows directly from lemma 3 be-
cause the problem in lemma 3 is a special case of Minimum
Source Set problem.

Corollary 1. The problem of Active Learning on Non-
progressive Diffusion Model is NP-hard.

Proof. By lemma 4 and theorem 1, the conclusion fol-
lows.

4.2 Convergence and Correctness
Now we analyze the convergence issue for MinSS algo-

rithm.

Lemma 5. Convergence. The MinSS algorithm will
converge within O(|VU | − |VT |) time.

Proof. Denote Vτ after each round of iteration as a se-
quence Vτ0, Vτ1, ..., Vτγ . For each iteration i, if VP = ∅, the
loop of iteration will be terminated since VS will be a non-
empty set. Therefore, if i < γ, then VP 6= ∅. It follows
that |Vτi+1| > |Vτi| for i ∈ {0, 1, ..., τ − 1}. That is, |Vτi| is
strictly monotonically increasing.

It is trivial to show that |Vτi| ≤ |VU | and |Vτ0| = |VT |.
Therefore, the length of sequence {Vτi}γi=0 is finite. More
precisely, |γ| ≤ |VU | − |VT |, which yields the conclusion.

Then we formally prove that MinSS algorithm will return
a feasible solution once it converges.

Theorem 2. Correctness. If MinSS algorithm con-
verges, VS is a feasible solution. That is, if we initially label
all samples in VS , there exists a τH such that fτ (v) = 1 for
all v ∈ VT and τ ≥ τH .

Proof. The MinSS algorithm converges if and only if
VP = ∅. In addition, after each iteration, v ∈ VP iff ∃u ∈
NB(v) ∩ Vτ st. w(u) ≥ d(u)− t(u). At the end of the algo-
rithm, because VP is empty, we have w(v) < d(v)− t(v) for
all v ∈ Vτ . That is,

|NB(v) ∩ Vτ | ≥ t(v) for all v ∈ Vτ

Now we prove fξ(v) = 1 for all v ∈ Vτ and ξ ≥ 1 by induc-
tion. For ξ = 1, since w(v) < d(v) − t(v) for all v ∈ Vτ ,



∑
u∈NB(v) f0(u) ≥ t(v). Therefore, f1(v) = 1 for all v ∈ Vτ .

For ξ > 1, ∑
u∈NB(v)

fξ−1(u) ≥
∑

u∈NB(v)∩Vτ

fξ−1(u)

By induction hypothesis, fξ−1(v) = 1 for all v ∈ Vτ .
Therefore, for all v ∈ Vτ ,∑

u∈NB(v)

fξ−1(u) ≥ |NB(v) ∩ Vτ | ≥ t(v)

Then we have fξ(v) = 1 for all v ∈ Vτ . Because VT ⊆ Vτ ,
the conclusion follows.

4.3 Approximation Ratio
Now we show a lower bound for the optimal solution to

problem 2 when VT = VU .

Theorem 3. Lower Bound. Let D(V ) =
∑
v∈V d(v),

T (V ) =
∑
v∈V t(v), and suppose t(v) ≤ βd(v) for all v ∈ V .

If 2T (VU ) − D(VU ) > 0 and VT = VU , we have an lower

bound for optimal solution
∣∣∣VS,opt

∣∣∣ to problem 2.∣∣∣VS,opt

∣∣∣ ≥ 2T (VU )−D(VU )

β∆
(15)

The proof of Theorem 3 is given in the appendix. Be-
cause MinSS is an approximate algorithm, we give an upper
bound for it as follows. We denote ∆ as the maximum degree
among nodes in the graph G.

Theorem 4. Upper Bound. Suppose t(v) ≤ βd(v)
for all v ∈ V , we can derive an upper bound for MinSS
algorithm.

|VS | ≤
β∆

1− β + β∆
|VU |

The detailed proof of Theorem 4 is given in the appendix.
With an upper bound and a lower bound, we can prove an
approximation ratio when VT = VU .

Corollary 2. Approximation Ratio. Let VS,g de-
note the solution given by MinSS algorithm, VS,opt repre-
sent the optimal solution and ∆ be the maximum degree in
the graph. Suppose t(v) ≤ βd(v) for all v ∈ V , if VT = VU
and 2T (VU ) > D(VU ), we have

|VS,g|∣∣∣VS,opt

∣∣∣ ≤ (β∆)2

(1− β + β∆) ·Avg[2t(v)− d(v)]
(16)

where Avg[.] represents the expectation over all samples in
the network.

Proof. By Theorem 3, we have∣∣∣VS,opt

∣∣∣ ≥ 2T (VU )−D(VU )

β∆
=

Avg[2t(v)− d(v)]

β∆
|VU |

(17)
By Theorem 4, we have

|VS,g| ≤
β∆

1− β + β∆
|VU | (18)

Dividing (18) by (17) yields the conclusion.

The approximation ratio given in equation (16) depends
on two variables β and Avg[2t(v) − d(v)]. Both of them
will be affected if we adjust the value of η given in equa-
tion (11). To optimize the approximation ratio, we need to
tune β as small as possible and set Avg[2t(v)−d(v)] as large
as possible. However, it is contradictory. Suppose we tune
up the value of η, then according to definition of thresh-
old value, in general, β and Avg[2(v) − d(v)] will both be
tuned up. And for another thing if we tune down η, both
β and Avg[2t(v) − d(v)] will be tuned down as well. Thus,
for practical application, we need to carefully choose the
value of η such that we can balance the effects of β and
Avg[2t(v)− d(v)]. This issue will be further discussed in § 5
by experiments.

5. EXPERIMENTAL RESULTS
The proposed active learning framework is general and

can be applied to arbitrary networked data. In this section,
we evaluate the proposed algorithm (MaxCo) and compare
with existing methods. All codes and datasets used in this
paper can be found at http://arnetminer.org/maxco/.

5.1 Datasets and Comparison Methods
We consider four social network datasets in our evalua-

tion: Coauthor, Slashdot, Mobile and Enron. In all these
datasets, we aim to infer the type of social relationships in
the different networks. Regarding the partially labeled fac-
tor graph model, we use the implementation from [28, 31].1

In the factor graph model, we view each relationship as a
variable node and define factor functions according to the
specific properties of each network.

• Coauthor. The dataset is a subgraph extracted from
ArnetMiner [27]. In this dataset, we aim to infer
advisor-advisee relationship from the given network.
The factor graph built upon this dataset consists of
6096 variable nodes and 24468 factor nodes.

• Slashdot. The dataset is crawled from Slashdot web-
site. We try to infer friendship on this network. The
factor graph built upon this network contains 370 vari-
able nodes and 1686 factor nodes.

• Mobile. This dataset contains logs of call, blue tooth
scanning and location collected by mobile applications
on 107 phones in a span of 10 months. We aim to infer
friendship on this dataset. The factor graph built upon
the data consists of 314 variable nodes and 513 factor
nodes.

• Enron. The dataset consists of 136,329 emails among
151 Enron employees. We aim to infer manager sub-
ordinate relationship from the network. The factor
graph model built has 100 variable nodes and 236 fac-
tor nodes.

We the compare our algorithm (MaxCo) with the follow-
ing methods for the problem of batch mode active learning
for networked data.

• Random(RAN). In this method, each time we ran-
domly select given number of samples to label.

1The source code is available at http://keg.cs.tsinghua.edu.cn/

jietang/software/OpenCRF PartiallyLabeledFGM.rar



Table 1: Factor Graph Size
Data #Variable Node #Factor Node
Coauthor 6,096 24,468
Slashdot 370 1,686
Mobile 314 513
Enron 100 236

Table 2: Average Accuracy(%)
Data IMS MaxCo MU RAN BMAL
Coauthor 74.24 82.70 46.99 79.72 44.92
Enron 71.17 85.33 85.67 83.67 84.67
Slashdot 66.95 69.62 66.11 67.00 66.16
Mobile 67.83 76.15 59.68 63.73 55.86

• Maximum Uncertainty (MU). This method greedily se-
lects samples with great entropy(Eq. 14).

• Batch Mode Active Learning (BMAL). This method is
proposed by [23], which aims to maximize the following
quality function of selected sample set VS .

Q(VS) = αC(VS) + (1− α)H(VS), 0 ≤ α ≤ 1

where the definition of H(VS) and C(VS) is as follows.

H(VS) =
∑
i∈VS

H(i)

C(VS) =
∑
i∈VU

(H(i))β
(

max
j∈VL∪VS

wij

)1−β

Here H(i) is the entropy of a variable node i and β
is a constant parameter; wij denotes the similarity
between variable i and j, and can be calculated by

e
−
‖xi−xj‖

2

σ2 , where x represents an attribute vector for
each variable.

• Influence Maximization Selection (IMS). IMS is pro-
posed by [31], which also utilizes information diffusion
model to solve the active learning problem. However,
it is based on progressive diffusion model.

• Maximum Coverage (MaxCo). We use entropy to mea-
sure uncertainty and empirically set γ = 0.7(Eq. 12).

For each dataset, we randomly label 10 samples to form
yL at the beginning. Then we iteratively apply the active
learning algorithm, by selecting 10 samples to query each
time. After each round, we train the factor graph to test
the accuracy and F1 score.

5.2 Performance Analysis

Table 3: Average F1-score(%)
Data IMS MaxCo MU RAN BMAL
Coauthor 69.55 76.15 59.68 63.73 55.86
Enron 79.50 87.94 86.30 85.85 85.59
Slashdot 76.90 80.04 77.85 77.60 77.74
Mobile 69.51 75.31 51.23 50.17 53.57
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Figure 3: Labeled Data Balance: Blue bars above

0 represent the number of positive selected samples and

red bars below 0 indicate the number of negative selected

samples with different active learning strategies.

Figure 1 shows F1-score and accuracy performance of each
algorithm on each dataset. We also calculate the average ac-
curacy performance and F1 score for all selection strategies,
which is shown in Table 2 and Table 3 respectively.

Performance Comparison. According to Figure 1 and
Table 2 and 3, we see that MaxCo significantly outperforms
other competing methods on the four datasets. In Coauthor,
MaxCo is better than the random selection method by 2.98%
and 12.42% improvements in terms of average accuracy and
F1 score. Other methods such as MU and BMAL seems
to amplify the side effects of label imbalance, which will be
discussed later. In Enron, MaxCo is 0.43% worse than MU
by average accuracy, but 1.64% better in terms of average
F1. These two methods strongly outperform other methods.
In Slashdot and Mobile, MaxCo achieves outstanding per-
formance while other methods perform relatively closely to
each other.

Imbalance of Labeled Data. From the results, we
found a phenomenon: for some active learning strategies,
performance will decrease as the number of labels grows. By
further investigation, we discover that the phenomenon is re-
lated to labeled data imbalance. From figure 1 we can see
that, Coauthor and Mobile datasets are relatively more sen-
sitive to the balance of labeled data. For these two datasets,
the curves representing MU and BMAL turn down sharply
as the number of labeled instances increases. When the num-
ber of labeled data comes to 100, the F1 score falls to around
50% in the Coauthor data and 30% in the Mobile data, the
accuracy performance also suffers sharp decrease. We ob-
serve the ratio of positive and negative instances and find
that the ineffectiveness of these two models in this case is
correlated to imbalance of labeled data.

Figure 3 plots the number of positive and negative la-
beled samples when the number of labeled samples is 100.
Figure 3(a) is for the Coauthor dataset and figure 3(b) is
for the Mobile dataset. On the Coauthor dataset, IMS and
MU tend to label positive instances while BMAL labels sig-
nificantly more negative instances. On the Mobile dataset,
also, BMAL and MU suffer from labeled data imbalance,
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sure; γ is the constant factor in threshold function.

where negative instances take up to 60 percent of all labeled
samples. The results show that for some datasets, the per-
formance of factor graph model will be influenced by the
balance of labeled samples. The results also demonstrate
that MaxCo can produce relatively balanced results.

Significance Test. We perform significance test for the
results of the comparison methods. Pairing the measure
scores(F1 or accuracy) of two models with the same number
of labeled instances on a dataset, we assume that the differ-
ence of the two models is random and symmetric around the
median. Therefore, we can perform Wilcoxon signed-rank
test [24] to demonstrate the significance level of the differ-
ence between the two models. The result shows that p-value
is less than 0.01, which indicates that the improvements of
MaxCo over the competing methods are statistically signif-
icant.

Parameter Sensitivity. We further study the parameter
sensitivity of γ in MaxCo. We also consider the effects of
uncertainty definition. According to § 3, we compare dis-
tance measure (Eq. 13) with entropy measure (Eq. 14). We
repeat our experiment with different ways of threshold defi-
nition and uncertainty definition. The results are plotted in
Figure 4. We can see that MaxCo is insensitive to the thresh-
old parameter and uncertainty definition. Entropy measure
is slightly better than distance measure, with a relatively
larger γ.

6. RELATED WORK
Active learning is a very important topic in the study

of social network and web mining because of exponentially
growing size of data and high cost of data labeling. Settles et
al. [22] surveyed query selection strategies for sequence mod-
els and proposed novel algorithms. There have been several
works designing active learning algorithms to specific prob-
lems. For example, Arasu et al. [1] present novel algorithms
for the problem of record matching packages. Hoi et al. [12]
studied active learning on text categorization problem. Dif-
ferent from existing methods, we propose a general frame-
work, which can be applied to different problems. There
are also several works based on specific models. Martinez
et al. [16] formulated the active learning problem under for
the conditional random field (CRF) model. Golovin et al.
[10] developed a greedy algorithm for Bayesian active learn-
ing with noisy observations. A similar work [31] by Zhuang
et al. also studied active learning problem on factor graph
model. However, they utilize progressive information diffu-

sion to solve the problem, which is demonstrated to be less
effective than non-progressive one in this paper. In [23], Shi
et al. proposed a general framework on batch mode active
learning. They used three criteria for instance selection. We
also compare to their algorithm in §5. Also, extensive liter-
ature focused on active learning on social network [15, 14,
2, 20].

Our work is also related to information diffusion model. In
[13], Kempe et al. solved the influence maximization prob-
lem on progressive diffusion model and show a reduction
to non-progressive one. However, their definition of non-
progressive model cannot be applied to the active learning
problem. There are several works studying the spread of so-
cial influence with various propagation models [9, 18, 30, 6].
Besides, the diffusion models are widely used in real-world
applications such as viral marketing [19, 7]. Progressive dif-
fusion models have been extensively studied in the literature
[25, 4, 11, 3, 26]. Fazli et al. [8] proposed a greedy algo-
rithm for non-progressive model and proved approximation
ratio on power law graph. However, their works cannot be
directly applied to active learning problem for the network
data.

7. CONCLUSION
In this paper, we study the problem of batch mode active

learning for networked data, which aims to query k unla-
beled samples in a network such that we can achieve best
performance improvement. We utilize factor graph model as
our basic framework so as to leverage link formation of net-
worked data. We leverage Loopy Belief Propagation to learn
the parameter in factor graph model. We propose a novel
idea of connecting the graphical model to the information
diffusion process. Therefore, we precisely instantiate the ac-
tive learning problem on a non-progressive diffusion model.

We solve the problem of active learning on non-progressive
diffusion model by MaxCo, which includes two steps. First
we prove a reduction to Minimum Source Set problem and
then we propose an iterative greedy algorithm MinSS to
solve the Minimum Source Set problem. We theoretically
show the NP-hardness of our problem, analyze the conver-
gence and correctness of MinSS, and finally provide approx-
imation guarantees for our algorithm with an upper bound
and a lower bound. We empirically evaluate MaxCo algo-
rithm in comparison with several baseline methods on sev-
eral datasets. The experimental results demonstrate that
our approach significantly outperforms the competing meth-
ods.
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APPENDIX

Proof of Theorem 3.

Proof. First, suppose G = (X,Y ) is a bipartite graph.
Let eA denote the number of edges in A and eAB denote
the number of edges across A and B. Let BX = VS ∩ X,
BY = VS ∩ Y and W = VU\VS . Following the lemma in [8],
we have

eWBX + eW ≤
∑

v∈BX∪W

(d(v)− t(v))

eWBY + eW ≤
∑

v∈BY ∪W

(d(v)− t(v))

Because
∑
v∈W d(v) = 2eW + eWBX + eWBY , it follows∑

v∈W

d(v) ≤
∑

v ∈ VU (d(v)− t(v)) +
∑
v∈W

(d(v)− t(v))

Therefore,

T (W ) ≤ D(VU )− T (VU )

Because T (VS) = T (VU )− T (W ), we have

T (VS) ≥ T (VU )− (D(VU )− T (VU )) = 2T (VU )−D(VU )

Because t(v) ≤ βd(v) for each v ∈ V , we can derive

T (VS) ≤ βD(VS) ≤ β∆|VS |

Therefore, it yields∣∣∣VS,opt

∣∣∣ ≥ 2T (VU )−D(VU )

β∆

By Lemma 2, the inequality holds as well for any general
graph G.

Proof of Theorem 4.

Proof. Let Q = {v|w(v) = d(v) − t(v) ∧ v ∈ VU}, and
W = VU\VS . By definition we have,∑

v∈Q

(d(v)− t(v)) ≤
∑
v∈W

d(v)

Therefore,

(1− β)
∑
v∈Q

d(v) ≤
∑
v∈W

d(v)

Referring to the procedure of MinSS algorithm, a sample
v is inserted into VS if and only if NB(v) ∩Q 6= ∅. Because
for v ∈ Q, w(v) = d(v)− t(v), we have

|VS | ≤
∑
v∈Q

t(v) ≤ β
∑
v∈Q

d(v) ≤ β

1− β
∑
v∈W

d(v) ≤ β

1− β∆|W |

Because |W | = |VU | − |VS |, it follows,

|VS | ≤
β∆

1− β + β∆
|VU |


