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Motivation and Problem Formulation

Problem Formulation
Give a network G = (V,E), aim to learn a function f : V → Rp to
capture neighborhood similarity and community membership.

Applications:

I link prediction

I community detection

I label classification

Figure 1: A toy example (Figure from DeepWalk).
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Notations

Consider an undirected weighted graph G = (V,E) , where
|V | = n and |E| = m.

I Adjacency matrix A ∈ Rn×n
+ :

Ai,j =

{
ai,j > 0 (i, j) ∈ E
0 (i, j) 6∈ E .

I Degree matrix D = diag(d1, · · · , dn), where di is the
generalized degree of vertex i.

I Volume of the graph G: vol(G) =
∑

i

∑
j Ai,j .

Assumption

G = (V,E) is connected, undirected, and not bipartite, which
makes P (w) = dw

vol(G) a unique stationary distribution.
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DeepWalk — a Two-step Algorithm

Algorithm 1: DeepWalk

1 for n = 1, 2, . . . , N do
2 Pick wn

1 according to a probability distribution P (w1);
3 Generate a vertex sequence (wn

1 , · · · , wn
L) of length L by a

random walk on network G;
4 for j = 1, 2, . . . , L− T do
5 for r = 1, . . . , T do
6 Add vertex-context pair (wn

j , w
n
j+r) to multiset D;

7 Add vertex-context pair (wn
j+r, w

n
j ) to multiset D;

8 Run SGNS on D with b negative samples.



DeepWalk — Roadmap

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)
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//

#(w, c) #(w)

#(c)

Co-occurrence of w and c Occurrence of word w

Occurrence of context c|D| Total number of word-context pairs

b Number of negative samples



Skip-gram with Negative Sampling (SGNS)

I SGNS maintains a multiset D which counts the occurrence of
each word-context pair (w, c).

I Objective:

L =
∑
w

∑
c

(
#(w, c) log g

(
x>wyc

)
+
b#(w)#(c)

|D| log g
(
−x>wyc

))
,

where xw,yc ∈ Rd, g is the sigmoid function, and b is the
number of negative samples for SGNS.

I For sufficiently large dimensionality d, equivalent to
factorizing PMI matrix (Levy & Goldberg, NIPS’14):

log

(
#(w, c) |D|
b#(w)#(c)

)
.
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DeepWalk

a b c d e

(c, a) (c, e)

(c, d)

Question
Suppose the multiset D is constructed based on random walk on

graph, can we interpret log
(

#(w,c)|D|
b#(w)#(c)

)
with graph theory

terminologies?

Challange

We mix so many things together, i.e., direction and distance.

Solution
Let’s distinguish them!
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DeepWalk

Partition the multiset D into several sub-multisets according to the
way in which vertex and its context appear in a random walk
sequence. More formally, for r = 1, · · · , T , we define

D−→r =
{

(w, c) : (w, c) ∈ D, w = wn
j , c = wn

j+r

}
,

D←−r =
{

(w, c) : (w, c) ∈ D, w = wn
j+r, c = wn

j

}
.

a b c d e

(c, a) (c, e)

(c, d) D�!
1

D�!
2D �

2



DeepWalk as Implicit Matrix Factorization

Some observations

I Observation 1:

log

(
#(w, c) |D|
b#(w) ·#(c)

)
= log

 #(w,c)
|D|

b#(w)
|D|

#(c)
|D|


I Observation 2:

#(w, c)

|D| =
1

2T

T∑
r=1

(
#(w, c)−→r
|D−→r |

+
#(w, c)←−r
|D←−r |

)
.

Sufficient to characterize
#(w,c)−→r
|D−→r |

and
#(w,c)←−r
|D←−r |

.



DeepWalk — Theorems

Theorem
Denote P = D−1A, when the length of random walk L→∞,

#(w, c)−→r
|D−→r |

p→ dw
vol(G)

(P r)w,c and
#(w, c)←−r
|D←−r |

p→ dc
vol(G)

(P r)c,w .

Theorem
When the length of random walk L→∞, we have

#(w, c)

|D|
p→ 1

2T

T∑
r=1

(
dw

vol(G)
(P r)w,c +

dc
vol(G)

(P r)c,w

)
.

Theorem
For DeepWalk, when the length of random walk L→∞,

#(w, c) |D|
#(w) ·#(c)

p→ vol(G)

2T

(
1

dc

T∑
r=1

(P r)w,c +
1

dw

T∑
r=1

(P r)c,w

)
.



DeepWalk — Conclusion

Theorem
DeepWalk is asymptotically and implicitly factorizing

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.
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LINE

I Objective of LINE:

L =

|V |∑
i=1

|V |∑
j=1

(
Ai,j log g

(
x>i yj

)
+

bdidj
vol(G)

log g
(
−x>i yj

))
.

I Align it with the Objective of SGNS:

L =
∑
w

∑
c

(
#(w, c) log g

(
x>wyc

)
+
b#(w)#(c)

|D| log g
(
−x>wyc

))
.

I LINE is actually factorizing

log

(
vol(G)

b
D−1AD−1

)
I Recall DeepWalk’s matrix form:

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

Observation LINE is a special case of DeepWalk (T = 1).



PTE

Figure 2: Heterogeneous Text Network.

I word-word network Gww, Aww ∈ R#word×#word.

I document-word network Gdw, Adw ∈ R#doc×#word.

I label-word network Glw, Alw ∈ R#label×#word.



PTE as Implicit Matrix Factorization

log

α vol(Gww)(Dww
row)
−1

Aww(Dww
col )
−1

β vol(Gdw)(Ddw
row)−1Adw(Ddw

col)
−1

γ vol(Glw)(Dlw
row)−1Alw(Dlw

col)
−1

− log b,

I The matrix is of shape (#word + #doc + #label)×#word.

I b is the number of negative samples in training.
I {α, β, γ} are hyper-parameters to balance the weights of the

three networks. In PTE, {α, β, γ} satisfy

α vol(Gww) = β vol(Gdw) = γ vol(Glw)



node2vec — 2nd Order Random Walk

T u,v,w =


1
p (u, v) ∈ E, (v, w) ∈ E, u = w;

1 (u, v) ∈ E, (v, w) ∈ E, u 6= w, (w, u) ∈ E;
1
q (u, v) ∈ E, (v, w) ∈ E, u 6= w, (w, u) 6∈ E;

0 otherwise.

P u,v,w = Prob (wj+1 = u|wj = v, wj−1 = w) =
T u,v,w∑
u T u,v,w

.

Stationary Distribution∑
w

P u,v,wXv,w = Xu,v

Existence guaranteed by Perron-Frobenius theorem, but may not
be unique.



node2vec as Implicit Matrix Factorization

Theorem
node2vec is asymptotically and implicitly factorizing a matrix
whose entry at w-th row, c-th column is

log

(
1
2T

∑T
r=1

(∑
u Xw,uP

r
c,w,u +

∑
u Xc,uP

r
w,c,u

)
b (
∑

u Xw,u) (
∑

u Xc,u)

)
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NetMF

I Factorize the DeepWalk matrix:

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I For numerical reason, we use truncated logarithm —
˜log(x) = log (max(1, x))

0 1 2 3 4 5
0.0

0.5

1.0

1.5

Figure 3: Truncated Logarithm



NetMF for a Small Window Size T

Algorithm 2: NetMF for a Small Window Size T

1 Compute P 1, · · · ,P T ;

2 Compute M = vol(G)
bT

(∑T
r=1P

r
)
D−1;

3 Compute M ′ = max(M , 1);

4 Rank-d approximation by SVD: logM ′ = UdΣdV
>
d ;

5 return Ud

√
Σd as network embedding.



NetMF for a Large Window Size T — Observations

I We want to factorize

˜log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I We know the property of normalized graph Laplacian

D−1/2AD−1/2 = UΛU>

where Λ = diag(λ1, · · · , λn) and ∀λi ∈ [−1, 1].

(
1

T

T∑
r=1

(
D−1A

)r)
D−1 =

(
D−1/2

)( 1

T

T∑
r=1

(
D−1/2AD−1/2

)r)(
D−1/2

)

=
(
D−1/2

)
U

(
1

T

T∑
r=1

Λr

)
︸ ︷︷ ︸

A polynomial

U>


(
D−1/2

)



NetMF for a Large Window Size T — Observations
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Figure 4: f(λ) = 1
T

∑T
r=1 λ

r

Idea
This polynomial implicitly filters out negative eigenvalues and
small positive eigenvalues, why not do it explicitly.



NetMF for a Large Window Size T — Algorithm

Algorithm 3: NetMF for a Large Window Size T

1 Eigen-decomposition D−1/2AD−1/2 ≈ UhΛhU
>
h ;

2 Approximate M with

M̂ = vol(G)
b D−1/2Uh

(
1
T

∑T
r=1Λ

r
h

)
U>h D−1/2;

3 Compute M̂ ′ = max(M̂ , 1);

4 Rank-d approximation by SVD: log M̂ ′ = UdΣdV
>
d ;

5 return Ud

√
Σd as network embedding.



Setup

Label Classification:

I BlogCatelog, PPI, Wikipedia, Flickr

I Logistic Regression

I NetMF (T = 1) v.s. LINE

I NetMF (T = 10) v.s. DeepWalk

Table 1: Statistics of Datasets.

Dataset BlogCatalog PPI Wikipedia Flickr
|V | 10,312 3,890 4,777 80,513
|E| 333,983 76,584 184,812 5,899,882

#Labels 39 50 40 195



Experimental Results
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Figure 5: Predictive performance on varying the ratio of training data.
The x-axis represents the ratio of labeled data (%), and the y-axis in the
top and bottom rows denote the Micro-F1 and Macro-F1 scores
respectively.



Conclusion

Table 2: The matrices that are implicitly approximated and factorized by
DeepWalk, LINE, PTE, and node2vec.

Algorithm Matrix

DeepWalk log
(

vol(G)
(

1
T

∑T
r=1(D−1A)r

)
D−1

)
− log b

LINE log
(
vol(G)D−1AD−1

)
− log b

PTE log

α vol(Gww)(Dww
row)
−1

Aww(Dww
col )
−1

β vol(Gdw)(Ddw
row)−1Adw(Ddw

col)
−1

γ vol(Glw)(Dlw
row)−1Alw(Dlw

col)
−1

− log b

node2vec log

(
1

2T

∑T
r=1(

∑
u Xw,uP

r
c,w,u+

∑
u Xc,uP

r
w,c,u)

(
∑

u Xw,u)(
∑

u Xc,u)

)
− log b



Thanks.

Standing on the shoulders of giants
— Isaac Newton

Code available at github.com/xptree/NetMF
Q&A

github.com/xptree/NetMF


DeepWalk — Sketched Proof

Theorem
Denote P = D−1A, when L→∞, we have

#(w, c)−→r
|D−→r |

p→ dw
vol(G)

(P r)w,c and
#(w, c)←−r
|D←−r |

p→ dc
vol(G)

(P r)c,w .

Proof.
Consider the special case when N = 1, thus we only have one
vertex sequence w1, · · · , wL generated by random walk. Let
Yj (j = 1, · · · , L− T ) be the indicator function for event that
wj = w and wj+r = c

w … c

wj wj+r



Proof (Con’t)

Observation

I E[Yj ] = Prob(wj = w,wj+r = c)→ dw
vol(G) (P r)w,c.

I #(w,c)−→r
|D−→r |

= 1
L−T

∑L−T
j=1 Yj .

I Cov(Yi, Yj)→ 0 as |i− j| → ∞.

Lemma
(S.N. Bernstein Law of Large Numbers) Let Y1, Y2 · · · be a
sequence of random variables with finite expectation E[Yj ] and
variance Var(Yj) < K, j ≥ 1, and covariances are s.t.
Cov(Yi, Yj)→ 0 as |i− j| → ∞. Then the law of large
numbers (LLN) holds.

#(w, c)−→r
|D−→r |

=
1

L− T
L−T∑
j=1

Yj
p→ 1

L− T
L−T∑
j=1

E(Yj)→
dw

vol(G)
(P r)w,c



Time Complexity

I Eigen-Decomposition (Implicitly Restarted Lanczos Method)
O(mhI + nh2I + h3I).

I Reconstruction O(n2h)

I Element-wise logarithm O(n2).

I SVD (a naive implementation with eigen-decomposition):
O(n2dI + nd2I + d3I).



Future Work

I Comprehend high-order cases, e.g., node2vec.

log

(
1
2T

∑T
r=1

(∑
u Xw,uP

r
c,w,u +

∑
u Xc,uP

r
w,c,u

)
b (
∑

u Xw,u) (
∑

u Xc,u)

)

I Design scalable algorithm (e.g., using spectral sparsification of
random-walk polynomials).

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I Connection with graph convolutional networks (Kipf &
Welling, ICLR’17).


	Preliminaries
	Main Theoretic Results
	Notations
	DeepWalk (KDD'14) 
	LINE (WWW'15) 
	PTE (KDD'15)
	node2vec (KDD'16)

	NetMF
	NetMF for a Small Window Size T
	NetMF for a Large Window Size T
	Experiments


