
Network Embedding as Matrix Factorization:
Unifying DeepWalk, LINE, PTE, and node2vec

Jiezhong Qiu

Tsinghua University

February 21, 2018

Joint work with Yuxiao Dong (MSR), Hao Ma (MSR),
Jian Li (IIIS, Tsinghua), Kuansan Wang (MSR),

Jie Tang (DCST, Tsinghua)

Motivation and Problem Formulation

Problem Formulation
Give a network G = (V,E), aim to learn a function f : V → Rp to
capture neighborhood similarity and community membership.

Applications:

I link prediction

I community detection

I label classification

Figure 1: A toy example (Figure from DeepWalk).

History of Network Embedding

LINE & PTE [Tang et al.]

Spectral Partitioning [Donath, Hoffman]

DeepWalk [Perozzi et al.]

Image Segmentation [Shi & Malik]

1973

2009

2016

Spectral Clustering [Ng et al.]
2000

SocDim [Tang & Liu]

2014

2015

1996

node2vec [Grover & Leskovec]

2005

2002

Fiedler Vector [Fiedler]

A large body of literature
[Pothen et al.] [Simon] [Bolla],
[Hagen & Kahng] [Hendrickson & Leland]
[Van Driessche & Roose], [Barnard et al.]
[Spielman & Teng], [Guattery & Miller]

Spectral Clustering v.s. Kernel k-means [Dhillon et al.]

2013word2vec (skip-gram) [Mikolov et al.]

2017 metapath2vec [Dong et al.]

Contents

Preliminaries

Main Theoretic Results
Notations
DeepWalk (KDD’14)
LINE (WWW’15)
PTE (KDD’15)
node2vec (KDD’16)

NetMF
NetMF for a Small Window Size T
NetMF for a Large Window Size T
Experiments

Notations

Consider an undirected weighted graph G = (V,E) , where
|V | = n and |E| = m.

I Adjacency matrix A ∈ Rn×n
+ :

Ai,j =

{
ai,j > 0 (i, j) ∈ E
0 (i, j) 6∈ E .

I Degree matrix D = diag(d1, · · · , dn), where di is the
generalized degree of vertex i.

I Volume of the graph G: vol(G) =
∑

i

∑
j Ai,j .

Assumption

G = (V,E) is connected, undirected, and not bipartite, which
makes P (w) = dw

vol(G) a unique stationary distribution.

DeepWalk — Roadmap

//

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

DeepWalk — a Two-step Algorithm

Algorithm 1: DeepWalk

1 for n = 1, 2, . . . , N do
2 Pick wn

1 according to a probability distribution P (w1);
3 Generate a vertex sequence (wn

1 , · · · , wn
L) of length L by a

random walk on network G;
4 for j = 1, 2, . . . , L− T do
5 for r = 1, . . . , T do
6 Add vertex-context pair (wn

j , w
n
j+r) to multiset D;

7 Add vertex-context pair (wn
j+r, w

n
j) to multiset D;

8 Run SGNS on D with b negative samples.

DeepWalk — Roadmap

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

#(w, c) #(w)

#(c)

Co-occurrence of w and c Occurrence of word w

Occurrence of context c|D| Total number of word-context pairs

b Number of negative samples

Skip-gram with Negative Sampling (SGNS)

I SGNS maintains a multiset D which counts the occurrence of
each word-context pair (w, c).

I Objective:

L =
∑
w

∑
c

(
#(w, c) log g

(
x>wyc

)
+
b#(w)#(c)

|D| log g
(
−x>wyc

))
,

where xw,yc ∈ Rd, g is the sigmoid function, and b is the
number of negative samples for SGNS.

I For sufficiently large dimensionality d, equivalent to
factorizing PMI matrix (Levy & Goldberg, NIPS’14):

log

(
#(w, c) |D|
b#(w)#(c)

)
.

DeepWalk — Roadmap

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

#(w, c) #(w)

#(c)

Co-occurrence of w and c Occurrence of word w

Occurrence of context c|D| Total number of word-context pairs

b Number of negative samples

DeepWalk

a b c d e

(c, a) (c, e)

(c, d)

Question
Suppose the multiset D is constructed based on random walk on

graph, can we interpret log
(

#(w,c)|D|
b#(w)#(c)

)
with graph theory

terminologies?

Challange

We mix so many things together, i.e., direction and distance.

Solution
Let’s distinguish them!

DeepWalk

a b c d e

(c, a) (c, e)

(c, d)

Question
Suppose the multiset D is constructed based on random walk on

graph, can we interpret log
(

#(w,c)|D|
b#(w)#(c)

)
with graph theory

terminologies?

Challange

We mix so many things together, i.e., direction and distance.

Solution
Let’s distinguish them!

DeepWalk

a b c d e

(c, a) (c, e)

(c, d)

Question
Suppose the multiset D is constructed based on random walk on

graph, can we interpret log
(

#(w,c)|D|
b#(w)#(c)

)
with graph theory

terminologies?

Challange

We mix so many things together, i.e., direction and distance.

Solution
Let’s distinguish them!

DeepWalk

Partition the multiset D into several sub-multisets according to the
way in which vertex and its context appear in a random walk
sequence. More formally, for r = 1, · · · , T , we define

D−→r =
{

(w, c) : (w, c) ∈ D, w = wn
j , c = wn

j+r

}
,

D←−r =
{

(w, c) : (w, c) ∈ D, w = wn
j+r, c = wn

j

}
.

a b c d e

(c, a) (c, e)

(c, d) D�!
1

D�!
2D �

2

DeepWalk as Implicit Matrix Factorization

Some observations

I Observation 1:

log

(
#(w, c) |D|
b#(w) ·#(c)

)
= log

 #(w,c)
|D|

b#(w)
|D|

#(c)
|D|

I Observation 2:

#(w, c)

|D| =
1

2T

T∑
r=1

(
#(w, c)−→r
|D−→r |

+
#(w, c)←−r
|D←−r |

)
.

Sufficient to characterize
#(w,c)−→r
|D−→r |

and
#(w,c)←−r
|D←−r |

.

DeepWalk — Theorems

Theorem
Denote P = D−1A, when the length of random walk L→∞,

#(w, c)−→r
|D−→r |

p→ dw
vol(G)

(P r)w,c and
#(w, c)←−r
|D←−r |

p→ dc
vol(G)

(P r)c,w .

Theorem
When the length of random walk L→∞, we have

#(w, c)

|D|
p→ 1

2T

T∑
r=1

(
dw

vol(G)
(P r)w,c +

dc
vol(G)

(P r)c,w

)
.

Theorem
For DeepWalk, when the length of random walk L→∞,

#(w, c) |D|
#(w) ·#(c)

p→ vol(G)

2T

(
1

dc

T∑
r=1

(P r)w,c +
1

dw

T∑
r=1

(P r)c,w

)
.

DeepWalk — Conclusion

Theorem
DeepWalk is asymptotically and implicitly factorizing

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

DeepWalk — Roadmap

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

//

Adjacency matrix

Degree matrix b Number of negative samples

LINE

I Objective of LINE:

L =

|V |∑
i=1

|V |∑
j=1

(
Ai,j log g

(
x>i yj

)
+

bdidj
vol(G)

log g
(
−x>i yj

))
.

I Align it with the Objective of SGNS:

L =
∑
w

∑
c

(
#(w, c) log g

(
x>wyc

)
+
b#(w)#(c)

|D| log g
(
−x>wyc

))
.

I LINE is actually factorizing

log

(
vol(G)

b
D−1AD−1

)
I Recall DeepWalk’s matrix form:

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

Observation LINE is a special case of DeepWalk (T = 1).

PTE

Figure 2: Heterogeneous Text Network.

I word-word network Gww, Aww ∈ R#word×#word.

I document-word network Gdw, Adw ∈ R#doc×#word.

I label-word network Glw, Alw ∈ R#label×#word.

PTE as Implicit Matrix Factorization

log

α vol(Gww)(Dww
row)
−1

Aww(Dww
col)
−1

β vol(Gdw)(Ddw
row)−1Adw(Ddw

col)
−1

γ vol(Glw)(Dlw
row)−1Alw(Dlw

col)
−1

− log b,

I The matrix is of shape (#word + #doc + #label)×#word.

I b is the number of negative samples in training.
I {α, β, γ} are hyper-parameters to balance the weights of the

three networks. In PTE, {α, β, γ} satisfy

α vol(Gww) = β vol(Gdw) = γ vol(Glw)

node2vec — 2nd Order Random Walk

T u,v,w =

1
p (u, v) ∈ E, (v, w) ∈ E, u = w;

1 (u, v) ∈ E, (v, w) ∈ E, u 6= w, (w, u) ∈ E;
1
q (u, v) ∈ E, (v, w) ∈ E, u 6= w, (w, u) 6∈ E;

0 otherwise.

P u,v,w = Prob (wj+1 = u|wj = v, wj−1 = w) =
T u,v,w∑
u T u,v,w

.

Stationary Distribution∑
w

P u,v,wXv,w = Xu,v

Existence guaranteed by Perron-Frobenius theorem, but may not
be unique.

node2vec as Implicit Matrix Factorization

Theorem
node2vec is asymptotically and implicitly factorizing a matrix
whose entry at w-th row, c-th column is

log

(
1
2T

∑T
r=1

(∑
u Xw,uP

r
c,w,u +

∑
u Xc,uP

r
w,c,u

)
b (
∑

u Xw,u) (
∑

u Xc,u)

)

Contents

Preliminaries

Main Theoretic Results
Notations
DeepWalk (KDD’14)
LINE (WWW’15)
PTE (KDD’15)
node2vec (KDD’16)

NetMF
NetMF for a Small Window Size T
NetMF for a Large Window Size T
Experiments

Roadmap

Random
Walk Skip-gram

Output:
Node

Embedding
Input
G=(V,E)

Levy & Goldberg (NIPS 14)

Matrix
Factorization

//

NetMF

I Factorize the DeepWalk matrix:

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I For numerical reason, we use truncated logarithm —
˜log(x) = log (max(1, x))

0 1 2 3 4 5
0.0

0.5

1.0

1.5

Figure 3: Truncated Logarithm

NetMF for a Small Window Size T

Algorithm 2: NetMF for a Small Window Size T

1 Compute P 1, · · · ,P T ;

2 Compute M = vol(G)
bT

(∑T
r=1P

r
)
D−1;

3 Compute M ′ = max(M , 1);

4 Rank-d approximation by SVD: logM ′ = UdΣdV
>
d ;

5 return Ud

√
Σd as network embedding.

NetMF for a Large Window Size T — Observations

I We want to factorize

˜log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I We know the property of normalized graph Laplacian

D−1/2AD−1/2 = UΛU>

where Λ = diag(λ1, · · · , λn) and ∀λi ∈ [−1, 1].

(
1

T

T∑
r=1

(
D−1A

)r)
D−1 =

(
D−1/2

)(1

T

T∑
r=1

(
D−1/2AD−1/2

)r)(
D−1/2

)

=
(
D−1/2

)
U

(
1

T

T∑
r=1

Λr

)
︸ ︷︷ ︸

A polynomial

U>

(
D−1/2

)

NetMF for a Large Window Size T — Observations

−1.0 −0.5 0.0 0.5 1.0

Eigenvalues Before Filtering
−1.0

−0.5

0.0

0.5

1.0

E
ig

en
va

lu
es

A
ft

er
Fi

lte
ri

ng T = 1
T = 2
T = 5
T = 10

Figure 4: f(λ) = 1
T

∑T
r=1 λ

r

Idea
This polynomial implicitly filters out negative eigenvalues and
small positive eigenvalues, why not do it explicitly.

NetMF for a Large Window Size T — Algorithm

Algorithm 3: NetMF for a Large Window Size T

1 Eigen-decomposition D−1/2AD−1/2 ≈ UhΛhU
>
h ;

2 Approximate M with

M̂ = vol(G)
b D−1/2Uh

(
1
T

∑T
r=1Λ

r
h

)
U>h D−1/2;

3 Compute M̂ ′ = max(M̂ , 1);

4 Rank-d approximation by SVD: log M̂ ′ = UdΣdV
>
d ;

5 return Ud

√
Σd as network embedding.

Setup

Label Classification:

I BlogCatelog, PPI, Wikipedia, Flickr

I Logistic Regression

I NetMF (T = 1) v.s. LINE

I NetMF (T = 10) v.s. DeepWalk

Table 1: Statistics of Datasets.

Dataset BlogCatalog PPI Wikipedia Flickr
|V | 10,312 3,890 4,777 80,513
|E| 333,983 76,584 184,812 5,899,882

#Labels 39 50 40 195

Experimental Results

20

25

30

35

40

45

50

M
ic

ro
-F

1
(%

)

BlogCatalog

5

10

15

20

25

30
PPI

30

40

50

60

70
Wikipedia

20

25

30

35

40
Flickr

20 40 60 80
10

15

20

25

30

35

M
ac

ro
-F

1
(%

)

20 40 60 80
5

10

15

20

25

20 40 60 80
5.0

7.5

10.0

12.5

15.0

17.5

20.0

2 4 6 8 10
5

10

15

20

25

NetMF (T=1) LINE NetMF (T=10) DeepWalk

Figure 5: Predictive performance on varying the ratio of training data.
The x-axis represents the ratio of labeled data (%), and the y-axis in the
top and bottom rows denote the Micro-F1 and Macro-F1 scores
respectively.

Conclusion

Table 2: The matrices that are implicitly approximated and factorized by
DeepWalk, LINE, PTE, and node2vec.

Algorithm Matrix

DeepWalk log
(

vol(G)
(

1
T

∑T
r=1(D−1A)r

)
D−1

)
− log b

LINE log
(
vol(G)D−1AD−1

)
− log b

PTE log

α vol(Gww)(Dww
row)
−1

Aww(Dww
col)
−1

β vol(Gdw)(Ddw
row)−1Adw(Ddw

col)
−1

γ vol(Glw)(Dlw
row)−1Alw(Dlw

col)
−1

− log b

node2vec log

(
1

2T

∑T
r=1(

∑
u Xw,uP

r
c,w,u+

∑
u Xc,uP

r
w,c,u)

(
∑

u Xw,u)(
∑

u Xc,u)

)
− log b

Thanks.

Standing on the shoulders of giants
— Isaac Newton

Code available at github.com/xptree/NetMF
Q&A

github.com/xptree/NetMF

DeepWalk — Sketched Proof

Theorem
Denote P = D−1A, when L→∞, we have

#(w, c)−→r
|D−→r |

p→ dw
vol(G)

(P r)w,c and
#(w, c)←−r
|D←−r |

p→ dc
vol(G)

(P r)c,w .

Proof.
Consider the special case when N = 1, thus we only have one
vertex sequence w1, · · · , wL generated by random walk. Let
Yj (j = 1, · · · , L− T) be the indicator function for event that
wj = w and wj+r = c

w … c

wj wj+r

Proof (Con’t)

Observation

I E[Yj] = Prob(wj = w,wj+r = c)→ dw
vol(G) (P r)w,c.

I #(w,c)−→r
|D−→r |

= 1
L−T

∑L−T
j=1 Yj .

I Cov(Yi, Yj)→ 0 as |i− j| → ∞.

Lemma
(S.N. Bernstein Law of Large Numbers) Let Y1, Y2 · · · be a
sequence of random variables with finite expectation E[Yj] and
variance Var(Yj) < K, j ≥ 1, and covariances are s.t.
Cov(Yi, Yj)→ 0 as |i− j| → ∞. Then the law of large
numbers (LLN) holds.

#(w, c)−→r
|D−→r |

=
1

L− T
L−T∑
j=1

Yj
p→ 1

L− T
L−T∑
j=1

E(Yj)→
dw

vol(G)
(P r)w,c

Time Complexity

I Eigen-Decomposition (Implicitly Restarted Lanczos Method)
O(mhI + nh2I + h3I).

I Reconstruction O(n2h)

I Element-wise logarithm O(n2).

I SVD (a naive implementation with eigen-decomposition):
O(n2dI + nd2I + d3I).

Future Work

I Comprehend high-order cases, e.g., node2vec.

log

(
1
2T

∑T
r=1

(∑
u Xw,uP

r
c,w,u +

∑
u Xc,uP

r
w,c,u

)
b (
∑

u Xw,u) (
∑

u Xc,u)

)

I Design scalable algorithm (e.g., using spectral sparsification of
random-walk polynomials).

log

(
vol(G)

b

(
1

T

T∑
r=1

(
D−1A

)r)
D−1

)
.

I Connection with graph convolutional networks (Kipf &
Welling, ICLR’17).

	Preliminaries
	Main Theoretic Results
	Notations
	DeepWalk (KDD'14)
	LINE (WWW'15)
	PTE (KDD'15)
	node2vec (KDD'16)

	NetMF
	NetMF for a Small Window Size T
	NetMF for a Large Window Size T
	Experiments

