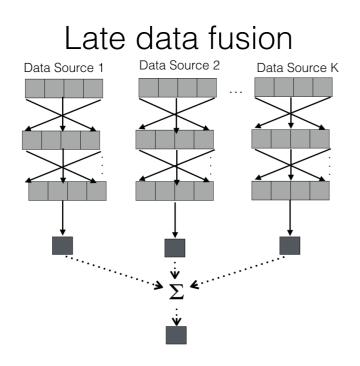
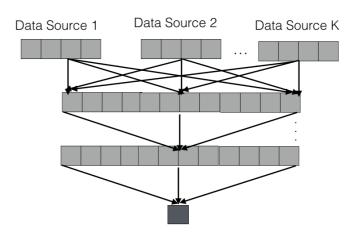


User Profiling through Deep Multimodal Fusion

Golnoosh Farnadi

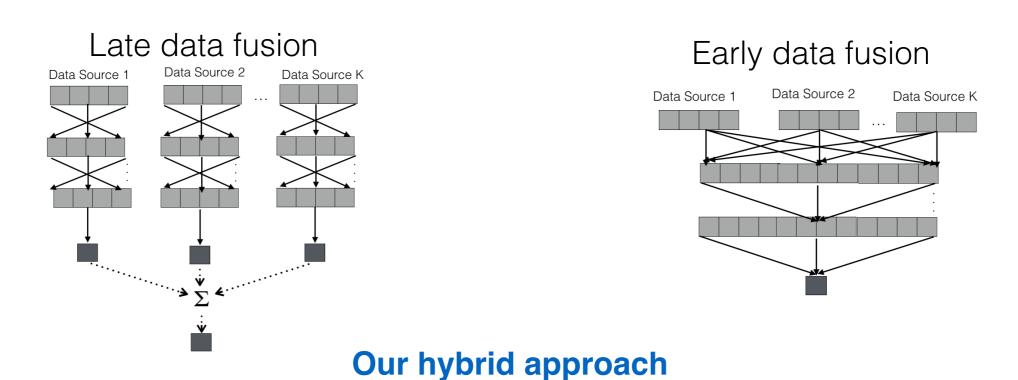
Jie Tang Martine De Cock Sien Moens

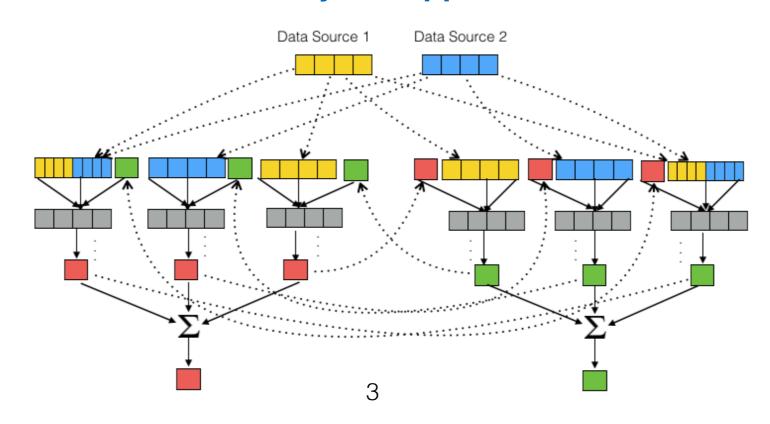




Data Fusion in DNNs

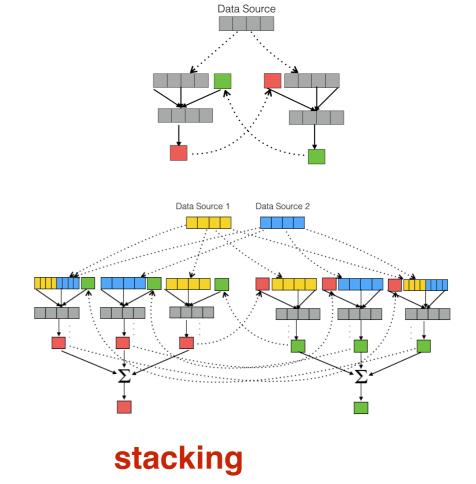
Early data fusion

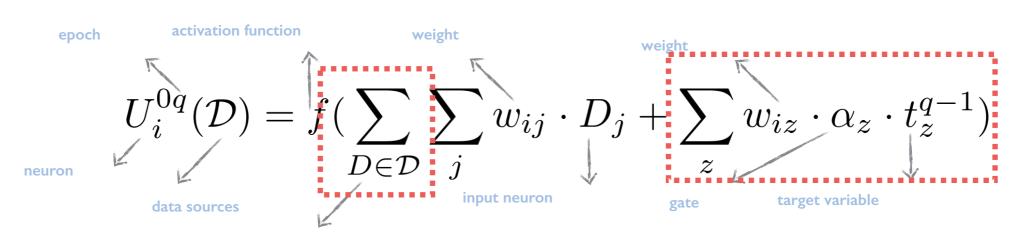



no dependency among data sources

correlation between features

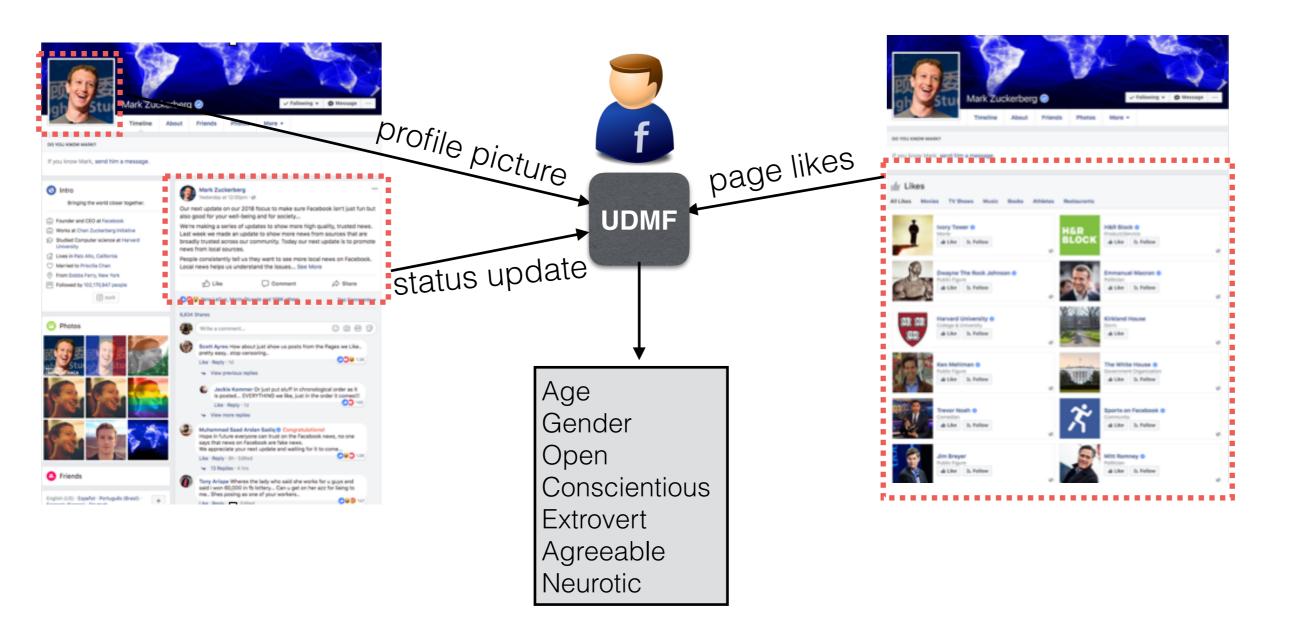
Hybrid Deep Multimedia Fusion



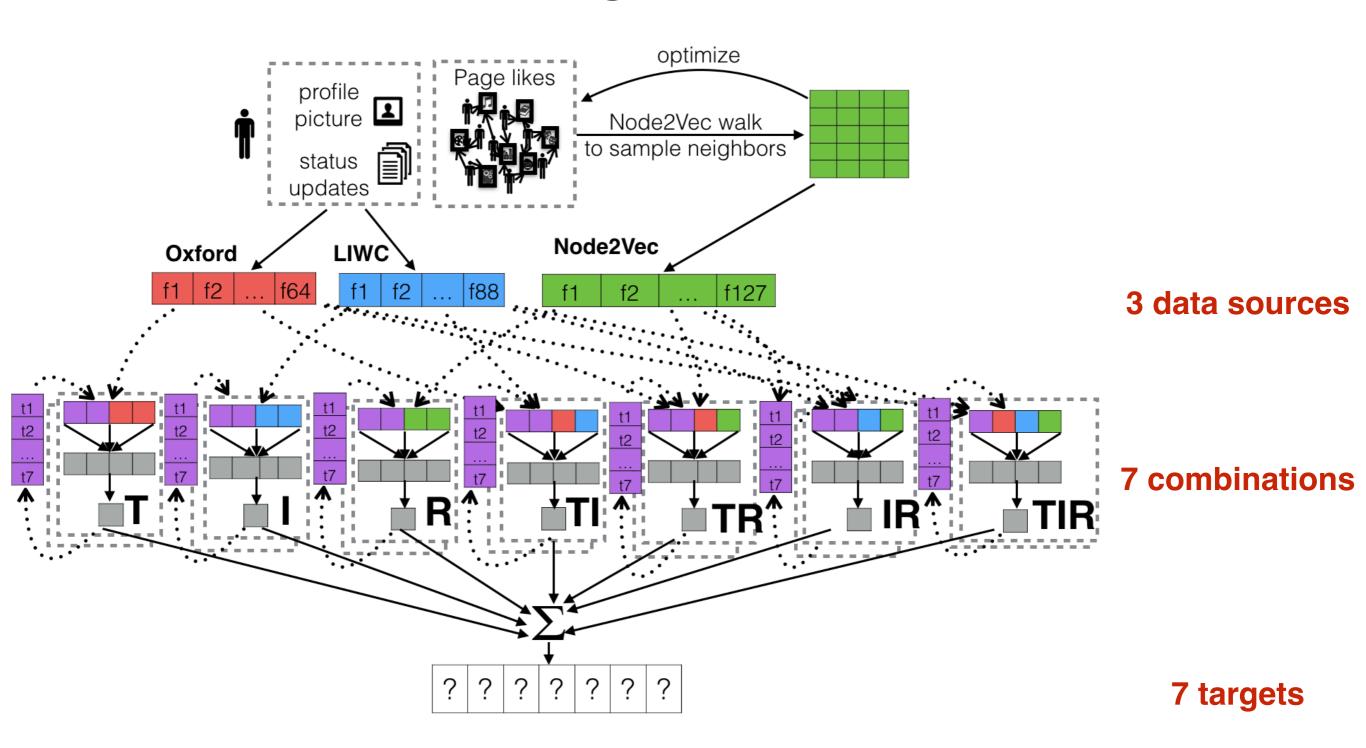

Hybrid Deep Multimedia Fusion

The stacking is suitable for multi-task learning.

The powerset combination incorporates correlations among features and data sources



powerset combination


subset of the input data sources

User profiling

Infer Facebook users' age, gender and personality traits

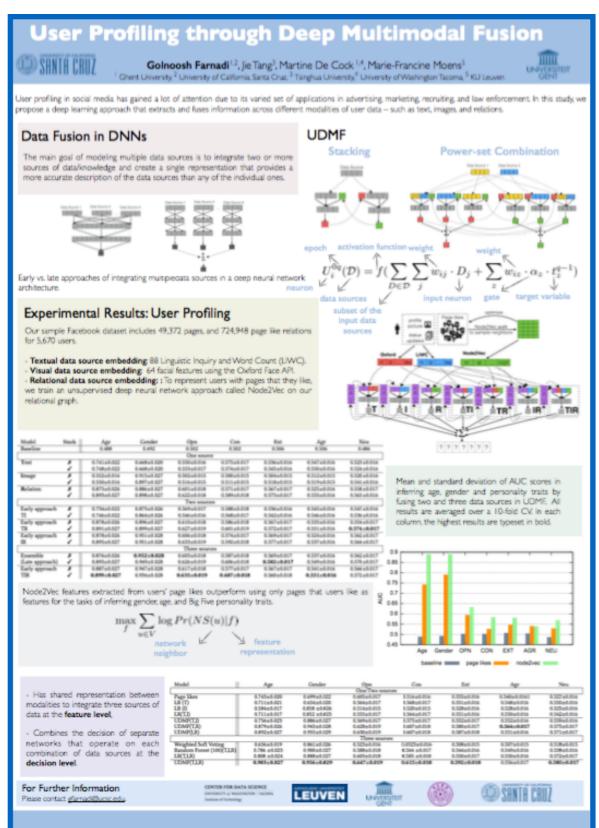
User Profiling in Facebook using UDMF

Experimental results

- Data fusion improves user profiling
- Stacking works w/o data fusion

Model	Stack	Age	Gender	Opn	Con	Ext	Agr	Neu					
Baseline		0.488	0.492	0.502	0.502	0.506	0.506	0.486					
One source													
Text	Х	0.741±0.022	0.668±0.020	0.550±0.016	0.575±0.017	0.536±0.016	0.547±0.016	0.523±0.016					
	✓	0.748±0.022	0.668 ± 0.020	0.553 ± 0.017	0.574 ± 0.017	0.545 ± 0.016	0.550 ± 0.016	0.524 ± 0.016					
Image	Х	0.552±0.016	0.915±0.027	0.502±0.015	0.500±0.015	0.504±0.015	0.512±0.015	0.520±0.016					
	✓	0.550±0.016	0.897 ± 0.027	0.516 ± 0.015	0.511 ± 0.015	0.518 ± 0.015	0.519 ± 0.015	0.541 ± 0.016					
Relation	Х	0.875±0.026	0.886±0.027	0.601±0.018	0.571±0.017	0.567±0.017	0.525±0.016	0.558±0.017					
	✓	0.893±0.027	0.898 ± 0.027	0.622 ± 0.018	0.589 ± 0.018	0.573 ± 0.017	0.533 ± 0.016	0.563 ± 0.016					
Two sources													
Early approach	Х	0.734±0.022	0.873 ± 0.026	0.569±0.017	0.588 ± 0.018	0.536 ± 0.016	0.545±0.016	0.547±0.016					
TI	✓	0.746±0.022	0.864 ± 0.026	0.546 ± 0.016	0.568 ± 0.017	0.542 ± 0.016	0.546 ± 0.016	0.536 ± 0.016					
Early approach	Х	0.878±0.026	0.896±0.027	0.610±0.018	0.586±0.018	0.567±0.017	0.535±0.016	0.554±0.017					
TR	✓	0.891±0.027	0.899 ± 0.027	0.627 ± 0.019	0.601 ± 0.019	0.572 ± 0.017	0.551 ± 0.016	0.574 ± 0.017					
Early approach	Х	0.878±0.026	0.951±0.028	0.606±0.018	0.574±0.017	0.569±0.017	0.524±0.016	0.562±0.017					
IR	✓	0.895±0.027	0.951 ± 0.028	0.633 ± 0.019	0.592 ± 0.018	0.577 ± 0.017	0.537 ± 0.016	0.564 ± 0.017					
Three sources													
Ensemble	Х	0.876±0.026	0.952±0.028	0.603±0.018	0.587±0.018	0.569±0.017	0.537±0.016	0.562±0.017					
(Late approach)	✓	0.893±0.027	0.949 ± 0.028	0.626 ± 0.019	0.606 ± 0.018	0.582 ± 0.017	0.549 ± 0.016	0.570 ± 0.017					
Early approach	Х	0.887±0.027	0.947±0.028	0.617±0.018	0.577±0.017	0.567±0.017	0.541±0.016	0.566±0.017					
TIR	✓	0.899±0.027	0.934 ± 0.028	0.635 ± 0.019	0.607 ± 0.018	0.560 ± 0.018	0.551 ± 0.016	0.572 ± 0.017					

- HDMF outperform state-of-the art user profiling and data fusion frameworks
- We accurately predict age with AUC 0.90 and gender with 0.96


Model	Age	Gender	Opn	Con	Ext	Agr	Neu				
One/Two sources											
Page likes	0.743±0.020	0.699±0.022	0.605 ± 0.017	0.516±0.016	0.555 ± 0.016	0.540 ± 0.0161	0.527±0.016				
LR (T)	0.711±0.021	0.654 ± 0.020	0.564 ± 0.017	0.568 ± 0.017	0.551 ± 0.016	0.548 ± 0.016	0.530 ± 0.016				
LR (I)	0.584±0.017	0.858 ± 0.026	0.514 ± 0.015	0.520 ± 0.015	0.528 ± 0.016	0.528 ± 0.016	0.525 ± 0.016				
LR(T,I)	0.711±0.017	0.852 ± 0.025	0.555 ± 0.017	0.564 ± 0.017	0.551 ± 0.016	0.550 ± 0.016	0.542 ± 0.016				
UDMF(T,I)	0.756±0.023	0.886±0.027	0.569±0.017	0.575±0.017	0.552±0.017	0.552±0.016	0.539±0.016				
UDMF(T,R)	0.879±0.026	0.943 ± 0.028	0.628 ± 0.019	0.607 ± 0.018	0.580 ± 0.017	0.564 ± 0.017	0.575 ± 0.017				
UDMF(I,R)	0.892±0.027	0.955 ± 0.029	0.630 ± 0.019	0.607 ± 0.018	0.587 ± 0.018	0.551 ± 0.016	0.571 ± 0.017				
Three sources											
Weighted Soft Voting	0.656±0.019	0.861±0.026	0.523±0.016	0.0523±0.016	0.508±0.015	0.507±0.015	0.518±0.015				
Random Forest (100)(T,I,R)	0.786 ±0.023	0.900 ± 0.027	0.588 ± 0.018	0.564 ± 0.017	0.544 ± 0.016	0.549 ± 0.016	0.538 ± 0.016				
LR(T,I,R)	0.808 ±0.024	0.888 ± 0.027	0.603 ± 0.018	0.585 ± 0.018	0.550 ± 0.017	0.550 ± 0.016	0.572 ± 0.017				
UDMF(T,I,R)	0.903±0.027	0.956±0.029	0.647±0.019	0.615±0.018	0.592±0.018	0.556±0.017	0.580±0.017				

Thank you!

Take away messages

- UDMF is a hybrid multimodal data fusion
- Deep learning fusion improves the accuracy of predictions
- Stacking works when we have multi-task learning (e.g., user profiling)
- Powerset combination enhances the fusion power
- We are able to predict your age, gender and personality traits given your Facebook activities!

