

Incorporating Social Context and Domain Knowledge for Entity Recognition

Jie Tang, Zhanpeng Fang Department of Computer Science, Tsinghua University Jimeng Sun College of Computing, Georgia Institute of Technology

Entity Recognition in Social Media

- People use blogs, forums, and review sites to share opinions on politicians or products.
- One fundamental analytic issue is to recognize entity instances from the UGC short documents. However, the problem is very challenging
 - "S4" vs. "Samsung Galaxy S4"
 - "Fruit company" vs. "Apple Inc."
 - "Peace West King" vs. "Xilai Bo" (a sensitive Chinese politician)

A Concrete Example

Challenges: short text + social networks + domain knowledge = ?

Related Work

- Entity recognition
 - Modeling as a ranking problem based on boosting and voted perceptron (Collins [9])
 - Incorporating long-distance dependency (Finkel et al. [13])
 - Use Labeled LDA [26] to exploit Freebase to help extraction (Ritter et al. [27])
 - Entity morph (Huang et al. [17])
- Entity resolution
 - A collective method for entity resolution in relational data (Bhattacharya and Getoor [4])
 - A hierarchical topic model for resolving name ambiguity (Kataria et al. [18])
 - Name disambiguation in digital libraries (Tang et al. [32])

Approach Framework —SOCINST

Preliminary: Sequential Labeling

where f represents features and Θ are model parameters.

Sequential Labeling with CRFs

Sequential Labeling with CRFs

Performance of the model will be bad when dealing with short-text due to sparsity

 f_k denotes the *k*-th feature defined for token x_i

 f_j denotes the *j*-th feature defined for two consecutive tokens x_j ; and x_j ;

Sequential Labeling Incorporating Topics

$$p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \frac{1}{Z} \exp(\sum_{i} \sum_{k} \lambda_{k} f_{k}(x_{i}, \boldsymbol{\theta}_{i}, y_{i}) + \sum_{i} \sum_{j} \mu_{j} f_{j}(\mathbf{x}, \boldsymbol{\theta}, y_{i}, y_{i+1}))$$

Latent Dirichlet Allocation

[5] D. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993–1022, 2003.

Extend to Model Authorship and Categories

Article

Generative process •

[35] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of academic social networks. In KDD'08, pages 990-998, 2008

ACT Model

Generative process:

- For each topic z, draw φ_z and ψ_z respectively from Dirichlet priors β_z and μ_z;
- 2. For each word w_{di} in document d:
 - draw an author x_{di} from \mathbf{a}_d uniformly;
 - draw a topic z_{di} from a multinomial distribution θ_{x_{di}} specific to author x_{di}, where θ is generated from a Dirichlet prior α;
 - draw a word w_{di} from multinomial φ_{z_{di}};
 - draw a category tag c_{di} from multinomial $\psi_{z_{di}}$.

$$P(z_{di}, x_{di} | \mathbf{z}_{-di}, \mathbf{x}_{-di}, \mathbf{w}, \mathbf{c}, \alpha, \beta, \mu) \propto \\ \frac{m_{x_{di}z_{di}}^{-di} + \alpha_{z_{di}}}{\sum_{z} (m_{x_{di}z}^{-di} + \alpha_{z})} \frac{n_{z_{di}w_{di}}^{-di} + \beta_{w_{di}}}{\sum_{v} (n_{z_{di}v}^{-di} + \beta_{v})} \frac{n_{z_{di}c_{d}}^{-d} + \mu_{c_{d}}}{\sum_{c} (n_{z_{di}c}^{-d} + \mu_{c})}$$

[35] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of academic social networks. In KDD'08, pages 990–998, 2008

Still challenges

SOCINST: Modeling Domain Knowledge and Social Context Simultaneously

Modeling Domain Knowledge

[1] D. Andrzejewski, X. Zhu, and M. Craven. Incorporating domain knowledge into topic modeling via dirichlet forest priors. In ICML'09, pages 25–32, 2009.

Theoretical Basis

Aggregation property of Dirichlet distribution
If

$$(\theta_1, \dots, \theta_i, \theta_{i+1}, \dots, \theta_K) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_i, \alpha_{i+1}, \dots, \alpha_K)$$

then

$$(\theta_1,\ldots,\theta_i+\theta_{i+1},\ldots,\theta_K) \sim \text{Dirichlet}(\alpha_1,\ldots,\alpha_i+\alpha_{i+1},\ldots,\alpha_K)$$

Inverse of the aggregation property

lf

$$(\theta_1,\ldots,\theta_K) \sim \text{Dirichlet}(\alpha_1,\ldots,\alpha_K)$$

then

$$(\theta_1,\ldots,\tau\theta_i,(1-\tau)\theta_i,\ldots,\theta_K) \sim \text{Dirichlet}(\alpha_1,\ldots,\tau\alpha_i,(1-\tau)\alpha_i,\ldots,\alpha_K)$$

Model Learning

$$p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \frac{1}{Z} \exp(\sum_{i} \sum_{k} \lambda_{k} f_{k}(x_{i}, \boldsymbol{\theta}_{i}, y_{i}) + \sum_{i} \sum_{j} \mu_{j} f_{j}(\mathbf{x}, \boldsymbol{\theta}, y_{i}, y_{i+1}))$$

Experiments

Data Sets

- All codes and datasets can be downloaded here <u>http://aminer.org/socinst/</u>
- Dataset

Domain	#documents	#instances	#relationships
Weibo	1,800	545	10,763
I2B2	899	2,400	27,175
ICDM'12 Contest	2,110	565	NA

- Goal:
 - Weibo: Our goal is to extract real morph instances in the dataset.
 - I2B2: Our goal here is to extract private health information instances in the dataset.
 - ICDM'12 Contest: Our goal is to recognize product mentions in the dataset.

I2B2

HISTORY OF PRESENT ILLNESS : Patient Mr. Blind is a -79-year-old white male with a history of diabetes mellitus, inferior myocardial infarction, who underwent open repair of his Doctor increased diverticulum **November 13th_at** Sephsandpot Center. The patient developed hematemesis November 15th and was intubated Date for respiratory distress. He was transferred to the Valtawnprinceel. **Community Memorial Hospital** for endoscop **Location** and esophagoscopy on the 16th of November which showed a 2 cm linear tear of the esophagus at 30 to 32 cm. **Hospital**

ICDM'12 Contest

Results

- SM: Simply extracts all the terms/symbols that are annotated
- **RT**: Recognizes target instances from the test data by a set of rule templates
- CRF: Trains a CRF model using features associated with each token
- **CRF+AT:** Uses Author-Topic (AT) [30] to train a model and then it use the learned topics as features for CRF for instance recognition
- SOCINST: Our proposed model

Results

SM: Simply extracts all the	Data	Method	Recall	Precision	F1-Measure
terms/symbols that are annotated RT: Recognizes target instances from the test data by a set of rule templates. CRF: Trains a CRF model using features associated with each token	Weibo	SM	55.34	34.92	42.82
		RT	39.62	66.31	49.60
		CRF	29.24	94.89	44.71
		CRF+AT	43.71	89.67	58.77
		SOCINST	65.72	76.27	70.60
	I2B2	SM	39.58	28.24	32.96
		RT	39.60	40.29	39.94
CRF+AT: Uses Author-Topic (AT) [30] to train a model and then it use the learned topics as features for CRF for instance recognition SOCINST: Our proposed model		CRF	40.99	56.19	47.40
		CRF+AT	41.37	54.92	47.19
		SOCINST	43.94	57.18	49.69
	ICDM'12 Contest	SM	9.47	62.50	16.46
		RT	23.69	42.01	30.30
		CRF	21.80	53.48	30.97
		CRF+AT	26.54	51.37	35.00
		SOCINST	37.91	53.33	44.32

More Results—ICDM'12 Contest

Performance comparison of SOCINST and the first place [38] in ICDM'12 Contest.

[38] S. Wu, Z. Fang, and J. Tang. Accurate product name recognition from user generated content. In ICDM'12 Contest.

Effects of Social Context and Domain Knowledge

SOCINST_{base}— we removed both social context and domain knowledge from our method; SOCINST-SC— we removed social context from our method; SOCINST-DK— we removed domain knowledge from our method;

Parameter Analysis

Parameter Analysis (cont.)

* All the other hyperparameters fixed The number of topics is set to K = 15

AMiner (http://aminer.org)

Conclusion

- Study the problem of instance recognition by incorporating social context and domain knowledge
- Propose a topic modeling approach to learn topics by considering social relationships between users and context information from a domain knowledge base
- Experimental results on three different datasets validate the effectiveness and the efficiency of the proposed method.

Future work

- The general idea of incorporating social context and domain knowledge for entity recognition represents a new research direction
- Combining the sequential labeling model and the proposed SOCINST into a unified model should be beneficial
- Further incorporating other social interactions, such as social influence, to help instance recognition is an intriguing direction

Thank you!

Collaborators: Jimeng Sun (**Georgia Tech**) Zhanpeng Fang (**THU**)

Jie Tang, KEG, Tsinghua U, **Download all data & Codes,**

http://keg.cs.tsinghua.edu.cn/jietang http://aminer.org/socinst

Modeling Short Text with Topics

