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ABSTRACT
Statistics show that, on average, each user of Massive Open Online
Courses (MOOCs) uses “jump-back” to navigate a course video for
2.6 times. By taking a closer look at the navigation data, we found
that more than half of the jump-backs are due to the “bad” posi-
tions of the previous jump-backs. In this work, employing one of
the largest Chinese MOOCs, XuetangX.com, as the source for our
research, we study the extent to which we can develop a method-
ology to understand the user intention and help the user allevi-
ate this problem by suggesting the best position for a jump-back.
We demonstrate that it is possible to accurately predict 90% of
users’ jump-back intentions in the real online system. Moreover,
our study reveals several interesting patterns, e.g., students in non-
science courses tend to jump back from the first half of the course
video, and students in science courses tend to replay for longer
time.
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1. INTRODUCTION
MOOCs boom swiftly in recent years and have attracted millions

of users worldwide. This is not only transforming higher education,
but also provides fodder for scientific research [20, 10]. Thanks to
MOOC platforms, we are able to track all students’ behaviors and
outcomes in such a fine-granularity that were never available be-
fore. For example, we know when they watched a lecture and how
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they watched a lecture (e.g., in normal speed or faster pace, any
pause or rewind), their patterns in answering the quiz questions
(e.g., how long it took them, what their answers were), and the ulti-
mate outcomes (e.g., certificate completion and final course score).
Such activity log data became the collective memory of the educa-
tion experiences from millions of students and teachers. Analyzing
such data from MOOCs provides novel and great potential for un-
derstanding students’ behaviors and enhancing education delivery.

Meanwhile, despite the vast number of students being reached
by MOOCs, the overall success of MOOCs as the delivery vehi-
cle for future education is still in debate. One major challenge of
MOOCs is how to design “smart” interactions to improve studen-
t engagement. For example, the overall course completion rate is
still very low—i.e., 5% or lower [15, 18]; and only a small portion
of students complete the course video watching. One reason is due
to the lack of deeper interactions between the system and the users
(students). The system does not offer a mechanism to understand
user intentions so as to provide necessary help in users’ studying
procedures.

Watching course videos probably is the most important activi-
ty in MOOCs. Actually, the majority of time that students spend
on MOOCs is watching videos [2]. Recently, a few researches
have been conducted on the click-level interactions between user-
s and the MOOC systems in order to better understand how users
learn and what they need when watching video [7, 8, 11, 14, 23].
The studied interactions include playing video, pause, jump-back
(rewind), or jump-forward, etc. However, we soon found that the
jump-back is a frequent behavior with strong user intention. Our
preliminary study shows that, on average, each MOOC user clicks
“jump-back” 2.6 times to navigate a course video. The reasons may
vary a lot including there is some difficult part that the user cannot
understand, and the user simply missed some part for other reasons.
One interesting question arises: can we leverage the emerging AI
techniques to help alleviate this problem?

Employing one of the largest Chinese MOOCs, XuetangX.com,
as the source for our research, we try to conduct a systematic study
on this problem. We found that more than half of the jump-backs
are due to the “bad” position of the previous jump-backs. Because
they usually try several times to find the correct position. Our goal
then is to study the extent to which we can develop a mechanism
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to understand user intentions and help user locate the best position
for a jump-back. To precisely illustrate the problem we are going
to deal with, we give an example scenario in Figure 1.1 The user is
watching a lecture of the most popular course on XuetangX.com,
i.e., Financial Analysis and Decision Making. She is trying to jump
back and the system automatically detects her intention and sug-
gests four positions to go. For example, the place with the highest
probability (0.35) is to describe an example in the lecture, and the
second position is the concept of “capital assets”. The dark green
curve shows the jump-back navigation distribution of this lecture
according to the historical data. The problem is referred to as auto-
mated navigation suggestion. We see that the challenge here is how
to design a principled suggestion methodology by considering the
lecture content, personal preferences of the current user, and his-
torical navigation behavior of all users who watched this lecture.

We develop an algorithm based on deterministic finite automa-
ton to reconstruct users’ jump-back behaviors. To capture the con-
tent information, users’ preferences, and historical navigation be-
haviors, we propose a data-driven method which combines general
behaviors and personal preferences for jump-back prediction. To
summarize, the main contributions of this work include:

• We formally define an interesting problem of automated nav-
igation suggestion in MOOCs, and systematically study the
problem on a real large MOOC dataset.

• Our study on the dataset reveals several interesting phenom-
ena. For example, students in non-science courses tend to
jump back from the first half of the course video, and stu-
dents in science courses tend to replay for longer distance.

• We propose a predictive method to predict users’ jump-back
behaviors, and demonstrate that it is possible to accurately
predict 90% of users’ jump-back intentions in the real online
system.

Organization. Section 2 reviews the related work. Section 3 in-
troduces the dataset and Section 4 presents our analyses on the
dataset. Section 5 formulates the problem and presents the pro-
posed methodology. Finally, Section 6 presents experimental re-
sults and Section 7 concludes this work.

2. RELATED WORK
We review related literature in three aspects: understanding user

behaviors, enhancing user engagements and facilitating video nav-
igation in MOOCs.

2.1 Understanding User Behaviors
This line of research mainly focuses on studying user behavior

patterns and their implications. For example, Kim et al. [14] identi-
fy five student behavior patterns that can explain interaction peaks
in video: starting from the beginning of a new material, return-
ing to missed content, following a tutorial step, replaying a brief
segment, and repeating a non-visual explanation. Li et al. [16]
cluster user behaviors into patterns (the cluster centers) based on
numerical features of available interaction types, i.e., pausing, for-
ward and backward seeking and speed changing. Furthermore, to
facilitate the analysis of user behaviors, Chorianopoulos et al. [9]
present a system that builds user activity graphs based on user video
browsing actions to help understand the video content. Based on
user behavior analysis, some researchers also find strong correla-
tions between user behaviors and video content. Chorianopoulos et
1This function will be deployed online soon.

Navigation
Distribution

0.11 0.260.350.07
Personalized Suggestion

Let’s begin with …

The example is that … Next … capital assets … investment property …

First, we introduce …

Figure 1: Personalized jump-back suggestion for a specific user.
The distribution of possible end positions for a jump-back is shown
above the navigation bar. The red circles with different size repre-
sents possible end positions, where a larger circle means a larger
probability. We also show the context transcripts around each red
circle to illustrate the content.

al. [7] find that interesting video segments can be detected through
users’ collective interactions (e.g., seek/scrub, play, pause) with the
video. Following this work, Avlonitis et al. [1] find that users’
replaying activity significantly matches the important segments in
information-rich and visually complex videos. Related studies can
also be found in [24, 22]. These works inspire us on selecting use-
ful video interaction activities from the chaotic log data. However,
most of these works aim at analyzing or visualizing data, rather
than studying interaction data in depth to facilitate video naviga-
tion.

2.2 Enhancing User Engagements
Researchers have found that video production affects user en-

gagement to some extent [12], since user interacting experience
with video depends on the style of video production. As a result,
some user-friendly video productions have been designed to en-
hance user engagement. Pongnumkul et al. [17] propose a content-
aware dynamic timeline control which decouples video speed and
playback speed to deal with the problem that video frames flash
too fast when sudden jumps occur. Uchihara et al. [19] present
a hierarchical prefetching asynchronous streaming technology that
considers a video-scene structure to improve user interacting ex-
perience when the network speed is slow. To deal with the same
problem, Carlier et al. [4] propose a different approach whereby
the prefetch hit rate is improved by biasing the users’ seeking to
prefetched content, through changing the video player user inter-
face. A new video interaction model presented in [6] helps people
quickly browse videos with predefined semantic rules from their
preliminary result of user study. Our work contributes the current
research about enhancing user engagement by providing automat-
ed navigation suggestions when users jump back on video progress
bar.

2.3 Facilitating Video Navigation
Several previous works focus on the specific research of video

navigation in MOOCs. For example, Yadav et al. [21] design a
system that provides nonlinear navigation in educational videos,
which utilizes features derived from a combination of audio and vi-
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Table 1: the Description of the Dataset

Course Category Type Number

Science

Video Total # 791
Avg. length 303.71

User
Total # 26,487

Max #users/course 12,989
Min #users/course 7,590

Complete-jump
Total # 112,854

Max #Cjs/course 52,939
Min #Cjs/course 27,316

Non-science

Video Total # 438
Avg. length 635.28

User
Total # 8,598

Max #users/course 5,126
Min #users/course 1,540

Complete-jump
Total # 7,569

Max #Cjs/course 2,802
Min #Cjs/course 2,012

sual content of a video. Carlier et al. [5] collect viewing statistics
as users view a video, and use these data to reinforce the recom-
mendation of viewports for users. Kim et al. [13] present a 2D
video timeline with an embedded visualization of collective nav-
igation traces and a visual summary representing points with fre-
quent learner activity. To the best of our knowledge, there was
little work combining video content and user preferences to predict
and suggest positions in timeline for video navigation.

3. DATASET

3.1 Data Description
Our study is based on the data from XuetangX, one of the largest

MOOC platform in China. XuetangX, being in partnership with
edX, was launched in October 2013 and up to now, it has offered
808 courses and attracted more than 5,900,000 registered user-
s. These courses cover various fields like computer science, eco-
nomics, business, electronics, art, history, etc. The dataset used in
this study includes six courses from XuetangX which are opened
during Sep. 2015 to Dec. 2016—i.e., Financial Analysis and
Decision Making (FAD), Data Structure (DS), Principle of Cir-
cuits (PC), Japanese Language and Culture (JLC), the Aesthetic-
s of Modern Life (AML), Chinese Ancient Civilization Etiquette
(CACE). These courses can be categorized into two types: sci-
ence (Computer Science, Electronic Engineering and Economics)
vs. non-science (Language, Art and Culture) courses. The number
of lecture videos of each course varies from 49 to 489. The length
of each video is ranging from 1 minute to 30 minutes. Overall, the
number of registered users for the science courses is larger than that
of the non-science courses. Table 1 lists statistics of the dataset.

3.2 Data Preprocessing
Now we introduce how we preprocess the dataset. To begin with,

we first give the definition of the concept Complete-jump (Cj).

Definition 1. Complete-jump. A complete-jump consists of one (or
multiple) jump-back actions by the same user on the same lecture
video, aiming to find the right position to rewind. We use the tuple
(u, v, ps, pe) to denote a complete-jump that user u jumps back
from start position ps to end position pe in video v.

Please note that in the definition, the complete-jump may consist
of multiple jump-back actions, which means that the user may jump

back to a position of no interest and continue to seek for the posi-
tion that she wants to replay. This also implies that in a complete-
jump behavior, there might be a jump-forward action. For exam-
ple, the user jumps back far away and then wants to jump forward
a bit to correct it. We keep all the video interaction related action-
s, including playing video, pausing, jumping and stopping video.
The complete-jump behavior actually cannot be obtained straight-
forwardly. We need to figure out which complete-jump behavior a
specific jump-back action belongs to, or similarly how many jump-
back actions construct a complete-jump behavior. We design an
algorithm based on deterministic finite automaton to reconstruct
them. First, we introduce three atomic events of which a complete-
jump consists:

Jumping back (Jb): When a user drag the current cursor (ps) or
click on the progress bar of the video to go to a previous position
(pe) (pe<ps), then we say there is a jumping back event.

Jumping forward (Jf): When a user drag the current cursor (ps) or
click on the progress bar of the video to go to a position afterwards
(pe), i.e., (pe>ps), then we say there is a jumping forward event.

Short watching (Sw): After jumped to a position in the video, the
user usually would take a look (for seconds) to see whether this
position is the desired one. We call this event as a short watching
event. Each Sw has a duration period between two jumping events,
i.e., from t1 to t2, where t1 is the time at which the first jumping
event occurs and t2 the next jumping. The duration should be no
longer than tmax (t2-t1≤tmax). In our experiments, we tentatively
set tmax=10 seconds.2

Based on the above defined events, we use a deterministic finite
automaton (DFA) to construct the complete-jump behaviors. Fig-
ure 2a illustrates the state transition in the DFA. In total, there are
four states: Ready, Record, Check, Dump. When the state is Ready,
it stays until receives a Jb or Jf event, then the state transforms to
Record. At the Record state, it maintains a stack. When getting
the Jb, Jf and Sw events, it pushes all the events into the stack. If
there comes some other events, it goes to Check state. At the Check
state, we check ps of the start position of the event in the bottom
of the stack, and pe of the end position of the event at the top of
the stack. If pe>ps, we say that the sequence of events in the stack
constitute a jump-forward behavior, which is not the focus of this
work. Then the state goes back to Ready. Otherwise, the state goes
to Dump, where we aggregate the sequence of events in the stack
to construct a complete-jump behavior.

Figure 2b shows two basic complete-jump patterns. The first pat-
tern illustrates a kind of complete-jumps that consist of the event
sequence [Jb, Sw, Jb], which means that the user jumps back to a
position and watches from this position for a few seconds, and then
jumps to an earlier position. The second pattern shows a complete-
jump that consists of the event sequence [Jb, Sw, Sf]. In this kind of
scenario, the user jumps to an early position firstly and then jumps
forward to a later position. The two patterns are basic patterns and
can constitute many other patterns by combining together. For ex-
ample, the complete-jump consists of the event sequence [Jb, Sw,
Jb, Sw, Jb] is the combination of two pattern 1s, and the complete-
jump consists of the event sequence [Jb, Sw, Jb, Sw, Jf] is the com-
bination of a pattern 1 and a pattern 2.

4. OBSERVATIONS
In this section, we engage in some high-level investigation of the

factors that cause users to jump to different positions in a video.

2We tried different setting for tmax and empirically selected 10 as
an optimal setting.
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CheckDump

Ready Record

Others Jb/Jf/Sw

Jb/Jf

Others（𝑝𝑒>𝑝𝑠）

（𝑝𝑒>𝑝𝑠）

(a) complete-jump construc-
tion

Sw
Jb

Jb

t1t3t2t4

Jb
Sw

Jf

t1t4t3t2

(b) Two basic complete-jump pat-
terns

Figure 2: The left figure illustrates the construction of complete-
jump behavior based on DFA and the right figure shows two basic
complete-jump patterns. In the first pattern (top), the user jumps
back, watches the video for some time, then jumps back again, and
in the second one (bottom), the user jumps back, watches the video
and jumps forward.
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of the course ’Finanical Analyses and Decisions’

Figure 3: All complete-jumps in a specific video. Horizontal
and vertical axes represent the timeline of the video. A spot at
(x, y) represents a complete-jump from position y to position
x in video timeline. The blue area contains 90% spots in the
figure.

The investigation is conducted from two perspectives: (1) General
performances: what is the general performance when users jump
back? How does the general performance vary in different courses
and videos? (2) User preferences: Does users have personal pref-
erences when they jump back? Strong or weak? When or how they
show their preferences?

4.1 General performances
To provide a clear view of users’ general performance in a video,

we plot all the complete-jumps of a selected video in Figure 3. A
spot (x, y) in Figure 3 represents a complete-jump from position y
to position x in the timeline of the video. We see that most spots are
close to the diagonal. It means that users usually do not rewind far
away from the current position. We call the time duration between
the start position and end position as jump span. In this example,
the jump span of 90% complete-jumps are smaller than 230 sec-
onds, shown as the blue area. This phenomenon also exists in other
videos.

Now we describe the investigation results about the differences
of general performances in two levels of granularity:
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Figure 5: The distribution of different percentiles for jump span
in different video length groups. Y-axis: position of jump span
percentiles. X-axis: video groups of different length.

By course. What are the differences of the general jump-back
patterns between different courses? Figure 4 shows the results
from three aspects: degree of complete-jump activity, average start
position location and jump span median. Of the six courses in
Figure 4, the first three are non-science courses (JLC, AML, ACE),
and the other three are science courses (FAD, PC, DS). Figure 4a
shows the degree of complete-jump activity, which is counted as
the average number of complete-jumps per minute per user of all
the videos in one course. We see that the complete-jump activity
of science courses is much more active than that of non-science
courses. This probably is because science courses are relative
more difficult than non-science courses. Users need to study some
videos multiple times in order to understand the content. Figure 4b
is the average start positions in percentage of video length for each
course. It shows that users in non-science courses tend to rewind
from the first half of a video, while users in science courses tend
to minimize the rewind and only jump back to previous part of the
video. Figure 4c shows the jump span medians for each course.
The jump span medians of non-science courses are less than 26
seconds while the jump span medians of science courses are more
than 28 seconds. It indicates that users of science courses are likely
to rewind farther than those of non-science courses.

By video. The lengths of different videos vary a lot. We are
interested in knowing whether the length of a video has effect on
the complete-jump behavior. Figure 5 shows the correlation be-
tween video length and jump span. We group the videos by length
in every 100 seconds, and examine the distribution of jump span in
different video groups. The distribution is represented by its 25th,
50th, 75th and 90th percentile of jump span. The results in figure
5 can be summarized as follows: (1) jump span is positively cor-
related with the length of videos. (2) the effects of video length
are different on complete-jumps with short and long jump span.
Complete-jumps with longer jump span are more easily to be af-
fected by video length.

4.2 User preferences
Different individual users would have different jump-back pat-

terns. For example, patient users are likely to reply from a farther
away position than impatient users. In order to catch users’ prefer-
ences, we categorize users into different types based on their jump
span records leveraging k-means clustering.
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Figure 4: General complete-jump performance comparison in different courses. Y-axis: (a) the number of complete-jumps per minute per
user of all videos in one course, (b) average start position location in percent of each course, (c) jump span median of each course. X-axis:
the label of six courses.
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Figure 6: Cluster users into five categories by their complete-
jump records. Y-axis: the probability of different jump spans.
X-axis: jump span (in second). Category 1, 2, 3 represent users
that have obvious preference, while category 4 and 5 represent
users that almost have no preference.

Figure 6 plots the distributions of the five categories of users
based on their jump span records. Category 1, 2 and 3 have sharp
peaks in their distributions. It means that users of these three cat-
egories have clear preference when they jump back— users of cat-
egory 1 prefer to jumping back to 10 seconds ago, while users of
category 2 and 3 have a preference to jump back farther away (17
seconds and 20 seconds, respectively). Users of the rest two cat-
egories (4 and 5) exhibit a relatively flat distribution. Their jump
back behavior is more or less unpredictable.

5. AUTOMATED NAVIGATION SUGGES-
TION

In this section, we formally formulate the automated navigation
suggestion problem. We first introduce an approach to segment
videos, which is the basis for the following navigation suggestion
task. Then, we give the problem definition.

5.1 Problem Formulation
It is not desirable to suggest a position in the middle of two con-

secutive words, for example a position between two words of a
phrase. Before making the suggestion, we first segment each video
into snippets using the transcript of each video. Specifically, each

In the next ninth economic activity

The enterprise has paid 4,000,000 yuan

What is the money used for

Of which 2,500,000 yuan is paid for the expenditure of sales department

1,500,000  for the expenditure of administrative department

…
…

0 s

30 s

Figure 7: Distribution of transcript sentences (green squares) in
the timeline (the vertical line). If the interval time between two
consecutive sentences exceed a predefined threshold, a breakpoint
(red triangles) will be set there.

video has a corresponding transcript. Each sentence in the tran-
script is time-stamped with start time and end time. There is al-
so duration time between two sentences, which varies in length a-
mong sentences. Figure 7 plots the time distribution of sentences
in an example transcript. We set a breakpoint in the middle of t-
wo sentences when the duration time between them is longer than
a threshold ∆t. The threshold is selected according to the follow-
ing principles: (1) to result in more effective complete-jumps. A
complete-jump is called effective when its start position and end
position are located in different segments. (2) to result in more
non-empty segments. A segment is called non-empty when it con-
tains at least one start position or end position of some complete-
jumps. To balance these two principles, we set harmonic mean as
the objective function to select ∆t:

argmax
∆t

2
Re_cj · Rn_s

Re_cj + Rn_s
(1)

where Re_cj is the ratio of effective complete-jumps and Rn_s is
the ratio of non-empty segments.

After segmentation, a video is partitioned into a sequence of
segments [s0, s1, s2, ..., sn]. Now, our problem is to rank those
segments and make suggestions to a user when she is planning to
jump back. More specifically, when a user click the cursor on the
progress bar of video, it triggers a navigation suggestion. Formal-
ly, given a video v, a user u, the start position in segment si, the
objective is to train a model to maximize the probability that user u
would jump back to segment sj of video v, i.e.,

argmax
Θ

P (sj |u, v, si; Θ) (2)
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where Θ is a set of parameters of the model.

5.2 Feature Representation
Based on the observations in Section 4, we extract features from

both user activity logs and video attributes. To summarize, the
features used in our approach can be grouped into the following
four categories:

Basic features:

• User id: identify a specific user in the dataset, each user has
a unique id.

• Start position id: identify the segment of a video that the
start position locates in, each segment has an unique id.

• End position id: identify the segment of a video that the end
position locates in.

• Start time: the corresponding in-video time of the start po-
sition.

• End time: the corresponding in-video time of the end posi-
tion.

Video: these features describe the videos’ attributes and users’
general performances in videos.

• Video length: length of the video.

• Count: number of complete-jumpsin the video

• Active degree: active degree of complete-jumpsof the video,
counted as ncj,v

nu,v·tv , where ncj,v is the number of complete-
jumps, nu,v is the number of users and tv is the length of the
video.

• Jump span distribution: 25th, 50th, 75th, 90th percentile
of jump spans in the video

Start position: these features describe users’ general perfor-
mances at the specific start position.

• Count: number of complete-jumpsthat start from the posi-
tion.

• Max span: maximum jump span of all complete-jumpsfrom
the start position.

• Min span: minimum jump span of all complete-jumpsfrom
the start position.

• Median: median of jump span of all complete-jumpsfrom
the start position.

• Standard deviation: standard deviation of jump span of all
complete-jumpsfrom the start position.

• Frequent span: top 3 jump span of all complete-jumps.

• Entropy: entropy of jump span: −
∑
xεl P (x)log2P (x).

We divide the jump span in equal-sized areas. l is the list
of time areas, x is one of the time areas and P (x) is the pro-
portion of complete-jumpswhose jump span locate in time
area x.

User preferences: these features describe the preferences of
users.

• Count: number of complete-jumpsthat the user produces.

• Max span: maximum jump span of all complete-jumpsthat
the user produces.

• Min span: minimum jump span of all complete-jumpsthat
the user produces.

• Median: median of jump span of all complete-jumpsthat the
user produces.

• Standard deviation: standard deviation of jump span of all
complete-jumpsthat the user produces.

• Category: user category generated by k-means clustering.

5.3 Suggestion Model
Eq. 2 only gives a general form of the suggestion and it can be

instantiated in different ways. In this paper, we tried logistic re-
gression (LR), Support Vector Machines (SVM), and Factorization
Machines (FM). It seems that FM works the best on our problem.
We now depict how we use FM to make the navigation suggestion-
s. Factorization Machines can leverage the interactions between
variables using factorized parameters. This allows us to learn more
complex interactions between variables.

For each tuple (u, v, ps, pe), we define a set of features and
construct a data instance xi, and compute the suggestion score by:

ŷ(xi) = w0 +

d∑
j=1

wjxi,j +

d−1∑
j=1

d∑
j′=j+1

xi,jxi,j′ 〈pj , pj′ 〉 (3)

where y(xi) ∈ [0, 1] indicates the likelihood of user u jumps to the
corresponding position of xi; pj , pj′ are two k-dimensional laten-
t vectors and 〈pj , pj′〉 models the interactions between variables
xi,j , xi,j′ with the dot product of the two latent vectors:

〈pj , pj′ 〉 =

k∑
l=1

pj,lpj′,l (4)

Given this, Eq.(3) can be also rewritten as:

ŷ(xi) = w0 +
d∑
j=1

wjxi,j +
1

2

k∑
l=1

[( d∑
j=1

pj,lxi,j

)2

−
d∑
j=1

p2
j,lx

2
i,j

]
(5)

where Θ = {w0, w1, ..., wd, p1,1, ..., pd,k} are the model parame-
ters. The model has a closed model equation, and can be learned
efficiently by the gradient descent method, e.g. stochastic gradien-
t descent (SGD), based on a variety of loss functions, like square
loss, hinge loss, etc. Here, we use square loss as loss function and
optimize the model parameters by applying L-2 regularization on
latent vector parameters to overcome the overfitting problem. The
objective function is defined as follows:

O(Θ) =
∑
vi∈V

(
ŷ(xi)− yi

)2
+ λ

d∑
i=1

‖pi‖2 (6)

where λ is a parameter that controls the regularization value. We
adopt stochastic gradient descent method to solve the objective
function. The partial derivative of ŷ(xi) with respect to the model
parameters can be written as:

∂ŷ(xi)

∂θ
=


1, if θ is w0

xi,j , if θ is wj
xi,j

∑d
f=1 pf,lxi,f − pj,lx2

i,j , if θ is pj,l

(7)
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Then the parameters are updated by moving in the opposite di-
rection of the gradient, yielding:

w0 ← w0 − η · 2(ŷ(xi)− yi)
∂ŷ(xi)

∂w0

wj ← wj − η · 2(ŷ(xi)− yi)
∂ŷ(xi)

∂wj

pj,l ← pj,l − η ·
(
2(ŷ(xi)− yi)

∂ŷ(xi)

∂pj,l
+ 2λpj,l

)
(8)

where η ∈ R+ is the learning rate for gradient descent. Given a
training dataset, we iteratively update each parameter according to
the gradient until convergence or the maximum number of itera-
tions is reached. Then we can obtain the training model parameters
Θ = {w0, w1, ..., wd, p1,1, ..., pd,k}.
Navigation Suggestion. Based on users’ historical data, we use s-
tochastic gradient descent (SGD) to train a factorization machine
model and then employ the trained model to make suggestions
when a user trigger a potential suggestion (clicking the cursor on
the progress bar of a video). We use Eq. 5 to calculate the sugges-
tion score for each segment based on the trained model and then
rank all segments according to the scores. Finally, the top ranked
segments are suggested to the user.

6. EXPERIMENTS
In this section, we present various experiments to evaluate the

effectiveness of the method based on the observations in Section 4.
All of the dataset and codes will be publicly available.

6.1 Experimental Setup
Setting. We split the dataset into training and test sets by time.
The training set is comprised of data collected from the first 80%
period of time of each course, and the test set is comprised of the
data collected from the last 20% period of time of each course. For
example, the course FAD opens on 2015.10.9 and ends on 2016.2.1.
Then we obtain training data ranged from 2015.10.9 to 2016.1.8,
and obtain test data ranged from 2016.1.8 to 2016.2.1. So do the
other courses.
Generating Negative Samples. In our experiment, a positive sam-
ple corresponds to a complete-jump that truly occurs, denoted as
(u, v, ps, pe). For each positive sample, we generate several neg-
ative samples by choosing different pes. Given a ps, there is a list
of pes that users have jumped back to, say, [pe,1, pe,2, . . . , pe,n].
While for a specific complete-jump, there is only one target pe,t
(1 ≤ t ≤ n) that the user truly jumps back to. In the remaining list
of pes, we randomly select m pes to generate negative samples and
m is a tunable parameter in the experiment.

6.2 Performance Evaluation
The experiment is conducted in two stages: predicting stage and

ranking stage. In predicting stage, we predict the probability of
each end position from the same start position. In ranking stage,
we rank the end positions by their probabilities predicted in the
first stage. The result of ranking stage has two usages: (1) evaluate
our method by the measurement hits@n, i.e., the proportion of true
end position ranked in the top n. (2) suggest users the top 3 end po-
sitions for navigation. First, we conduct the predicting experiments
with the following models:

Logistic Regression Classifier (LRC): a logistic regression
model is trained and used to predict the probability of each end
position.

Table 2: Prediction performance of different method on the dataset

Course Model AUC Recall Precision F1-score

Science
LRC 72.46 64.28 25.95 37.37
SVM 71.92 64.06 25.45 36.42
FM 74.02 68.36 27.61 39.28

Non-science
LRC 72.59 72.96 69.23 70.69
SVM 73.52 79.03 68.39 73.28
FM 73.57 79.82 67.56 72.88
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Figure 8: Relative Feature contribution analysis.

SVM: it trains a SVM model to predict predict the probability of
each end position.

Factorization Machines (FM): the same features are used to
train a FM model and we use it to predict the truly end position of
a complete-jump.

We evaluate the performance of different approaches in terms of
Area Under Curve(AUC), Recall(Rec.), Precision(Prec.), and F1-
Measure(F1) [3]. The result is shown in Table 2.

We can see that the FM model has better performance than other
methods. This may be because that there exists correlations among
features from videos, start positions and users. The strength of FM
just lies in capturing this kind of correlations.

Second, we use the predicting result of FM to compare our au-
tomatic suggestion method based on machine learning model with
the baseline method based on frequency through a ranking experi-
ment. In predicting experiment, we get the probability of each end
position for a given complete-jump. Ranking these end positions
by their probabilities produced in the prediction stage, we get an
ordered list of them. The true end position of this complete-jump
is ranked by a certain order in the list. We use hits@n to measure
the suggestion of the true end positions of all complete-jumps. In
the method based on frequency, we rank end positions by their fre-
quency for a given complete-jump, and also use hits@n to measure
the suggestion of the true end positions of all complete-jumps. Ta-
ble 3 shows the result of the ranking experiment. We can see that
our method based on machine learning model clearly outperforms
the method based on frequency both in science courses and non-
science courses.

Feature Contribution Analysis. Here we examine the contribu-
tion of different categories of features: users’ general performances
on videos (V), users’ general performances at a specific position (P)
and the preferences of users (U). First, we use all three categories of
features to train a FM model. Then we respectively remove one of
the three categories of features, denoted as FM-V, FM-P and FM-
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Table 3: Ranking performance of our method based on FM model
and baseline method based on frequency with the measurement of
hits@n

Course Method n = 1 n = 2 n = 3 n = 5

Science
Baseline 33.21 53.21 66.15 81.99

FM 37.05 60.40 76.04 89.59

Non-science
Baseline 39.26 62.61 76.64 91.30

FM 42.25 72.42 88.43 96.05

U. In Figure 8, we regard the performance of all features as 100,
and calculate the relative performance of each category of features.
We can observe clear drop on the performance when ignoring each
category of features. This indicates that our method works well by
combining different features and each category of features in our
method contributes improvement in the performance.

7. CONCLUSION
Summary. In this paper, we studied an interesting problem of au-
tomated navigation suggestions in MOOCs, which aims at deeper
interactions between the MOOC systems and users. We use a large
collection of data from the courses of Xuetangx.com, providing
investigating on jump-back behaviors from different perspectives.
We found several interesting patterns and revealed the main factors
that influence users’ navigation behavior. Based on the discover-
ies, we developed a methodology aiming to understand the user
intention and to suggest the best positions for a jump-back. Our
experiments validate the effectiveness of the proposed method. We
are also applying the method to a real online system and expect to
have the function online very soon.

Future Research. As for the future work, it is interesting to take
account of dynamic information, for example, the dynamic behav-
iors of the user before a jump-back. It is also interesting to explore
the influence of visual information of the videos. For the predic-
tion model, it is also helpful to design a better predictive model
with higher accuracy.
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