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Graph

Social Network Recommender System Knowledge Graph

“The number of graph neural network papers in this journal has grown as the field matures. 
We take a closer look at some of the scientific applications.”

1. The graph connection. Nature Machine Intelligence 4, 187–188 (2022). https://doi.org/10.1038/s42256-022-00476-6

• Graph data exists everywhere

• WeChat: 1.2 billion users
61 billion links

• Alibaba: 2.3 billion trans. on 11/11 • Wikidata: >1.4 billion triples
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Machine Learning on Graphs
• ML tasks on Graphs: 

– Node classification
• Predict a type of a given node 

– Link prediction
• Predict whether two nodes are linked 

– Graph classification
• Predict the properties of molecules

– Community detection
• Identify densely linked clusters of nodes 

Learning on Graphs with Graph Neural Networks (GNNs)
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• A question: Are you using GNNs?
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Graph Neural Networks
• Layer-wise propagation:

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR ’17.
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Graph Neural Networks
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• Neighborhood Aggregation: 
– Aggregate neighbor information and pass into a neural network
– It can be viewed as a center-surround filter in CNN---graph convolutions!

𝒉! = 𝑓(𝒉" , 𝒉# , 𝒉$ , 𝒉% , 𝒉&)
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GCN: Graph Convolutional Networks

𝒉!" = 𝜎(𝑾" &
#∈% ! ∪!

ℎ#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

the neighbors of node 𝑣

node 𝑣’s embedding at layer 𝑘

Non-linear activation function (e.g., ReLU)

parameters in layer 𝑘
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1. Kipf et al. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017
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GCN Performance
• 2-layer GCN!𝒁 = softmax /𝑨 𝜎 /𝑨𝑿𝑾' 𝑾(
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GNN History

scalable

deeper

architecture

self-supervised
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Do we really make big progress?
• Using “heterogeneous graph neural networks (HGNN)” as an example
• Unrobust results with biased setting on small data

1. Lv et al. Are we really making much progress? Revisiting, benchmarking and refining the Heterogeneous Graph Neural Networks. KDD’21.

We tested 12 HGNN algorithms

* With a fairly proper setting, the results are even reversed! 
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Challenges

• Challenge 1: Robustness
• Challenge 2: Unlabeled data
• Challenge 3: Easy-to-use Tool
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Overview

• Semi-supervised Learning on Graphs:
– Training data: a small portion of labeled data + lots of unlabeled data
– Robustness: consistency regularization for predictions of different views

• CogDL: A Comprehensive Library for Graphs (Easy-to-use)
• Contrastive Self-supervised Learning on Graphs:

– Training data: all data is unlabeled
– Contrasts the views generated from different augmentations

• Generative Self-supervised Learning on Graphs:
– Training data: all data is unlabeled
– Reconstruction of the input graph (graph structure, node features)
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Semi-supervised Learning on Graphs
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Semi-Supervised Learning on Graphs

Input: a partially labeled &
attributed graph

Output: infer the labels of
unlabeled nodes

?

?

??
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Graph Neural Networks (GNN)

v
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Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In ICLR 2017

𝑯#$% = 𝜎 $𝑨𝑯 # 𝑾 #

Normalized adjacency matrix

𝑯#$% = 𝜎 𝑾𝒍 '
'∈)(+)⋃+

𝑯𝒖
𝒍

𝑁 𝑢 |𝑁(𝑣)|

Representation vector of the 𝑙 + 1-th layer Activation function (e.g. ReLU)

Feature propagation

Message Passing：

GCN：

Non-linear transformation
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Over-fitting problem of GNNs

?

?
??

1
2

3

GNN

𝑯#$% = 𝜎 $𝑨𝑯 # 𝑾 #

Cannot fully leverage the
unlabeled nodes

Training process:

Loss function:

𝒚𝟏"log 3𝒚𝟏 + 𝒚𝟐"log 3𝒚𝟐 + 𝒚𝟑"log 3𝒚𝟑

1. In GNNs, feature propagation is coupled with non-linear transformation.
Increasing layers will introduce unnecessary parameters.

2. GNNs only adopt the supervised cross-entropy loss to guide the model training.

Feature propagation is coupled with
Non-linear transformation
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Graph Random Neural Network (GRAND)
• Random Propagation (DropNode + Propagation):

– Decouple the feature propagation from non-linear feature transformation.

– Propagate feature with a mixed-order adjacency matrix: 𝚷 = ∑!"#$ %
$&%

,𝐀!

– Use DropNode before feature propagation to randomly aggregate neighbors’ features

Random Propagation as graph data augmentation

Augmented featuresMixed-order PropagationDropNode

masksGraph Data

Feng W, Zhang J, Dong Y, et al. Graph random neural networks for semi-supervised learning on graphs[J]. In NeurIPS 2020.
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Graph Random Neural Network (GRAND) (cont.)

Consistency
RegularizationAugmented

features !𝑿
𝑴 Augmentations

Random Propagation

Optimize
the

consistency

Fully leverage the unlabeled data
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Performance of GRAND

Instead of the marginal improvements by
conventional GNN baselines over GCN,
GRAND achieves much more significant

performance lift in all three datasets!

GCNs

Sampling
GCNs

Regularization
GCNs
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Scalability limitation of GRAND

• Random Propagation in GRAND:

• "𝐗(/) is calculated with power iteration:

.𝐗(6) = 𝚷 1𝐗(6), 𝚷 = '
789

)
1

𝑁 + 1
$𝐀7

Weak Scalability:

• Time/Memory complexity:
O 𝐸 + V .

• Random propagation needs 
to be formed  for multiple 
times at each epoch.

$𝐀

1𝐗(6)

$𝐀 $𝐀

Average
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GRAND+: General Idea

• Mini-batch Radom Propagation:
– Select a batch of nodes at each training step, and generate augmented 

features by 

!𝐗1
(/) = $

!∈𝒩!"
𝒛! ⋅ 𝚷(s, v) ⋅ 𝐗! , 𝒛𝒗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛿)

Non-zero elements in 𝚷𝐬

How to efficiently calculate the row vector 𝚷𝐬 ?

𝚷 = '
789

)
1

𝑁 + 1
$𝐀7

DropNode mask

[1] Wenzheng Feng, et al. GRAND+: Scalable Graph Random Neural Networks. In WWW’22.
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GRAND+!Matrix approximation

!

"
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$

%

𝚷𝟏 =
1

𝑁 + 1
'
"#$

%

$𝐀&" Random Walk Probability Diffusion Complexity: 𝑂( 𝐸 )
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𝚷 = %
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+𝐀 = .𝐃)%.𝐀 is random walk
reverse transition matrix.
𝐏 s, v indicates the random 
walk probability from s to 𝑣. 



23

GRAND+!Matrix approximation

!
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$

%

Generalized Forward Push (GFPush)

+𝐀 = .𝐃)%.𝐀 is random walk
reverse transition matrix.
𝐏 s, v indicates the random 
walk probability from s to 𝑣. 
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1

𝑁 + 1
'
"#$

%

$𝐀&"

𝚷 = %
$&%

∑!"#$ ,𝐀!

==
=
=



24

GRAND+: Matrix approximation
• Approximation method:

– GFPush: Generate an error bounded approximation 1𝚷𝐬 for 𝚷𝐬.
– Top-k sparsification: Truncate 1𝚷𝐬 to make it only contains top-k elements.

Approximation row vectors

!"!
!""
!"#
!"$

! " # $ % & '

Sparsified row vectors

!"!(&)

!""
(&)

!"#
(&)

!"$(&)

! " # $ % & '
Top-k

sparsification
GFPush!

"
#

$

%
&

'
9 6 2

2 2 8

1 3 7

3 1 6 6 7 2

5 6 5

7 8 1
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GRAND+: Mini-batch Radom Propagation

• Mini-batch Radom Propagation with Approximation:

.𝐗=
(>) = '

?∈𝒩#
(%)

𝒛? ⋅ 1𝚷(B)(s, v) ⋅ 𝐗?, 𝒛𝒗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛿)

Non-zero elements in .𝚷𝒗
(/)

• Prediction:
G𝐘(>) = MLP(.𝐗=

(>), Θ)

With batch size as b, the time complexity is Ο(𝑏 ⋅ 𝑘), which is independent of graph size

Scalability: Adopt GFPush to approximately calculate the propagation matrix，and
adopt mini-batch method for model training
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GRAND+: Confidence-aware Consistency Regularization

• Confidence-aware Consistency Loss!

Confidence term: Filter out unlabeled nodes that have low confidence

Effectiveness: Further improving prediction performance
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GRAND+ Architecture

GRAND+: Better scalability & generalization capability

Parallelization by OpenMP
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Experiments

Better generalization performance: Achieves
2.3% improvements over GRAND on Pubmed.
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Experiments

Scalability:
• 40 times faster than GRAND on Aminer-CS.
• 8 times faster than FastGCN on MAG.
• 12 times faster than GraphSAINT on MAG.
• Achieves comparable running time and 4.9%

improvement than PPRGo on MAG.  
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Parameter Analysis
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CogDL: A Comprehensive Library for Graph 
Deep Learning

Access the code here GitHub: https://github.com/THUDM/cogdl , 1400+ stars as of April 2023.

https://github.com/THUDM/cogdl
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CogDL – Overview

CogDL aims at providing researchers and
practitioners with easy-to-use APIs, reproducible
results, and high efficiency for most graph tasks
and applications.

Vision

Easy-to-use

Philosophy

Reproducibility Efficiency

[1] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, 
Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, Jie Tang. CogDL: A Comprehensive Library for Graph Deep Learning. In WWW’23. 
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CogDL - A Unified GNN Trainer
• Design a unified Trainer for GNN training

CogDL PyG DGL
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CogDL – Operator Acceleration
• Acceleration for SpMM-like operators

– Design a more balanced strategy for GPU parallel computation
– 1.17x~5.24x Speedup on Reddit/Yelp datasets compared to DGL
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CogDL - Mixed Precision Training
• Support mixed precision training:

– 1.44x~2.02x speedups due to half-precision (FP16) computation

1. Image Credit: https://developer.nvidia.com/blog/video-mixed-precision-techniques-tensor-cores-deep-learning/

2-layer GCNs on the Reddit dataset（single / mixed precision）
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CogDL - Activation Compressed Training
• Support activation compressed training: 

– reduce 6.4x~16x training memory footprints

1. Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. 
GACT: Activation Compressed Training for Generic Network Architectures. In ICML’22.

2-layer GCNs on three datasets: accuracy (%), act memory(MB)
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CogDL – Training on Large-scale Graphs
• Full-batch training on large-scale graphs is unaffordable
• Training GNNs via mini-batch sampling
• Usage: python scripts/train.py --model gcn --dataset reddit --dw cluster_dw

Neighbor Sampling
(NeurIPS ’17)

GraphSAINT
(ICLR ’20)

ClusterGCN
(KDD ’19)

1. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NeurIPS ’17.
2. Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. In KDD ’19.
3. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph sampling based inductive learning method. In ICLR ’20.
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CogDL – Experiment Management
• Hyper-parameter Search

– Integrate optuna for users to enable hyper-parameter search
• Experiment Management

– Support Tensorboard and WandB for logging and debugging

1.Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization framework. In KDD’19. 
2. Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https: //www.wandb.com/ 
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CogDL – Benchmarks
• Easy-to-reproduce benchmarks

– Traditional graph tasks such as network embedding
– Frontier graph benchmarks such as IGB[1], GRB[2], HGB[3]

1. Ziang Li, Ming Ding, Weikai Li, Zihan Wang, Ziyu Zeng, Yukuo Cen, and Jie Tang. Rethinking the Setting of Semi-supervised Learning on Graphs. In IJCAI’22.
2. Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie Tang. Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph 
Machine Learning. In NeurIPS’21 D&B.
3. Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jian-guo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? Revisiting, 
benchmarking and refining the Heterogeneous Graph Neural Networks. In KDD’21.
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Background:
Recently, works have proved that adversarial
attacks can threat the robustness of graph ML
models in various tasks.
Problems:

1. Ill-defined threat model in previous works.
2. Absence of unified and standard evaluation

approach.
Solution: Graph Robustness Benchmark (GRB)
Scalable, general, unified, and reproducible
benchmark on adversarial robustness of graph ML
models, which facilitates fair comparisons among
various attacks & defenses and promotes future
research in this field.

Example of GRB evaluation scenario

Graph Robustness Benchmark: Rethinking and Benchmarking
Adversarial Robustness of Graph Neural Networks
Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Jie Tang

CogDL – GRB
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Contrastive Learning on Graphs
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Paradigm of Graph Contrastive Learning
• The graph contrastive learning 

– 1) generates two views based on different augmentations 
– 2) encodes the graphs of two views
– 3) construct the self-supervised signal via contrast

[1] Wu, Lirong, et al. "Self-supervised learning on graphs: Contrastive, generative, or predictive." IEEE Transactions on Knowledge and Data Engineering (2021).
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Graph Contrastive Learning with Augmentations
GraphCL: a contrastive learning method with augmentations

– (1) propose different graph augmentation strategies
– (2) use projection heads for the graph encoding
– (3) maximizing the consistency 

[1] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen. Graph Contrastive Learning with Augmentations. NeurIPS 2020. 
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Data Augmentation for Graphs
• Focus on three categories of graphs: 

– Biochemical molecules, social networks, image super-pixel graphs
• Propose four graph-level augmentations 
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Role of Data Augmentation
• Contrastive loss curves for different augmentation pairs
• Using the same type gets better performance
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Experimental Results of GraphCL
• Unsupervised representation learning setting
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Bootstrapped Graph Latents (BGRL)
• The characteristics of BGRL:

– Simple graph augmentation
– Not requiring negative samples
– Scale to extremely large graphs

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Rémi Munos, Petar Veličković, Michal Valko. Large-Scale Representation 
Learning on Graphs via Bootstrapping. ICLR 2022. 

Online encoder

Target encoder
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Graph Augmentation of BGRL
• Applying stochastic graph augmentation functions 

– random node feature masking: Bernoulli distribution 
– random edge masking: Bernoulli distribution 

• With fixed hyperparameters for each graph
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BGRL Update Step
• Update the online encoder via gradient descent

• Update the target encoder via EMA

Online encoder

Target encoder
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Experimental Results of BGRL
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Experimental Results of BGRL (cont.)
• Comparison with SOTA methods on ogbn-arxiv and PPI datasets

ogbn-arxiv PPI
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Experiment on MAG240M 
• MAG240M: over 240 million nodes (of which 1.4 million are labeled) 

and 1.7 billion edges
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Graph Contrastive Coding (GCC)
• Problem:

– Learn a function 𝑓 that maps a vertex to a low-dimensional vector
– Structural similarity: map vertices with similar local network topologies 

close in the vector space
– Transferability: compatible with vertices and graphs from various sources, 

even unseen during training time.

[1] Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In KDD’20. 

GCC: Graph Contrastive Coding

Subgraph Instance Discrimination

GCC

Node
Classification

Pre-Training Fine-Tuning
Facebook IMDB DBLP US-Airport

GCC

s

Graph
Classification

Reddit

GCC

s

Similarity
Search

KDD ICDM

GCC…

Hypothesis:
Graph structural patterns are universal and transferable across networks.
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GCC Pre-training
• Pre-training Task: Instance Discrimination
• InfoNCE Loss: output instance representations that are capable 

of capturing the similarities between instances

• Contrastive learning for graphs?
– Q1: How to define instances in graphs?
– Q2: How to define (dis) similar instance pairs?
– Q3: What are the proper encoders? 

• query instance 𝑥1
• query 𝒒 (embedding of 𝑥1), i.e., 𝒒 = 𝑓(𝑥1)
• dictionary of keys 𝒌&, 𝒌%, ⋯ , 𝒌2
• key 𝒌 = 𝑓(𝑥/)



55

GCC Pre-training
• Q1: How to define instances in graphs?
• Q2: How to define (dis) similar instance?
• Q3: What are the proper encoders? 
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GCC Pre-training: Learning Algorithms
• Optimizing Contrastive Loss

– Encoded query 𝒒
– 𝐾 + 1 encoded keys 𝒌$, ⋯ , 𝒌J

End-to-end
(E2E)

Momentum Contrast
(MoCo)

Figure Credit: Momentum Contrast for Unsupervised Visual 
Representation Learning (arxiv.org/abs/1911.05722)
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GCC Fine-tuning: Full v.s. Freezing

Full fine-tuning Freezing fine-tuning

Graph 
Encoder Classifier Label

Full Fine-tuning

Graph 
Encoder Classifier Label

Freezing Fine-tuning

Feature 
Extractor
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GCC Pre-Training / Fine-tuning
• Six real-world information networks for pre-training.

• Fine-tuning Tasks:
– Node classification
– Graph classification
– Top-k Similarity search GCC

Node
Classification

Fine-Tuning
US-Airport

GCC

s

Graph
Classification

Reddit

GCC

s

Similarity
Search

KDD ICDM

GCC…

GCC: Graph Contrastive Coding

Subgraph Instance
Discrimination

Pre-Training
Facebook IMDB DBLP
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Task 1: Node Classification
• Setup

– US-Airport 
– AMiner academic graph

GCC

Node
Classification

US-Airport
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Task 2: Graph Classification
• Setup

– COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M

GCC

s

Graph
Classification

Reddit
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Task 3: Top-k Similarity Search
• Setup

– AMiner academic graph

GCC

s

Similarity
Search

KDD ICDM

GCC
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Summary of GCC

GCC: Graph Contrastive Coding

Subgraph Instance
Discrimination

GCC

Node
Classification

Pre-Training Fine-Tuning
Facebook IMDB DBLP US-Airport

GCC

s

Graph
Classification

Reddit

GCC

s

Similarity
Search

KDD ICDM

GCC…

• We study the pre-training of GNN with the goal of characterizing and transferring 
structural representations in social and information networks. 

• We present Graph Contrastive Coding, which is a graph-based contrastive learning 
framework to pre-train GNN. 

• The pre-trained GNN achieves competitive performance to its supervised trained-from-
scratch counterparts in 3 graph learning tasks on 10 graph datasets.
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Generative Learning on Graphs

[1] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, Yizhou Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. In KDD’20. 
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Web-Scale Graphs

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook
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GNN Pre-Training

1.Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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GPT-GNN: Generative Pre-Training of GNNs

• Model the graph distribution by learning to reconstruct the input graph.
– Factorize the graph likelihood into two terms: 

• Attribute Generation
• Edge Generation

Design an efficient GNN framework to optimize 

attribute and edge masked
input graph

𝑖

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.

Lose the dependency between 𝑋𝑖 and 𝐸𝑖
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GPT-GNN: Generative Pre-Training of GNNs

• Model the graph distribution by learning to reconstruct the input graph.
– Factorize the graph likelihood into two terms: 

• Attribute Generation: given observed edges, generate node attributes
• Edge Generation: given observed edges and generated attributes, generate masked edges

Design an efficient GNN framework to optimize 

attribute and edge masked
input graph

𝑖

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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GPT-GNN: Generative Pre-Training of GNNs

GPT-GNN

attribute
generation

attribute and edge masked
input graph

GPT-GNN

node
classification

the same input graph or graphs of the same domain

link
prediction recommendation

…

Pre-Training Fine-Tuning

GPT-GNN GPT-GNN

+

-

+
?

?

?
?

edge
generation
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GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

• Attribute Generation
• Edge Generation

• Inferring the topic of each paper
• Inferring the venue of each paper
• Author name disambiguation

Tasks:

• Data: Microsoft Academic Graph

Base GNN model: Heterogeneous Graph Transformer (HGT)

1.Ziniu Hu et al. Heterogeneous Graph Transformer. WWW 2020 (most cited in WWW’20).

https://arxiv.org/pdf/2003.01332.pdf
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GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

CS Academic Graph CS Academic Graph

Med, Bio, Physics…

CS before 2014

CS Academic Graph

CS after 2014

Med, Bio, Physics…
before 2014 CS after 2014

No Transfer:

Field Transfer:

Time Transfer:

Time + Field
Transfer:

• Data: Microsoft Academic Graph

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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GPT-GNN: Generative Pre-Training of GNNs

• All pre-training frameworks help the
performance of GNNs
o GAE, GraphSage, Graph Infomax
o GPT-GNN

• GPT-GNN helps the most by achieving a
relative performance gain of 9.1% over the 
base model without pre-training

• Both self-supervised tasks in GPT-GNN
help the pre-training framework
o Attribute generation
o Edge generation

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

• Attribute Generation
• Edge Generation

• Inferring the topic of each paper
• Inferring the venue of each paper
• Author name disambiguation

Tasks:

• Data: Microsoft Academic Graph

Base GNN model: Heterogeneous Graph Transformer (HGT)

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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The Promise of Graph Pre-Training!
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The Promise of Graph Pre-Training!

During fine-turning

The GNN model w/o pre-training with 100% training data
VS

The pre-trained GNN model with 10-20% training data

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
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Powering the Microsoft Office Graph

One enterprise graph (monthly)
• 1.6 billion entities

o 7 types of entities
• 7.8 trillion edges 

Prec. Recall F1 Accu.

GraphSage +0.00 +0.09 +0.06 +0.03

Graph Attention +0.01 +0.11 +0.08 +0.03

HGT +0.01 +0.30 +0.19 +0.07

Pre-trained 
HGT on 

one 
enterprise

Other 
enterprise 

customers w/o 
data access

Anomaly detection on Microsoft Office Graph
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GPT-GNN: Generative Pre-Training of GNNs

GPT-GNN

attribute
generation

attribute and edge masked
input graph

GPT-GNN

node
classification

the same input graph or graphs of the same domain

link
prediction recommendation

…

Pre-Training Fine-Tuning

GPT-GNN GPT-GNN

+

-

+
?

?

?
?

edge
generation
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Graph AutoEncoder

• 𝐺 = (𝑉, 𝐴, 𝑋)
– 𝐴 ∈ 0, 1 %×%: adjacency matrix 
– 𝑋 ∈ ℝ%×L: node features

• Encoding
– 𝐻 = 𝑓M 𝐴, 𝑋

• Decoding
– 𝐺N = 𝑓O 𝐴,𝐻

• Reconstruction objectives 
– graph structure (link)
– node features 

𝑿 𝑨

Encoder

𝑯

Decoder

$𝑿 $𝑨
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Reconstruction
Target

Reconstruction 
Method

Decoding 
Strategy

Error 
Function
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GraphMAE
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Masked Feature Reconstruction

– Feature construction as the learning objective
– Masked feature reconstruction

1. Sample a subset of nodes !𝑉 ⊂ 𝑉
2. Replace node feature with [MASK]

• 𝐻 = 𝑓!(𝐴, (𝑋)
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GNNs as Decoder with Re-Mask Decoding

• s

• Use a GNN as the decoder
– A more expressive decoder helps reconstruct low informative features

• Re-mask node features before decoder
– Re-mask the “masked” nodes

• 1𝐻 = Remask 𝐻 , 𝑍 = 𝑓O(𝐴, 1𝐻)
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Scaled Cosine Error as the Criterion

• MSE fails, especially for continuous features 
– Sensitivity & low selectivity

𝐿PQM =
1
| c𝑉|

'
?'∈.R

𝑥S − 𝑧S T

• Scaled cosine error as the criterion 
– Cosine error & scaled coefficient
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Reconstruction
Target

Reconstruction 
Method

Decoding 
Strategy

Error 
Function
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GraphMAE
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Downstream Tasks

85

Node Classification Graph Classification

Code: https://github.com/THUDM/GraphMAE

Transfer Learning

https://github.com/THUDM/GraphMAE
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1. Generative SSL on Graphs vs. Contrastive Learning on Graphs
2. Identify the common issues in current graph autoencoders
3. Present a simple masked graph autoencoder—GraphMAE

Code: https://github.com/THUDM/GraphMAE

Summary of GraphMAE

https://github.com/THUDM/GraphMAE
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Reflection & Motivation

• Problems in masked-feature-prediction
– more sensitive to the discriminability of input features.

- raw : the original node features
- w/ PCA : the input features are reduced to 50-dimensional vectors using PCA 

Resolution:  imposing regularization on target reconstruction 
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GraphMAE2
A Decoding-Enhanced Masked Self-Supervised Graph Learner.

10:00-10:10 AM
Thursday, May 4, 2023
@Classroom 107
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GraphMAE2 Framework

• Multi-view random re-mask decoding
• Latent representation prediction
• Scaling to large-scale graphs with local clustering
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– Avoid representation overfitting to input features
– Randomly re-mask representations/code

• 1𝐻 = Remask 𝐻 , 𝑍 = 𝑓O(𝐴, 1𝐻)

– Multiple re-masking 
• K-different randomly re-masking 
• better generalization and effectiveness

Multi-View Random Re-Mask Decoding

(fixed re-mask 
in GraphMAE)
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• s

• Additional informative prediction target
– Minimally affected by input features & and GNN as a denoiser

• Predicting masked latent representations
– A (momentum) target generator 𝑓UVWXYU · 𝜉)
– Prediction: 𝑍̅ = 𝑓M mask 𝐺 ; 𝜃
– Latent target: l𝑋 = 𝑓UVWXYU 𝐺; 𝜉

• 𝜉 ← 𝜏 ⋅ 𝜉 + 1 − 𝜏 ⋅ 𝜃

Latent Representation Prediction
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Experiments
• Embedding evaluation with linear probing
• On large-scale graphs

Code: https://github.com/THUDM/GraphMAE2

https://github.com/THUDM/GraphMAE2


93Code: https://github.com/THUDM/GraphMAE2

- Setting: training a linear classifier
- Results:

1. GraphMAE2 consistently outperforms all baselines
2. Random-Init models can achieve decent results

Linear Probing

https://github.com/THUDM/GraphMAE2
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Ablation Studies

Code: https://github.com/THUDM/GraphMAE2

Component Ablation of GraphMAE2
- GraphMAE2 surpasses all baselines with the same sampling strategy
- Using local clusters brings further improvement

https://github.com/THUDM/GraphMAE2
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GraphMAE2 Summary

• Analyze the problem in masked feature prediction
• Present GraphMAE2 with improved decoding strategies
• GraphMAE2 achieves promising performance in large-scale graphs

GraphMAE2: https://github.com/THUDM/GraphMAE2
GraphMAE:  https://github.com/THUDM/GraphMAE

https://github.com/THUDM/GraphMAE2
https://github.com/THUDM/GraphMAE
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Generative Learning on Graphs

GPT-GNN
(KDD’20)

GraphMAE
(KDD’22)

GraphMAE2
(WWW’23)



97

Pre-Train Graphs with Language/Image/Knowledge

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook
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Autoimmunity
Insulin resistance

Nephropathy

Pregnancy

Diabetic retinopathy

Kidney disease

Insulin

Streptozotocin

Cytokine

Glucagon

Insulin glargine

Pancreas transplantation

Insulin lispro

Insulin aspart
Physical exercise

Regular insulin

Insulin degludec

Pramlintide

Edmonton protocol

Insulin glulisine

Acarbose

Diabetic diet

Miglitol
Autoimmune disease

Microalbuminuria

Albuminuria

Ketoacidosis

Weight loss

Polyuria

Polydipsia

Glycosuria

Polyphagia

Muscle cramp

Blurred vision

Diabetes

Cause Symptom Treatment

Neural Symbolic Reasoning

98
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Cause Symptom Treatment

Neural Symbolic Reasoning
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GNNs vs. LLMs
GNN: 

GPT-GNN
(KDD’20)

GraphMAE
(KDD’22)

GraphMAE2
(WWW’23)

LLM: 

https://github.com/THUDM

https://github.com/THUDM
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English: better than GPT-3/OPT/PaLM
on MMLU, LAMBADA, BIG-bench-lite

Since Aug., 2022, requests from
~1000 orgs in 69 countries
•Google
•Microsoft
•Facebook
•Stanford
•MIT
•UC Berkely
•CMU
•Harvard
•Princeton
•Yale
•Cornell
•UIUC
•Cambridge
•Oxford

•Huawei
•Alibaba
•Tencent
•Baidu
•Meituan
•Bytedance
•Didi
•Xiaoice
•Xiaodu
•Xiaomi
•Xiaopeng
•Youdao
•Face++
•Ping An Cap

•Peking U.
•Zhejiang U.
•Shanghai JT U.
•Fudan U.
•USTC
•U of CAS
•Wuhan U.
•Naikai U.
•Hongkong U.
•CUHK
•HKUST
•BAAI
•Zhejiang Lab
•Shanghai AI Lab

Chinese: better than ERNIE 260B & YUAN 245B

GLM-130B
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GLM-130B

https://crfm.stanford.edu/helm, 2023.0308

The only model from academia was covered by Stanford’s HELM

1.Liang et al., Holistic Evaluation of Language Models. arXiv: 2211.09110

https://crfm.stanford.edu/helm
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GLM-130B

1.Liang et al., Holistic Evaluation of Language Models. arXiv: 2211.09110
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GLM-130B

1.Liang et al., Holistic Evaluation of Language Models. arXiv: 2211.09110
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chatglm.cn

Alpha/beta test from Mar. 14, 2023
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An Open ChatGLM-6B

• Mar. 14, 2023, open-soured model

• Mar. 16, 2023, #1 on GitHub Trending

• Mar. 18-30, #1 on Hugging Face Trending

• Apr. 30, 2023, 21.8k stars in GitHub

1M downloads in HF

Screenshots on Apr. 30, 2023

https://huggingface.co/THUDM
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Thank you！

https://github.com/THUDMslides
@thukeg

https://github.com/THUDM

