

Self-supervised Learning and Pre-training on Graphs (GNNs)

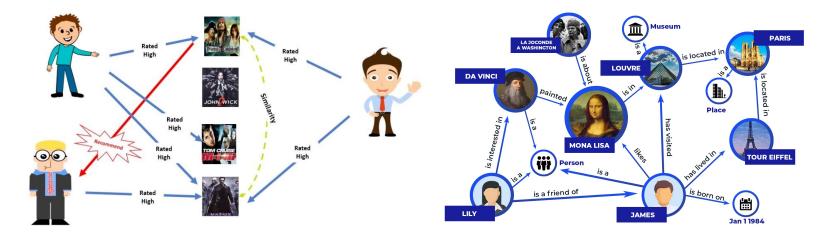
Yukuo Cen, Yuxiao Dong, Jie Tang Knowledge Engineering Group (KEG) Department of Computer Science and Technology Tsinghua University

Download the slides here

Graph

Graph data exists everywhere

Social Network
• WeChat: 1.2 billion users
61 billion links



Recommender System

Alibaba: 2.3 billion trans. on 11/11

Knowledge Graph
• Wikidata: >1.4 billion triples

"The number of **graph neural network** papers in this journal has grown as the field matures. We take a closer look at some of the **scientific applications**."

1. The graph connection. Nature Machine Intelligence 4, 187–188 (2022). https://doi.org/10.1038/s42256-022-00476-6

Machine Learning on Graphs

- ML tasks on Graphs:
 - Node classification
 - Predict a type of a given node
 - Link prediction
 - Predict whether two nodes are linked
 - Graph classification
 - Predict the properties of molecules
 - Community detection
 - Identify densely linked clusters of nodes

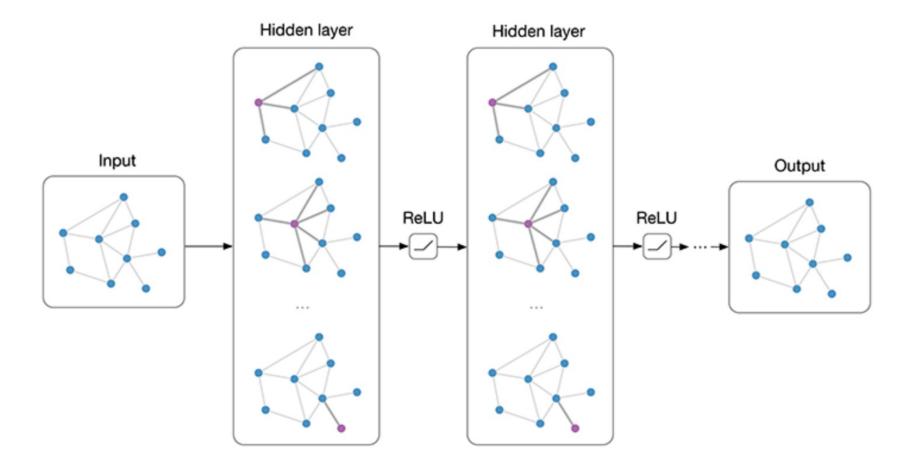
Learning on Graphs with Graph Neural Networks (GNNs)

• A question: Are you using GNNs?

Graph Neural Networks

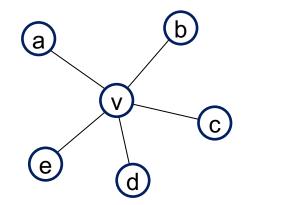
• Layer-wise propagation:

$$f(H^{(l)}, A) = \sigma \left(A H^{(l)} W^{(l)} \right)$$



Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR '17.

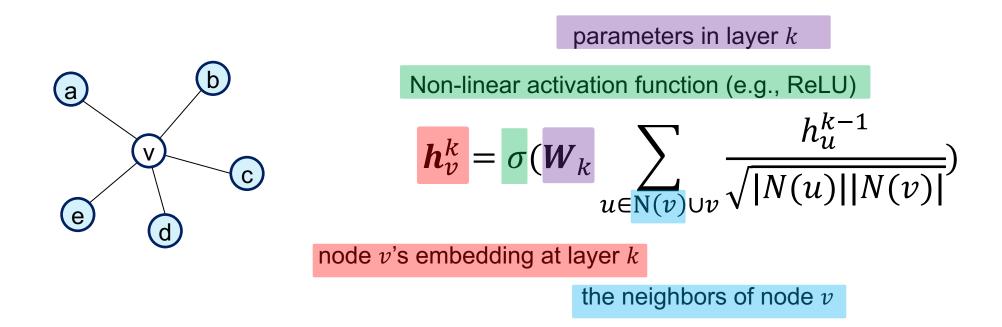
Graph Neural Networks



$$\boldsymbol{h}_{v} = f(\boldsymbol{h}_{a}, \boldsymbol{h}_{b}, \boldsymbol{h}_{c}, \boldsymbol{h}_{d}, \boldsymbol{h}_{e})$$

- Neighborhood Aggregation:
 - Aggregate neighbor information and pass into a neural network
 - It can be viewed as a center-surround filter in CNN---graph convolutions!

GCN: Graph Convolutional Networks



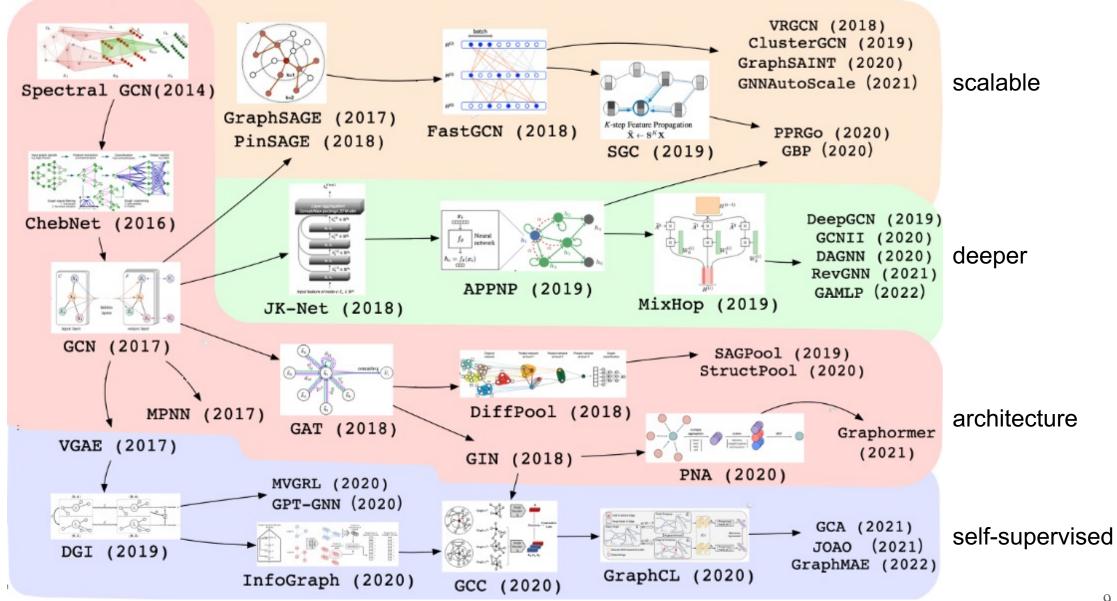
GCN Performance

• 2-layer GCN: $Z = \operatorname{softmax}(\widetilde{A} \sigma(\widetilde{A}XW_0)W_1)$

Dataset	Туре	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

GNN History



Do we really make big progress?

- Using "heterogeneous graph neural networks (HGNN)" as an example
- Unrobust results with biased setting on small data

GCN GAT

	HAN	J [36]		GTN [43]		RSHN [45]		HetGN	IN [44]		MAGN	IN [12]
Dataset	AC	CM	DBLP	ACM	IMDB	AIFB	MUTAG	BGS	MC MC	(10%)	MC ((30%)	DB	BLP
Metric	Macro-F1	Micro-F1	Macro-F1	Macro-F1	Macro-F1	Accuracy	Accuracy	Accuracy	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
model*	91.89	91.85	94.18	92.68	60.92	97.22	82.35	93.10	97.8	97.9	98.1	98.2	93.13	93.61
GCN*	89.31	89.45	87.30	91.60	56.89	-	-	-	-	-	-	-	88.00	88.51
GAT*	90.55	90.55	93.71	92.33	58.14	91.67	72.06	66.32	96.2	96.3	96.5	96.5	91.05	91.61
model														

We tested 12 HGNN algorithms

* With a fairly proper setting, the results are even reversed!

1. Lv et al. Are we really making much progress? Revisiting, benchmarking and refining the Heterogeneous Graph Neural Networks. KDD'21.

Challenges

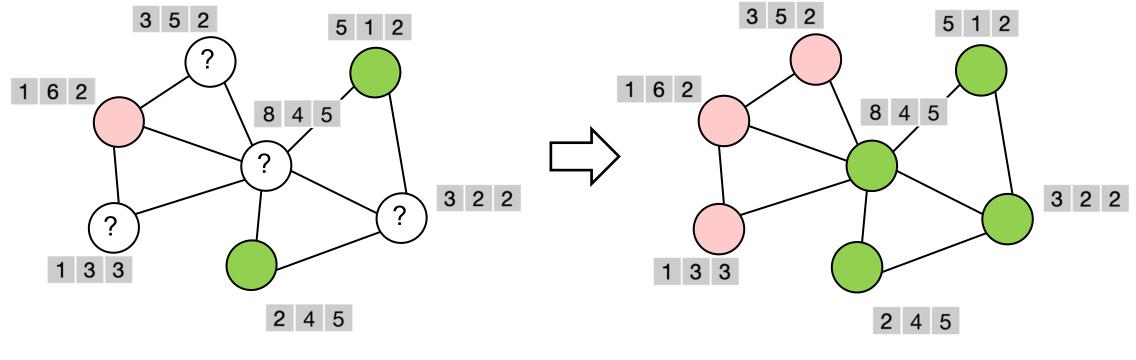
- Challenge 1: Robustness
- Challenge 2: Unlabeled data
- Challenge 3: Easy-to-use Tool

Overview

- Semi-supervised Learning on Graphs:
 - Training data: a small portion of labeled data + lots of unlabeled data
 - Robustness: consistency regularization for predictions of different views
- CogDL: A Comprehensive Library for Graphs (Easy-to-use)
- Contrastive Self-supervised Learning on Graphs:
 - Training data: all data is unlabeled
 - Contrasts the views generated from different augmentations
- Generative Self-supervised Learning on Graphs:
 - Training data: all data is unlabeled
 - Reconstruction of the input graph (graph structure, node features)

Semi-supervised Learning on Graphs

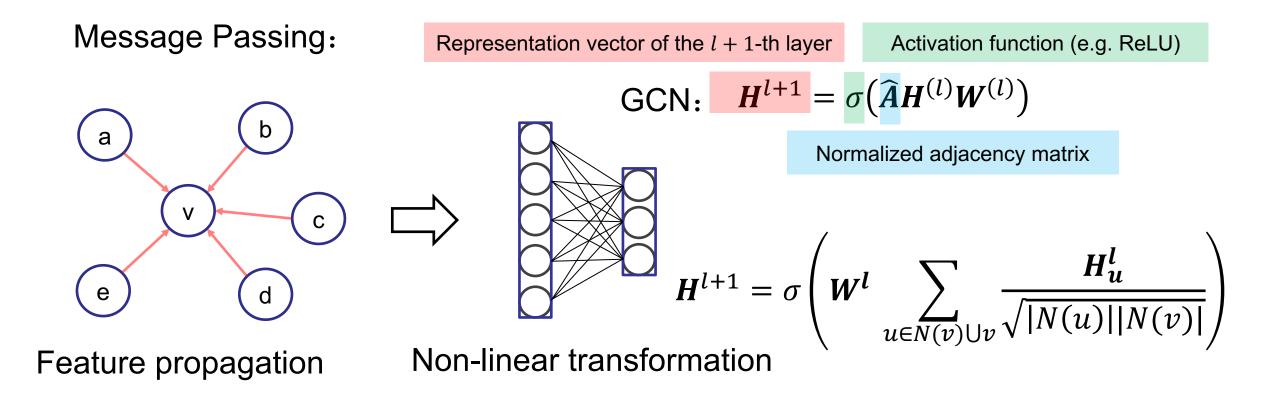
Semi-Supervised Learning on Graphs



Input: a partially labeled & attributed graph

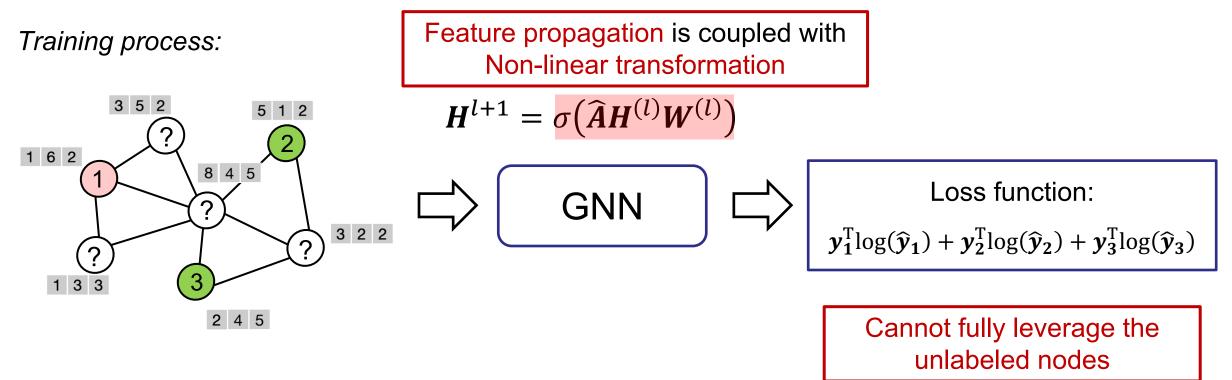
Output: infer the labels of unlabeled nodes

Graph Neural Networks (GNN)



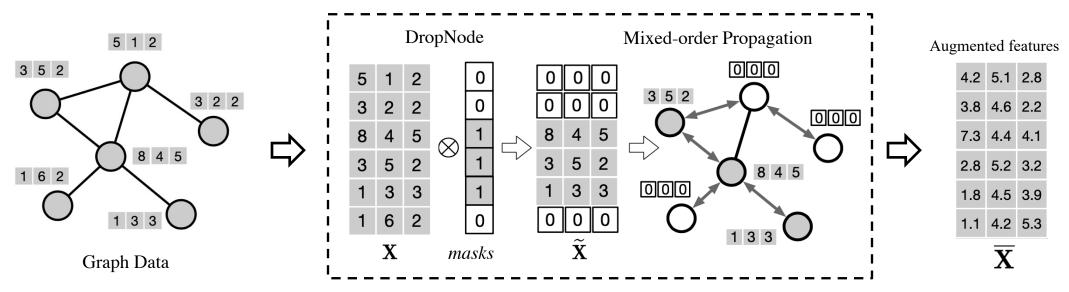
Over-fitting problem of GNNs

- 1. In GNNs, feature propagation is coupled with non-linear transformation. Increasing layers will introduce unnecessary parameters.
- 2. GNNs only adopt the supervised cross-entropy loss to guide the model training.



Graph Random Neural Network (GRAND)

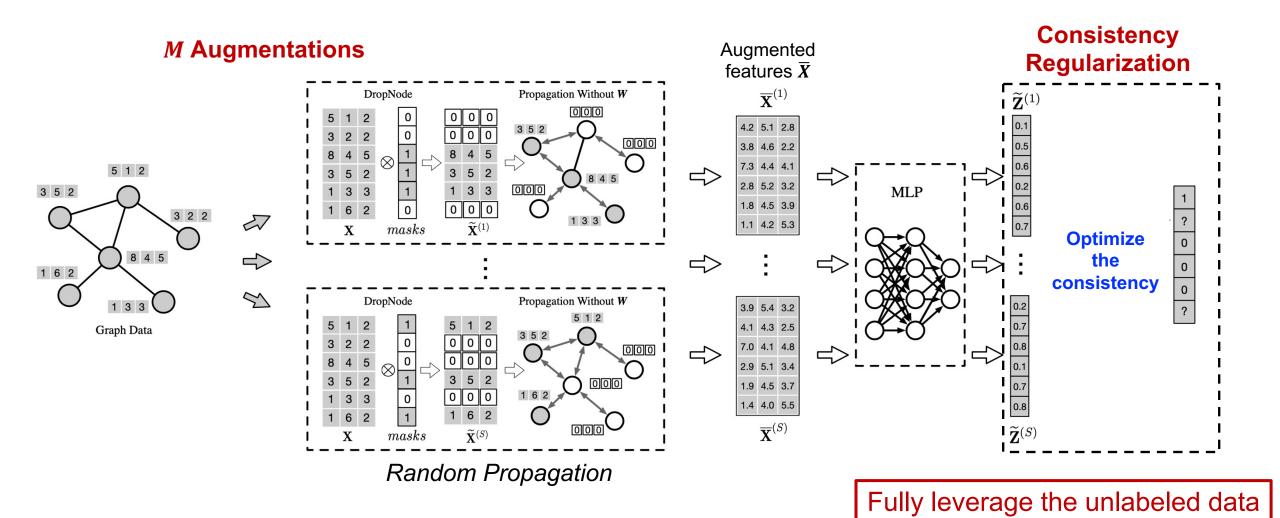
- Random Propagation (DropNode + Propagation):
 - Decouple the feature propagation from non-linear feature transformation.
 - Propagate feature with a mixed-order adjacency matrix: $\Pi = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{A}^n$
 - Use DropNode before feature propagation to randomly aggregate neighbors' features



Random Propagation as graph data augmentation

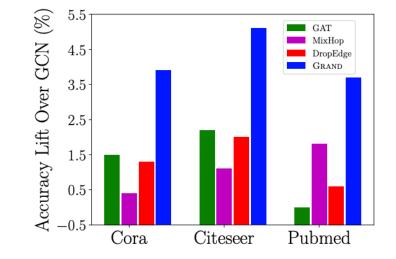
Feng W, Zhang J, Dong Y, et al. Graph random neural networks for semi-supervised learning on graphs[J]. In NeurIPS 2020.

Graph Random Neural Network (GRAND) (cont.)



Performance of GRAND

-					
-	Method	Cora	Citeseer	Pubmed	
-	GCN [19]	81.5	70.3	79.0	
	GAT [32]	83.0±0.7	72.5 ± 0.7	$79.0 {\pm} 0.3$	
	APPNP [20]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3	
	Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	$79.6 {\pm} 0.2$	
GCNs	SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0	
	MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$	
	GMNN [28]	83.7	72.9	81.8	
	GraphNAS [12]	84.2±1.0	73.1 ± 0.9	79.6±0.4	
Sampling	GraphSAGE [16]	78.9±0.8	67.4±0.7	77.8±0.6	
GCNs	FastGCN [7]	81.4 ± 0.5	68.8 ± 0.9	$77.6 {\pm} 0.5$	
-	VBAT [10]	83.6±0.5	74.0±0.6	79.9±0.4	
Regularization	G ³ NN [24]	82.5 ± 0.2	74.4 ± 0.3	77.9 ± 0.4	
GCNs	GraphMix [33]	83.9±0.6	74.5 ± 0.6	$81.0 {\pm} 0.6$	
	DropEdge [29]	82.8	72.3	79.6	
-	GRAND	85.4±0.4	75.4±0.4	82.7±0.6	
=					



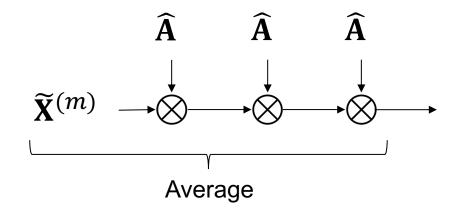
Instead of the marginal improvements by conventional GNN baselines over GCN, *GRAND* achieves much more significant performance lift in all three datasets!

Scalability limitation of GRAND

• Random Propagation in GRAND:

$$\overline{\mathbf{X}}^{(m)} = \mathbf{\Pi} \, \widetilde{\mathbf{X}}^{(m)}, \qquad \mathbf{\Pi} = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{\mathbf{A}}^n$$

• $\overline{\mathbf{X}}^{(m)}$ is calculated with power iteration:



Weak Scalability:

- Time/Memory complexity: O(|E| + |V|).
- Random propagation needs to be formed for multiple times at each epoch.

GRAND+: General Idea

- Mini-batch Radom Propagation:
 - Select a batch of nodes at each training step, and generate augmented features by

$$\overline{\mathbf{X}}_{s}^{(m)} = \sum_{\boldsymbol{\nu} \in \mathcal{N}_{\boldsymbol{\nu}}^{\pi}} \boldsymbol{z}_{\boldsymbol{\nu}} \cdot \boldsymbol{\Pi}(s, \boldsymbol{\nu}) \cdot \mathbf{X}_{\boldsymbol{\nu}}, \qquad \boldsymbol{z}_{\boldsymbol{\nu}} \sim Bernoulli(1 - \delta)$$

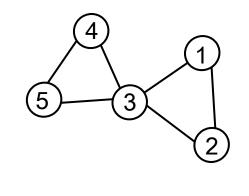
Non-zero elements in $\boldsymbol{\Pi}_{s}$
$$\boldsymbol{\Pi} = \sum_{n=0}^{N} \frac{1}{N+1} \widehat{\mathbf{A}}^{n}$$

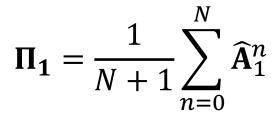
How to efficiently calculate the row vector Π_s ?

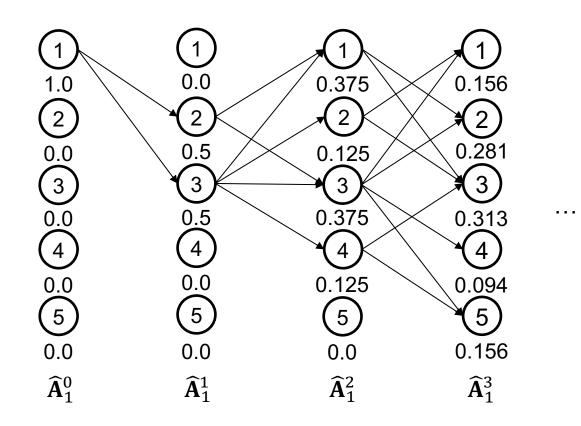
GRAND+: Matrix approximation

 $\mathbf{\Pi} = \frac{1}{N+1} \sum_{n=0}^{N} \widehat{\mathbf{A}}^n$

 $\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-1}\widetilde{\mathbf{A}}$ is random walk reverse transition matrix. $\mathbf{P}(s, v)$ indicates the random walk probability from s to v.



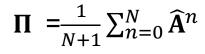




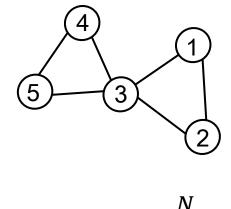
Random Walk Probability Diffusion

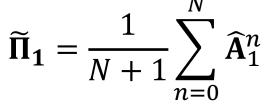
Complexity: O(|E|)

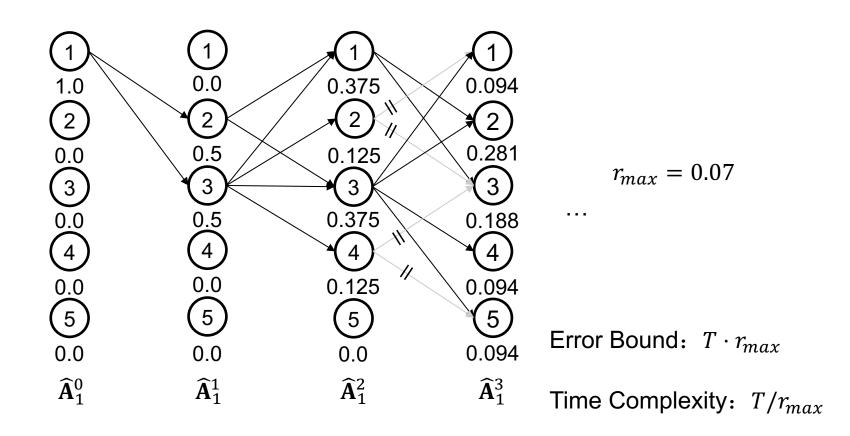
GRAND+: Matrix approximation



 $\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-1}\widetilde{\mathbf{A}}$ is random walk reverse transition matrix. $\mathbf{P}(s, v)$ indicates the random walk probability from s to v.







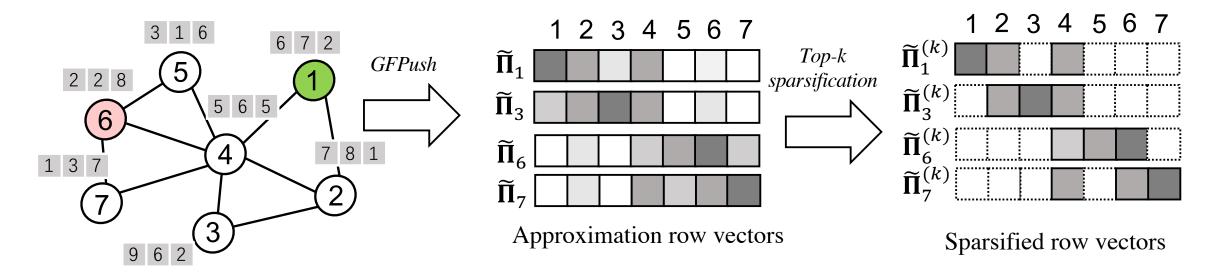
Generalized Forward Push (GFPush)

Memory Complexity: T/r_{max}

GRAND+: Matrix approximation

- Approximation method:
 - GFPush: Generate an error bounded approximation $\widetilde{\Pi}_s$ for Π_s .
 - Top-k sparsification: Truncate $\tilde{\Pi}_s$ to make it only contains top-k elements.

THEOREM 1. Algorithm 1 has $O(N/r_{max})$ time complexity and $O(N/r_{max})$ memory complexity, and returns $\widetilde{\Pi}_s$ as an approximation of Π_s with the L_1 error bound: $\| \Pi_s - \widetilde{\Pi}_s \|_1 \le N \cdot (2|E| + |V|) \cdot r_{max}$.



GRAND+: Mini-batch Radom Propagation

• Mini-batch Radom Propagation with Approximation:

$$\overline{\mathbf{X}}_{s}^{(m)} = \sum_{v \in \mathcal{N}_{v}^{(k)}} \mathbf{z}_{v} \cdot \widetilde{\mathbf{\Pi}}^{(k)}(s, v) \cdot \mathbf{X}_{v}, \qquad \mathbf{z}_{v} \sim Bernoulli(1 - \delta)$$

Non-zero elements in $\widetilde{\mathbf{\Pi}}_{v}^{(k)}$

• Prediction:

$$\widehat{\mathbf{Y}}^{(m)} = \mathrm{MLP}(\overline{\mathbf{X}}_{s}^{(m)}, \Theta)$$

With batch size as b, the time complexity is $O(b \cdot k)$, which is independent of graph size

Scalability: Adopt GFPush to approximately calculate the propagation matrix, and adopt mini-batch method for model training

GRAND+: Confidence-aware Consistency Regularization

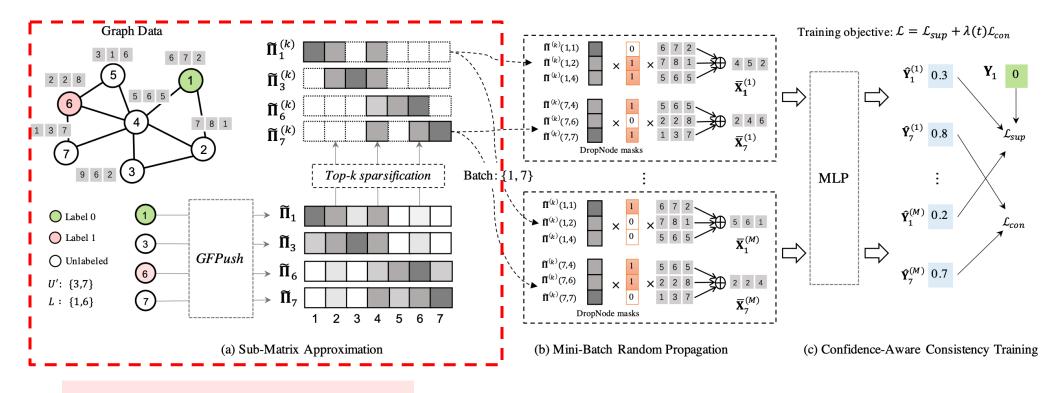
• Confidence-aware Consistency Loss:

$$\mathcal{L}_{con} = \frac{1}{b_u \cdot M} \sum_{s \in U_n} \mathbb{1}(\max(\overline{\mathbf{Y}}_s) \geq \gamma) \sum_{m=1}^M \mathcal{D}(\widetilde{\mathbf{Y}}_s, \hat{\mathbf{Y}}_s^{(m)}),$$

Confidence term: Filter out unlabeled nodes that have low confidence

Effectiveness: Further improving prediction performance

GRAND+ Architecture



Parallelization by OpenMP

GRAND+: Better scalability & generalization capability

Experiments

Category	Method	Cora	Citeseer	Pubmed
	GCN	81.5 ± 0.6	71.3 ± 0.4	79.1 ± 0.4
Full-batch	GAT	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
GNNs	APPNP	84.1 ± 0.3	71.6 ± 0.5	79.7 ± 0.3
GININS	GCNII	85.5 ± 0.5	73.4 ± 0.6	80.3 ± 0.4
	GRAND	85.4 ± 0.4	75.4 ± 0.4	82.7 ± 0.6
	FastGCN	81.4 ± 0.5	68.8 ± 0.9	77.6 ± 0.5
Scalable	GraphSAINT	81.3 ± 0.4	70.5 ± 0.4	78.2 ± 0.8
GNNs	SGC	81.0 ± 0.1	71.8 ± 0.1	79.0 ± 0.1
GININS	GBP	83.9 ± 0.7	72.9 ± 0.5	80.6 ± 0.4
	PPRGo	82.4 ± 0.2	71.3 ± 0.3	80.0 ± 0.4
Our	GRAND+ (P)	$\textbf{85.8} \pm \textbf{0.4}$	$\textbf{75.6} \pm \textbf{0.4}$	84.5 ± 1.1
Methods	GRAND+ (A)	85.5 ± 0.4	75.5 ± 0.4	85.0 ± 0.6
	GRAND+ (S)	85.0 ± 0.5	74.4 ± 0.5	84.2 ± 0.6

Table 2: Classification Accuracy (%) on Benchmarks.

Better generalization performance: Achieves 2.3% improvements over GRAND on Pubmed.

Experiments

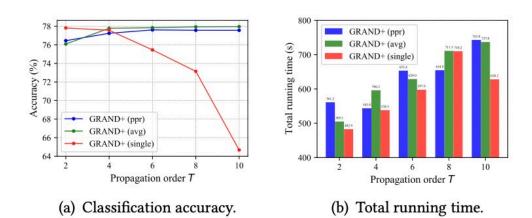
Table 3: Accuracy (%) and Running Time (s) on Large Graphs.

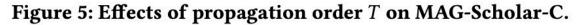
Method	AMiner-CS		Reddi	Reddit		Amazon2M		MAG.	
Method	Acc	RT	Acc	RT	Acc	RT	Acc	RT	
GRAND	53.1±1.1	750	ООМ	-	OOM	-	OOM	-	
FastGCN	48.9±1.6	69	89.6±0.6	158	72.9±1.0	239	64.3±5.6	4220	
GraphSAINT	51.8±1.3	39	92.1±0.5	39	75.9±1.3	189	75.0±1.7	6009	
SGC	50.2±1.2	9	92.5±0.2	31	74.9±0.5	69	-	>24h	
GBP	52.7±1.7	21	88.7±1.1	370	70.1±0.9	280	-	>24h	
PPRGo	51.2±1.4	11	91.3±0.2	233	67.6±0.5	160	72.9±1.1	434	
GRAND+ (P)	53.9±1.8	17	93.3±0.2	183	75.6±0.7	188	77.6±1.2	653	
GRAND+ (A)	54.2±1.7	14	93.5±0.2	174	75.9±0.7	136	80.0±1.1	737	
GRAND+ (S)	54.2±1.6	10	92.8±0.2	62	76.2±0.6	80	77.8±0.9	483	

Scalability:

- 40 times faster than GRAND on Aminer-CS.
- 8 times faster than FastGCN on MAG.
- **12** times faster than GraphSAINT on MAG.
- Achieves comparable running time and 4.9% improvement than PPRGo on MAG.

Parameter Analysis





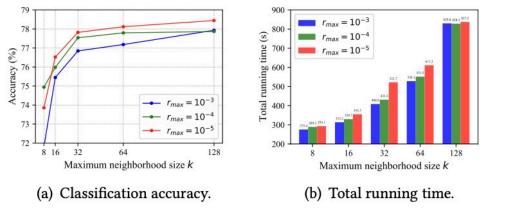
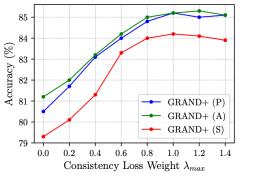
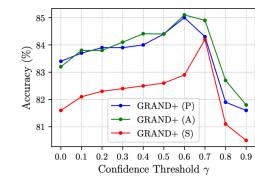


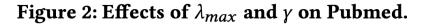
Figure 4: GRAND+ w.r.t. k and r_{max} on MAG-Scholar-C.



(a) Accuracy w.r.t. λ_{max} .



(b) Accuracy w.r.t. γ



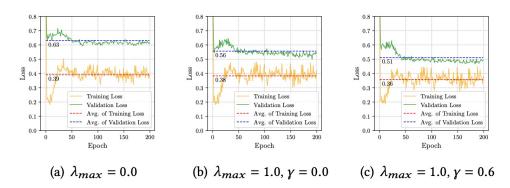


Figure 3: Training and Validation Losses on Pubmed.

CogDL: A Comprehensive Library for Graph Deep Learning

GitHub: <u>https://github.com/THUDM/cogdl</u>, 1400+ stars as of April 2023.

CogDL – Overview

Vision

CogDL aims at providing researchers and practitioners with easy-to-use APIs, reproducible results, and high efficiency for most graph tasks and applications.

[1] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, Jie Tang. CogDL: A Comprehensive Library for Graph Deep Learning. In WWW'23.

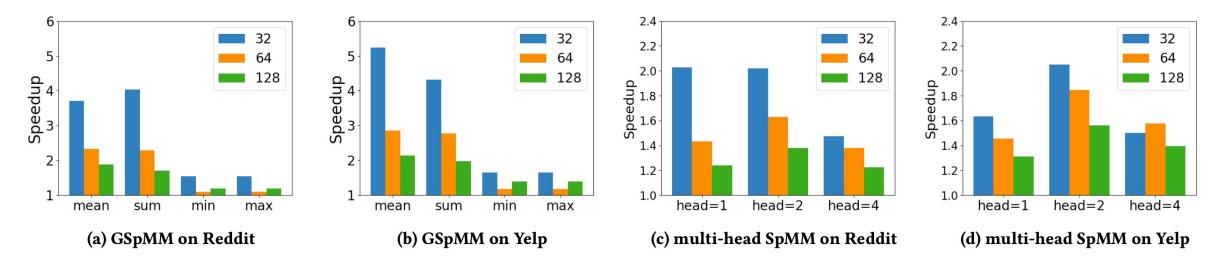
CogDL - A Unified GNN Trainer

Design a unified Trainer for GNN training

```
CogDL
                                                     🐼 PyG
                                                                                             -CG LIBRARY
     model = GCN(...)
                                   model = GCN(...)
                                                                              model = GCN(...)
1
                                    data = Planetoid(name="Cora")[0]
                                                                              data = CoraGraphDataset()[0]
2
     data = CoraDataset()[0]
     mw = ModelWrapper(model, ...) optimizer = torch.optim.Adam(...)
                                                                              optimizer = torch.optim.Adam(...)
3
                                    for epoch in range(100):
                                                                              for epoch in range(100):
4
     dw = DataWrapper(data, ...)
                                                                                  pred = model(data)
     trainer = Trainer(epochs=100)
                                        pred = model(data.x, data.edge_index)
                                                                                  labels = data.ndata['label']
                                        labels = data_v
 6
     result = trainer.run(mw, dw)
                                        mask = data.train mask
                                                                                  mask = data.ndata['train_mask']
 7
                                        loss = F.nll loss(pred[mask],
                                                                                  loss = F.nll_loss(pred[mask],
                                                                                                    labels[mask])
                                                          labels[mask])
9
                                        optimizer.zero grad()
                                                                                  optimizer.zero grad()
10
                                        loss.backward()
                                                                                  loss.backward()
11
                                        optimizer.step()
                                                                                  optimizer_step()
12
                                        val_acc = evaluate(model, data)
                                                                                  val_acc = evaluate(model, data)
13
                                        if val_acc > best_val_acc:
                                                                                  if val_acc > best_val_acc:
14
                                            best_val_acc = val_acc
                                                                                      best val acc = val acc
15
                                            best_model = deepcopy(model)
                                                                                      best model = deepcopy(model)
16
                                    result = test(best model, data)
                                                                              result = test(best model, data)
17
```

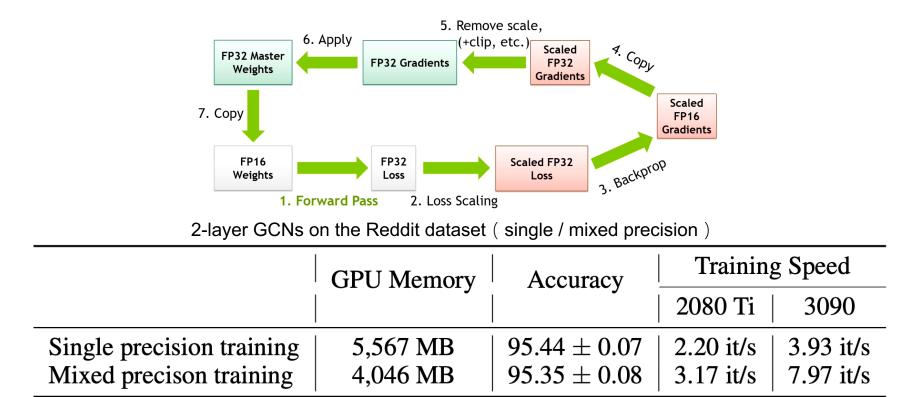
CogDL – Operator Acceleration

- Acceleration for SpMM-like operators
 - Design a more balanced strategy for GPU parallel computation
 - 1.17x~5.24x Speedup on Reddit/Yelp datasets compared to DGL



CogDL - Mixed Precision Training

- Support mixed precision training:
 - 1.44x~2.02x speedups due to half-precision (FP16) computation

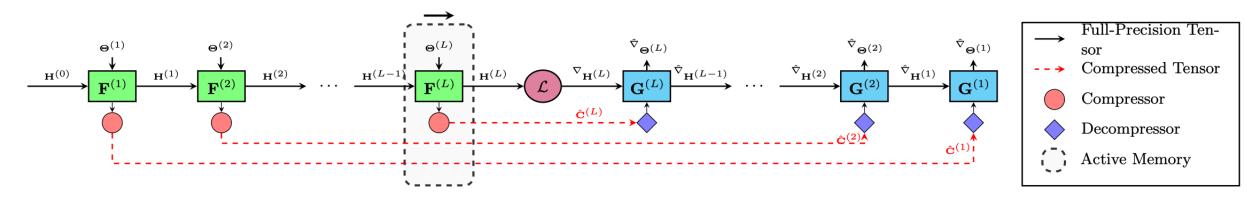


MIXED PRECISION TRAINING

1. Image Credit: https://developer.nvidia.com/blog/video-mixed-precision-techniques-tensor-cores-deep-learning/

CogDL - Activation Compressed Training

- Support activation compressed training:
 - reduce 6.4x~16x training memory footprints



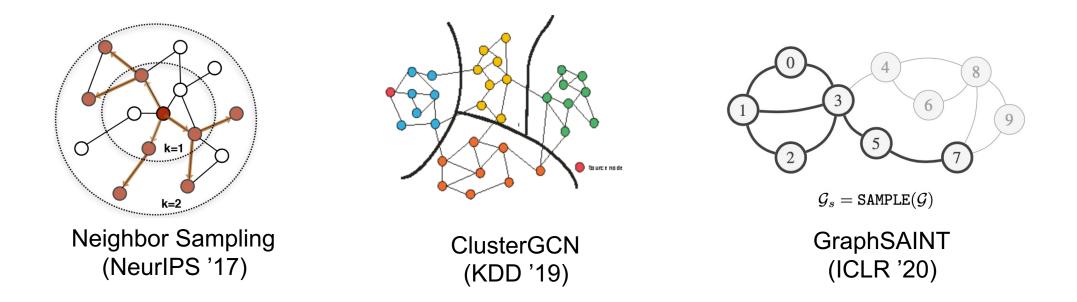
2-layer GCNs on three datasets: accuracy (%), act memory(MB)

	origin (32-bit)	+actnn (4-bit)	+actnn (3-bit)	+actnn (2-bit)
Flickr	51.17 ± 0.19 (288)	51.08 ± 0.18 (37)	51.14 ± 0.18 (26)	51.20 ± 0.18 (18)
Reddit	95.33 ± 0.07 (1532)	95.32 ± 0.07 (194)	95.31 ± 0.07 (158)	$95.34 \pm 0.06 (112)$
Yelp	39.86 ± 0.94 (4963)	40.06 ± 0.74 (773)	40.21 ± 0.82 (665)	39.89 ± 1.45 (551)

1. Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, **Yukuo Cen**, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. GACT: Activation Compressed Training for Generic Network Architectures. In ICML'22.

CogDL – Training on Large-scale Graphs

- Full-batch training on large-scale graphs is unaffordable
- Training GNNs via mini-batch sampling
- Usage: python scripts/train.py --model gcn --dataset reddit --dw cluster_dw

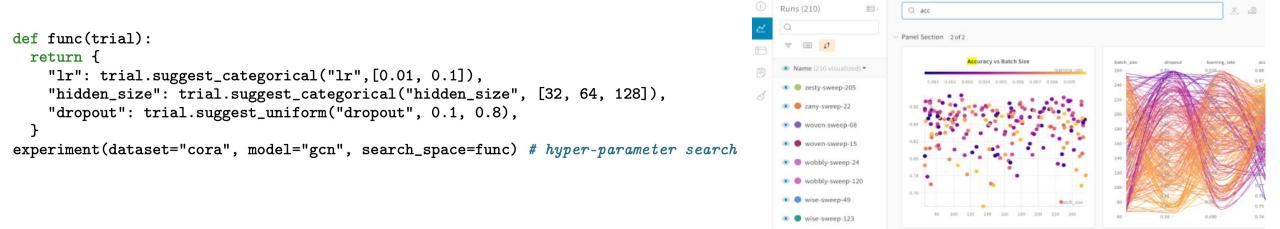


1. Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In NeurIPS '17.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. In KDD '19.
 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint: Graph sampling based inductive learning method. In ICLR '20.

CogDL – Experiment Management

- Hyper-parameter Search
 - Integrate optuna for users to enable hyper-parameter search
- Experiment Management
 - Support Tensorboard and WandB for logging and debugging



Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter optimization framework. In KDD'19.
 Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https: //www.wandb.com/

CogDL – Benchmarks

- Easy-to-reproduce benchmarks
 - Traditional graph tasks such as network embedding
 - Frontier graph benchmarks such as IGB^[1], GRB^[2], HGB^[3]

Method	PPI (50%)	Wikipedia (50%)	Blogcatalog (50%)	DBLP (5%)	Flickr (5%)	Reproducible
NetMF [37]	23.73 ± 0.22	57.42 ± 0.56	42.47 ± 0.35	56.72 ± 0.14	36.27 ± 0.17	Yes
ProNE [66]	24.60 ± 0.39	56.06 ± 0.48	41.16 ± 0.26	56.85 ± 0.28	36.56 ± 0.11	Yes
NetSMF [36]	23.88 ± 0.35	53.81 ± 0.58	40.62 ± 0.35	59.76 ± 0.41	35.49 ± 0.07	Yes
Node2vec [17]	20.67 ± 0.54	54.59 ± 0.51	40.16 ± 0.29	57.36 ± 0.39	36.13 ± 0.13	Yes
LINE [45]	21.82 ± 0.56	52.46 ± 0.26	38.06 ± 0.39	49.78 ± 0.37	31.61 ± 0.09	Yes
DeepWalk [35]	20.74 ± 0.40	49.53 ± 0.54	40.48 ± 0.47	57.54 ± 0.32	36.09 ± 0.10	Yes
SpectralClustering [48]	22.48 ± 0.30	49.35 ± 0.34	41.41 ± 0.34	43.68 ± 0.58	33.09 ± 0.07	Yes
Hope [33]	21.43 ± 0.32	54.04 ± 0.47	33.99 ± 0.35	56.15 ± 0.22	28.97 ± 0.19	Yes
GraRep [5]	20.60 ± 0.34	54.37 ± 0.40	33.48 ± 0.30	52.76 ± 0.42	31.83 ± 0.12	Yes

1. Ziang Li, Ming Ding, Weikai Li, Zihan Wang, Ziyu Zeng, Yukuo Cen, and Jie Tang. Rethinking the Setting of Semi-supervised Learning on Graphs. In IJCAI'22.

2. Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie Tang. Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning. In NeurIPS'21 D&B.

3. Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jian-guo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? Revisiting, benchmarking and refining the Heterogeneous Graph Neural Networks. In KDD'21.

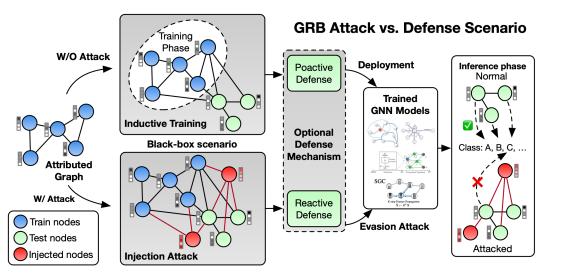
CogDL – GRB

Background:

Recently, works have proved that adversarial attacks can threat the *robustness* of graph ML models in various tasks.

Problems:

- 1. Ill-defined threat model in previous works.
- 2. Absence of unified and standard evaluation approach.



Example of GRB evaluation scenario

GRB: Graph Robustness Benchmark								
Evaluation	Evaluation Datasets Evaluator Leaderboards							
Module	GNN Models	Adversarial Attacks	Adversarial Defenses					
Backend	Pytorch	CogDL	DGL					

Solution: Graph Robustness Benchmark (GRB)

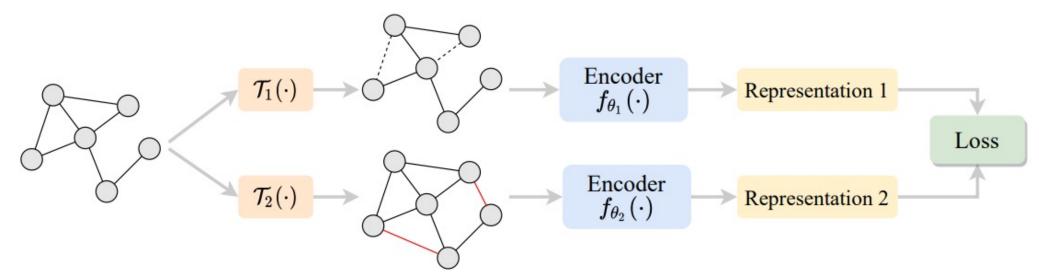
Scalable, general, unified, and reproducible benchmark on adversarial robustness of graph ML models, which facilitates fair comparisons among various attacks & defenses and promotes future research in this field.

Graph Robustness Benchmark: Rethinking and Benchmarking Adversarial Robustness of Graph Neural Networks Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Jie Tang

Contrastive Learning on Graphs

Paradigm of Graph Contrastive Learning

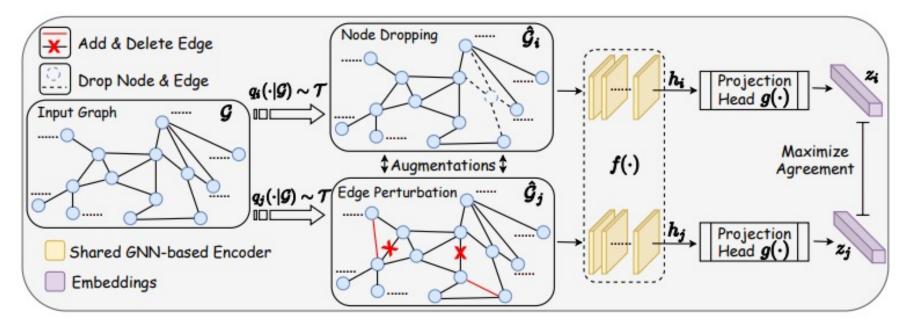
- The graph contrastive learning
 - 1) generates two views based on different augmentations
 - -2) encodes the graphs of two views
 - 3) construct the self-supervised signal via contrast



Graph Contrastive Learning with Augmentations

GraphCL: a contrastive learning method with augmentations

- (1) propose different graph augmentation strategies
- (2) use projection heads for the graph encoding
- (3) maximizing the consistency $\ell_n = -\log \frac{\exp(\sin(\boldsymbol{z}_{n,i}, \boldsymbol{z}_{n,j})/\tau)}{\sum_{n'=1,n'\neq n}^{N} \exp(\sin(\boldsymbol{z}_{n,i}, \boldsymbol{z}_{n',j})/\tau)}$



[1] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen. Graph Contrastive Learning with Augmentations. NeurIPS 2020.

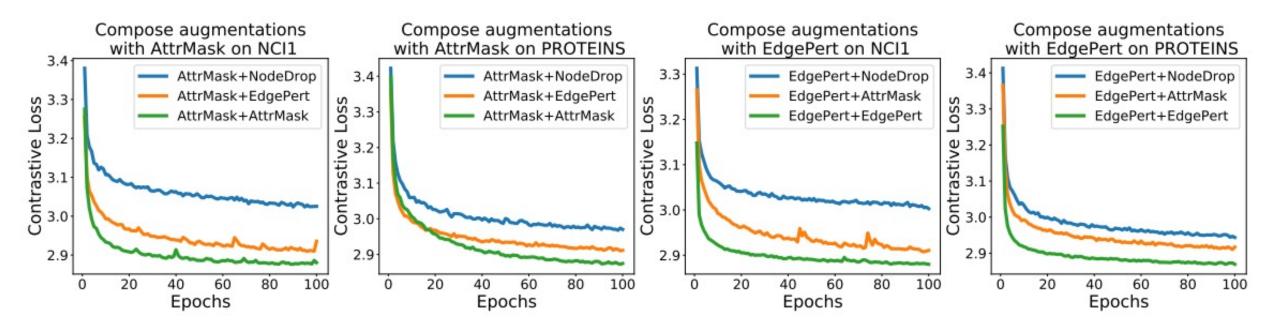
Data Augmentation for Graphs

- Focus on three categories of graphs:
 - Biochemical molecules, social networks, image super-pixel graphs
- Propose four graph-level augmentations

Data augmentation Type		Underlying Prior		
Node dropping	Nodes, edges	Vertex missing does not alter semantics.		
Edge perturbation	Edges	Semantic robustness against connectivity variations.		
Attribute masking	Nodes	Semantic robustness against losing partial attributes.		
Subgraph	Nodes, edges	Local structure can hint the full semantics.		

Role of Data Augmentation

- Contrastive loss curves for different augmentation pairs
- Using the same type gets better performance



Experimental Results of GraphCL

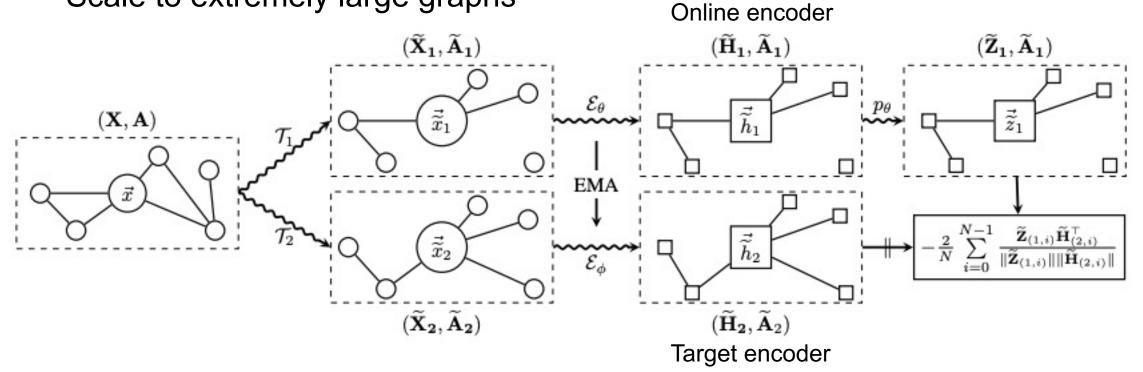
Unsupervised representation learning setting

Datasets	Category	Graph Num.	Avg. Node	Avg. Degree	
NCI1	Biochemical Molecules	4110	29.87	1.08	
PROTEINS	Biochemical Molecules	1113	39.06	1.86	
COLLAB	Social Networks	5000	74.49	32.99	
RDT-B	Social Networks	2000	429.63	1.15	

Dataset	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B
GL	-	-	-	81.66 ± 2.11	-	77.34 ± 0.18	41.01 ± 0.17	65.87±0.98
WL	80.01 ± 0.50	72.92 ± 0.56	-	80.72 ± 3.00	-	68.82 ± 0.41	46.06 ± 0.21	72.30±3.44
DGK	80.31±0.46	$73.30 {\pm} 0.82$	-	87.44 ± 2.72	-	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56
node2vec	54.89 ± 1.61	57.49 ± 3.57	-	72.63 ± 10.20	-	-	-	-
sub2vec	52.84 ± 1.47	53.03 ± 5.55	-	61.05 ± 15.80	-	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54
graph2vec	73.22 ± 1.81	73.30 ± 2.05	-	83.15 ± 9.25	-	75.78 ± 1.03	47.86 ± 0.26	71.10 ± 0.54
InfoGraph	76.20 ± 1.06	74.44 ± 0.31	72.85 ± 1.78	89.01±1.13	70.65 ± 1.13	82.50 ± 1.42	53.46 ± 1.03	73.03±0.87
GraphCL	77.87 ± 0.41	74.39±0.45	78.62 ± 0.40	86.80±1.34	71.36±1.15	89.53±0.84	55.99±0.28	71.14 ± 0.44

Bootstrapped Graph Latents (BGRL)

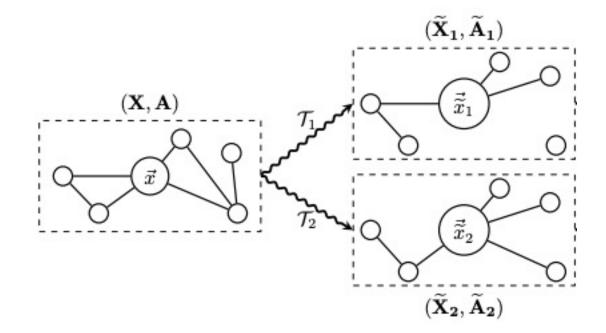
- The characteristics of BGRL:
 - Simple graph augmentation
 - Not requiring negative samples
 - Scale to extremely large graphs



Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Rémi Munos, Petar Veličković, Michal Valko. Large-Scale Representation Learning on Graphs via Bootstrapping. ICLR 2022.

Graph Augmentation of BGRL

- Applying stochastic graph augmentation functions
 - random node feature masking: Bernoulli distribution $\mathcal{B}(1-p_f)$
 - random edge masking: Bernoulli distribution $\mathcal{B}(1-p_e)$
- With fixed hyperparameters for each graph

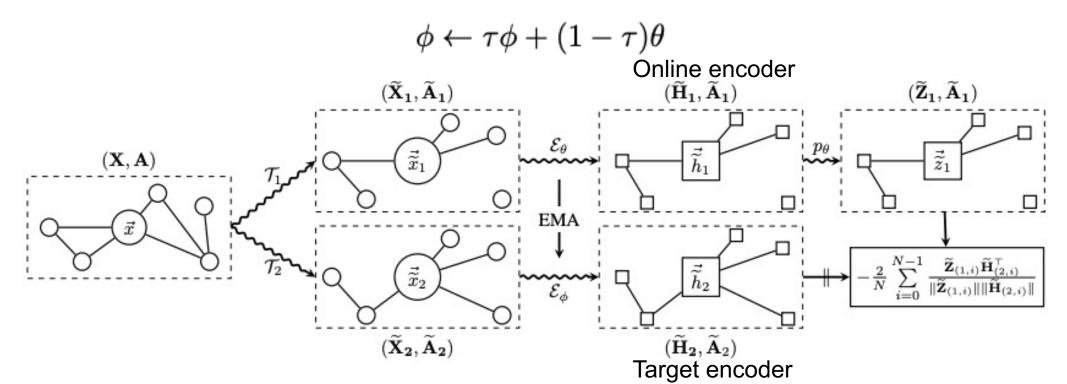


BGRL Update Step

Update the online encoder via gradient descent

$$\ell(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\frac{2}{N} \sum_{i=0}^{N-1} \frac{\widetilde{\mathbf{Z}}_{(1,i)} \widetilde{\mathbf{H}}_{(2,i)}^{\top}}{\|\widetilde{\mathbf{Z}}_{(1,i)}\| \|\widetilde{\mathbf{H}}_{(2,i)}\|}$$

Update the target encoder via EMA



49

Experimental Results of BGRL

	Task	Nodes	Edges	Features	Classes
WikiCS	Transductive	11,701	216,123	300	10
Amazon Computers	Transductive	13,752	245,861	767	10
Amazon Photos	Transductive	7,650	119,081	745	8
Coauthor CS	Transductive	18,333	81,894	6,805	15
Coauthor Physics	Transductive	34,493	247,962	8,415	5

	WikiCS	Am. Comp.	Am. Photos	Co.CS	Co.Phy
Raw features	71.98 ± 0.00	73.81 ± 0.00	78.53 ± 0.00	90.37 ± 0.00	93.58 ± 0.00
DeepWalk	74.35 ± 0.06	85.68 ± 0.06	89.44 ± 0.11	84.61 ± 0.22	91.77 ± 0.15
DeepWalk + feat.	77.21 ± 0.03	86.28 ± 0.07	90.05 ± 0.08	87.70 ± 0.04	94.90 ± 0.09
DGI	75.35 ± 0.14	83.95 ± 0.47	91.61 ± 0.22	92.15 ± 0.63	94.51 ± 0.52
GMI	74.85 ± 0.08	82.21 ± 0.31	90.68 ± 0.17	OOM	OOM
MVGRL	77.52 ± 0.08	87.52 ± 0.11	91.74 ± 0.07	92.11 ± 0.12	95.33 ± 0.03
$\mathtt{Random-Init}^{\star}$	78.95 ± 0.58	86.46 ± 0.38	92.08 ± 0.48	91.64 ± 0.29	93.71 ± 0.29
GRACE *	$\textbf{80.14} \pm \textbf{0.48}$	89.53 ± 0.35	92.78 ± 0.45	91.12 ± 0.20	OOM
BGRL [*]	79.98 ± 0.10	$\textbf{90.34} \pm \textbf{0.19}$	$\textbf{93.17} \pm \textbf{0.30}$	$\textbf{93.31} \pm \textbf{0.13}$	$\textbf{95.73} \pm \textbf{0.05}$
GCA	78.35 ± 0.05	88.94 ± 0.15	92.53 ± 0.16	93.10 ± 0.01	95.73 ± 0.03
Supervised GCN	77.19 ± 0.12	86.51 ± 0.54	92.42 ± 0.22	93.03 ± 0.31	95.65 ± 0.16

Experimental Results of BGRL (cont.)

Comparison with SOTA methods on ogbn-arxiv and PPI datasets

	Validation	Test		PPI
MLP	57.65 ± 0.12	55.50 ± 0.23	Raw features	42.20
node2vec	71.29 ± 0.13	70.07 ± 0.13	DGI	63.80 ± 0.20
Random-Init*	69.90 ± 0.11	68.94 ± 0.15	GMI	65.00 ± 0.02
DGI*	71.26 ± 0.11	70.34 ± 0.16	Random-Init	62.60 ± 0.20
GRACE full-graph*	OOM	OOM	GRACE MeanPooling encoder*	69.66 ± 0.15
GRACE-SUBSAMPLING $(k=2)^{\star}$	60.49 ± 3.72	60.24 ± 4.06	BGRL MeanPooling encoder*	69.41 ± 0.15
GRACE-SUBSAMPLING $(k=8)^{\star}$	71.30 ± 0.17	70.33 ± 0.18	GRACE GAT encoder*	69.71 ± 0.17
GRACE-SUBSAMPLING $(k=32)^{\star}$	72.18 ± 0.16	71.18 ± 0.16	BGRL GAT encoder*	70.49 ± 0.05
GRACE-SUBSAMPLING $(k = 2048)^*$	$\textbf{72.61} \pm \textbf{0.15}$	$\textbf{71.51} \pm \textbf{0.11}$		
BGRL*	$\textbf{72.53} \pm \textbf{0.09}$	$\textbf{71.64} \pm \textbf{0.12}$	Supervised MeanPooling	96.90 ± 0.20
Supervised GCN	73.00 ± 0.17	71.74 ± 0.29	Supervised GAT	97.30 ± 0.20

Experiment on MAG240M

 MAG240M: over 240 million nodes (of which 1.4 million are labeled) and 1.7 billion edges

Figure 4: Performance on MAG240M using BGRL or GRACE-SUBSAMPLING as an auxiliary signal, averaged over 5 seeds and run for 50k steps.

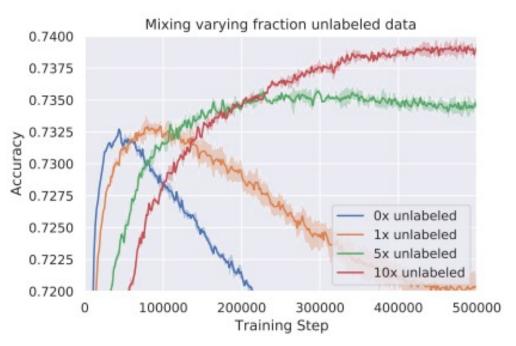
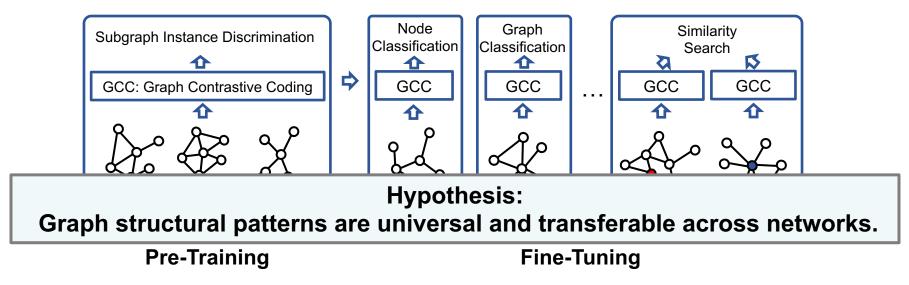


Figure 5: Mixing varying amounts of unlabeled data for representation learning with BGRL, averaged over 5 seeds and run for 500k steps.

Graph Contrastive Coding (GCC)

- Problem:
 - Learn a function f that maps a vertex to a low-dimensional vector
 - Structural similarity: map vertices with similar local network topologies close in the vector space
 - Transferability: compatible with vertices and graphs from various sources, even unseen during training time.



[1] Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In KDD'20.

GCC Pre-training

- **Pre-training Task: Instance** Discrimination
- InfoNCE Loss: output instance representations that are capable of capturing the similarities between instances

$$\mathcal{L} = -\log \frac{\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{+}/\tau\right)}{\sum_{i=0}^{K}\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{i}/\tau\right)}$$

- Contrastive learning for graphs?
 - **Q1:** How to define **instances** in graphs?
 - Q2: How to define (dis) similar instance pairs?
 - Q3: What are the proper encoders?

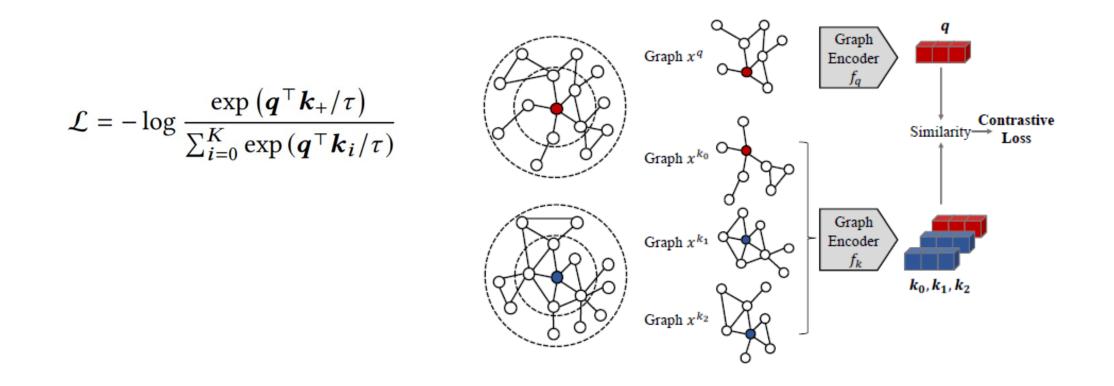
- query instance x^q
- query q (embedding of x^q), i.e., $q = f(x^q)$

• dictionary of keys
$$\{\boldsymbol{k}_0, \boldsymbol{k}_1, \cdots, \boldsymbol{k}_K\}$$

• key
$$\boldsymbol{k} = f(x^k)$$

GCC Pre-training

- **Q1:** How to define **instances** in graphs?
- Q2: How to define (dis) similar instance?
- Q3: What are the proper encoders?



GCC Pre-training: Learning Algorithms

- Optimizing Contrastive Loss
 - Encoded query q
 - K + 1 encoded keys { k_0, \cdots, k_K }

$$\mathcal{L} = -\log \frac{\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{+}/\tau\right)}{\sum_{i=0}^{K}\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{i}/\tau\right)}$$

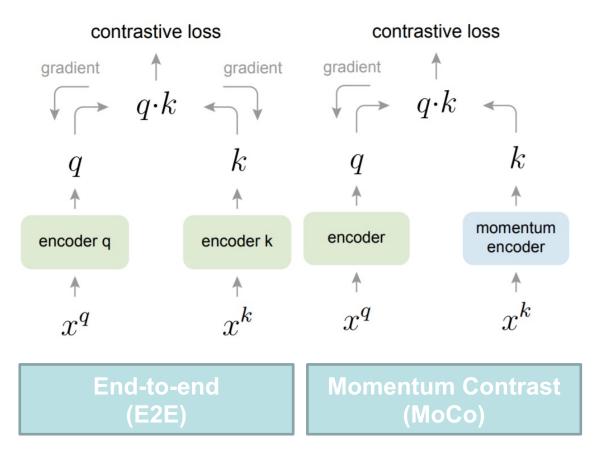
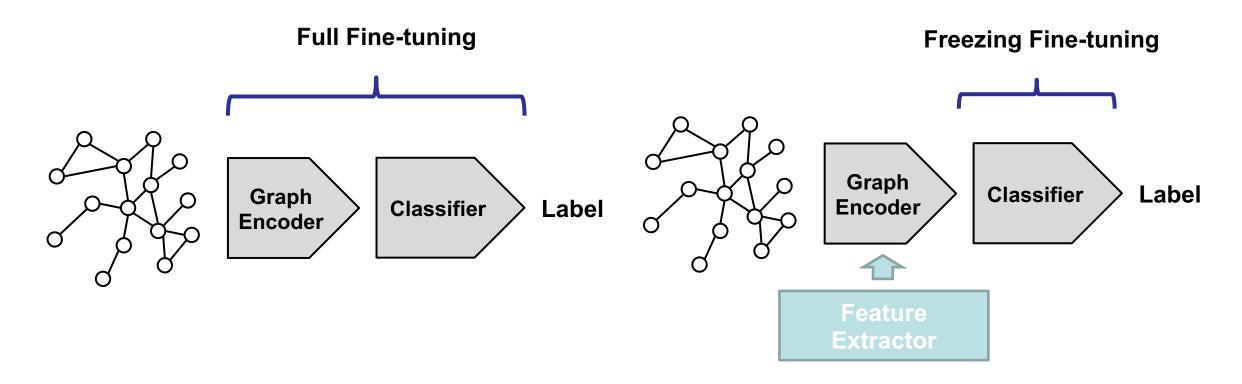


Figure Credit: Momentum Contrast for Unsupervised Visual Representation Learning (arxiv.org/abs/1911.05722)

GCC Fine-tuning: Full v.s. Freezing

Full fine-tuning

Freezing fine-tuning



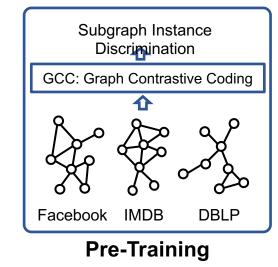
GCC Pre-Training / Fine-tuning

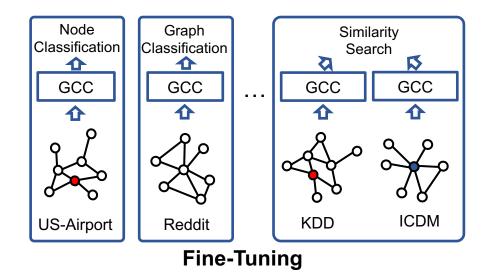
• Six real-world information networks for pre-training.

Table 1: Datasets for pre-training, sorted by number of vertices.

Dataset	Academia	DBLP (SNAP)	DBLP (NetRep)	IMDB	Facebook	LiveJournal
V	137,969	317,080	540,486	896,305	3,097,165	4,843,953
E	739,384	2,099,732	30,491,458	7,564,894	47,334,788	85,691,368

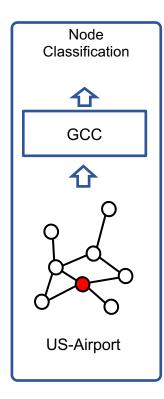
- Fine-tuning Tasks:
 - Node classification
 - Graph classification
 - Top-k Similarity search





Task 1: Node Classification

- Setup
 - US-Airport
 - AMiner academic graph

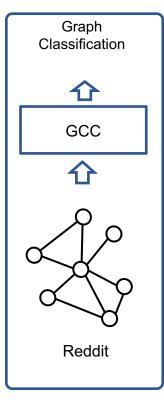


Datasets	US-Airport	H-index
V $ E $	1,190 13,599	5,000 44,020
ProNE	62.3	69.1
GraphWave	60.2	70.3
Struc2vec	66.2	> 1 Day
GCC (E2E, freeze)	64.8	78.3
GCC (MoCo, freeze)	65.6	75.2
GCC (rand, full)	64.2	76.9
GCC (E2E, full)	68.3	80.5
GCC (MoCo, full)	67.2	80.6

Task 2: Graph Classification

Setup

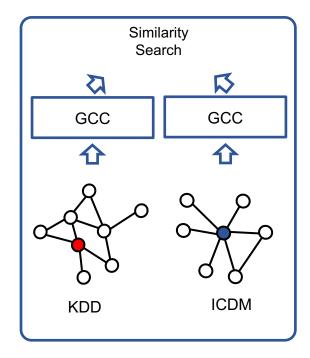
– COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M



Datasets	IMDB-B	IMDB-M	COLLAB	RDT-B	RDT-M
# graphs	1,000	1,500	5,000	2,000	5,000
# classes	2	3	3	2	5
Avg. # nodes	19.8	13.0	74.5	429.6	508.5
DGK	67.0	44.6	73.1	78.0	41.3
graph2vec	71.1	50.4	_	75.8	47.9
InfoGraph	73.0	49.7	_	82.5	53.5
GCC (E2E, freeze)	71.7	49.3	74.7	87.5	52.6
GCC (MoCo, freeze)	72.0	49.4	78.9	89.8	53.7
DGCNN	70.0	47.8	73.7	_	_
GIN	75.6	51.5	80.2	89.4	54.5
GCC (rand, full)	75.6	50.9	79.4	87.8	52.1
GCC (E2E, full)	70.8	48.5	79.0	86.4	47.4
GCC (MoCo, full)	73.8	50.3	81.1	87.6	53.0

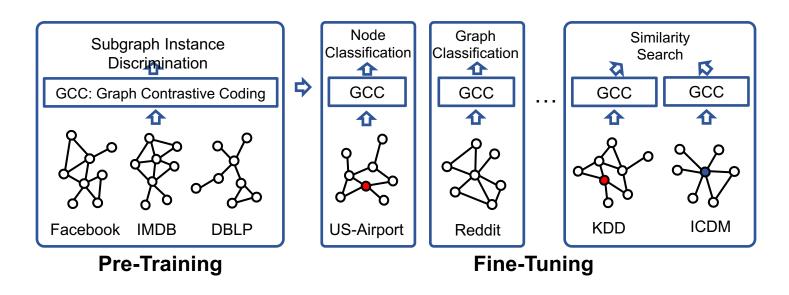
Task 3: Top-k Similarity Search

- Setup
 - AMiner academic graph



	KDD-ICDM		SIGIR-CIKM		SIGMOD-ICDE	
V	2,867	2,607	2,851	3,548	2,616	2,559
E	7,637	4,774	6,354	7,076	8,304	6,668
# groud truth		697		874		898
k	20	40	20	40	20	40
Random	0.0198	0.0566	0.0223	0.0447	0.0221	0.0521
RolX	0.0779	0.1288	0.0548	0.0984	0.0776	0.1309
Panther++	0.0892	0.1558	0.0782	0.1185	0.0921	0.1320
GraphWave	0.0846	0.1693	0.0549	0.0995	0.0947	0.1470
GCC (E2E)	0.1047	0.1564	0.0549	0.1247	0.0835	0.1336
GCC (MoCo)	0.0904	0.1521	0.0652	0.1178	0.0846	0.1425

Summary of GCC



- We study the pre-training of GNN with the goal of characterizing and transferring structural representations in social and information networks.
- We present Graph Contrastive Coding, which is a graph-based contrastive learning framework to pre-train GNN.
- The pre-trained GNN achieves competitive performance to its supervised trained-fromscratch counterparts in 3 graph learning tasks on 10 graph datasets.

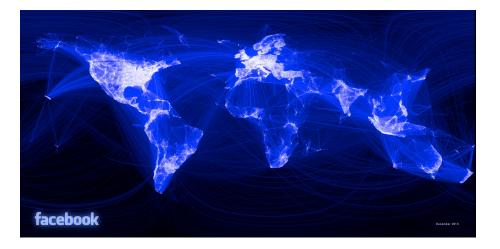
Generative Learning on Graphs

Web-Scale Graphs

Academic Graph

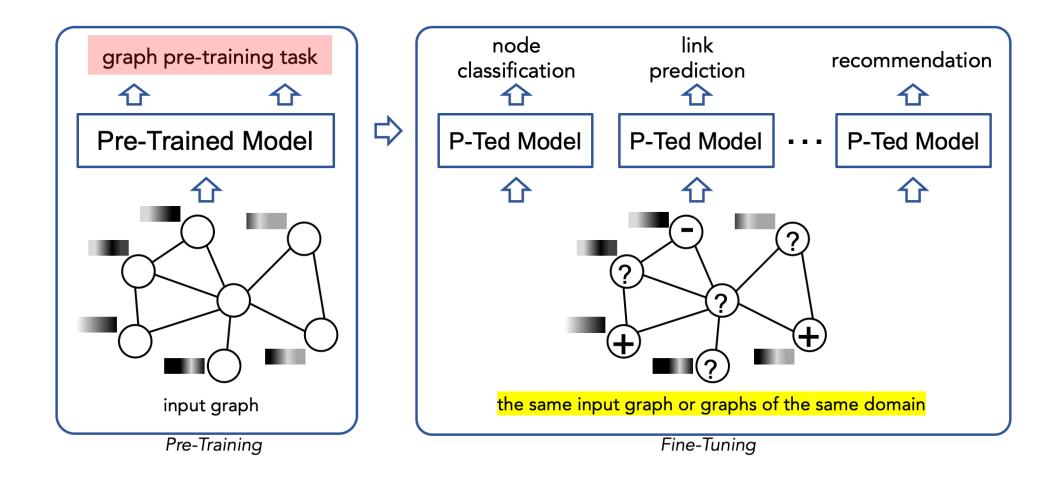
Microsoft Office Graph

LinkedIn Economic Graph



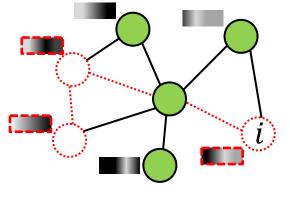
Facebook Entity Graph

GNN Pre-Training



- Model the graph distribution $p(G; \theta)$ by learning to reconstruct the input graph.
 - Factorize the graph likelihood into two terms:
 - Attribute Generation
 - Edge Generation

$$\log p_{\theta}(X, E) = \sum_{i=1}^{|\mathcal{V}|} \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i}).$$



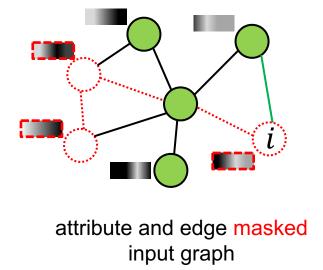
attribute and edge masked input graph

 $p_{\theta}(X_i, E_i | X_{< i}, E_{< i})$ = $p_{\theta}(X_i | X_{< i}, E_{< i}) \cdot p_{\theta}(E_i | X_{< i}, E_{< i})$

Lose the dependency between X_i and E_i

- Model the graph distribution $p(G; \theta)$ by learning to reconstruct the input graph.
 - Factorize the graph likelihood into two terms:
 - Attribute Generation: given observed edges, generate node attributes
 - Edge Generation: given observed edges and generated attributes, generate masked edges

$$\log p_{\theta}(X, E) = \sum_{i=1}^{|\mathcal{V}|} \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i}).$$



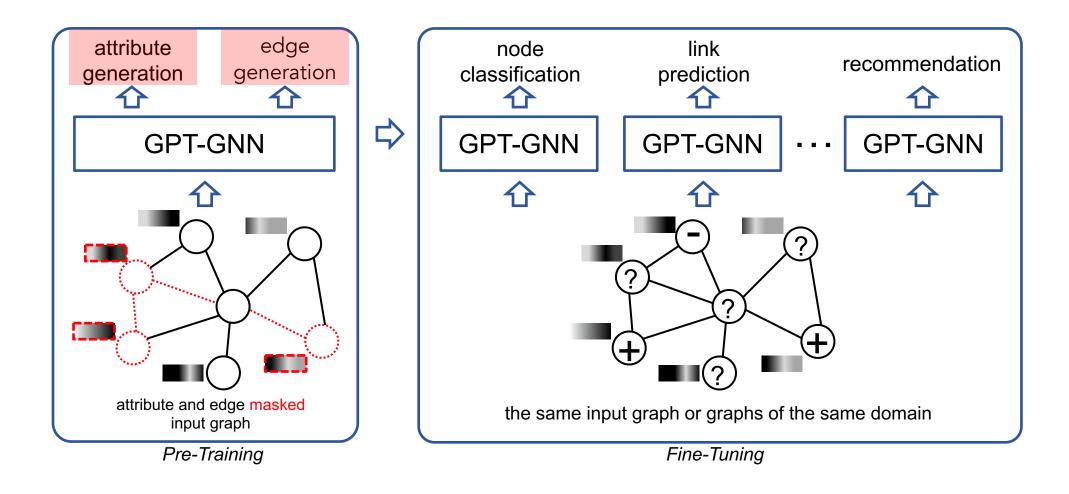
$$p_{\theta}(X_{i}, E_{i} \mid X_{< i}, E_{< i})$$

$$= \sum_{o} p_{\theta}(X_{i}, E_{i,\neg o} \mid E_{i,o}, X_{< i}, E_{< i}) \cdot p_{\theta}(E_{i,o} \mid X_{< i}, E_{< i})$$

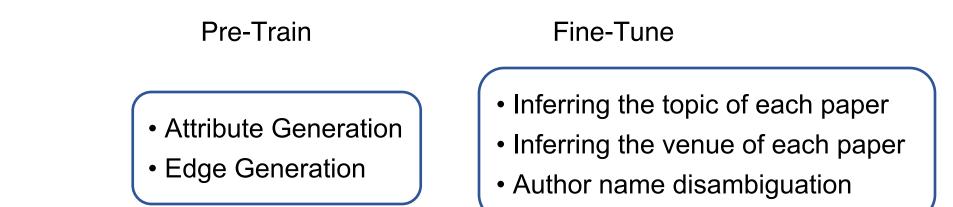
$$= \mathbb{E}_{o} \Big[p_{\theta}(X_{i}, E_{i,\neg o} \mid E_{i,o}, X_{< i}, E_{< i}) \Big]$$

$$= \mathbb{E}_{o} \Big[\underbrace{p_{\theta}(X_{i} \mid E_{i,o}, X_{< i}, E_{< i})}_{1) \text{ generate attributes}} \cdot \underbrace{p_{\theta}(E_{i,\neg o} \mid E_{i,o}, X_{\leq i}, E_{< i})}_{2) \text{ generate edges}} \Big].$$

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. **KDD** 2020.



• Data: Microsoft Academic Graph

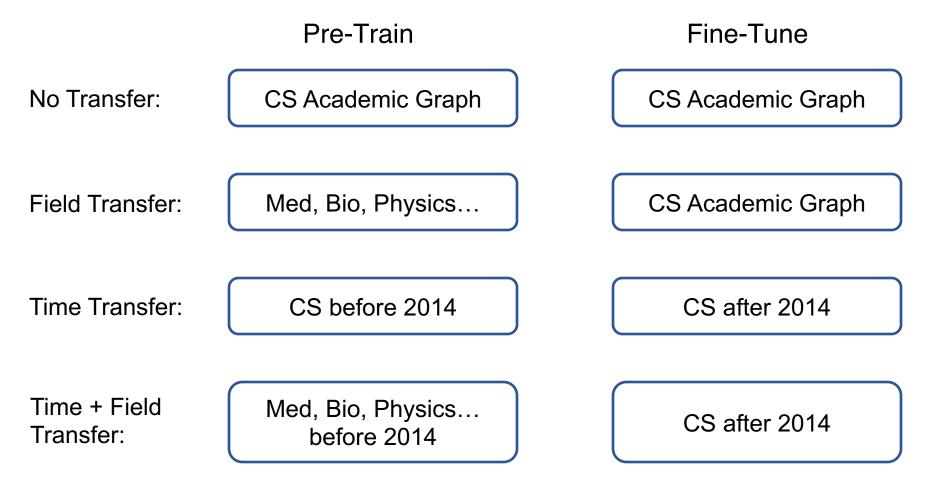


Tasks:

Base GNN model:

Heterogeneous Graph Transformer (HGT)

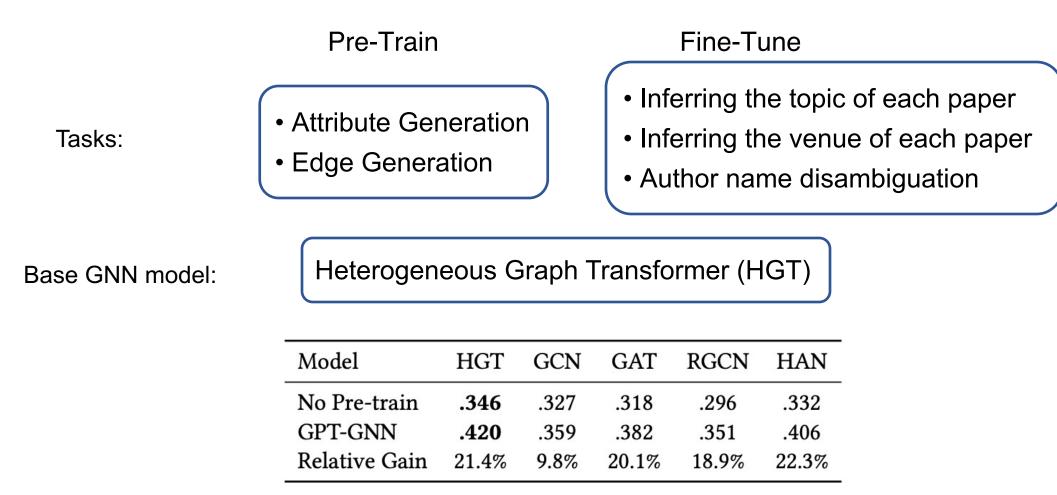
• Data: Microsoft Academic Graph



	Downstream Dataset		OAG	
	Evaluation Task	Paper–Field	Paper–Venue	Author ND
	No Pre-train	$.346 \pm .149$	$.598 \pm .122$.813±.105
Field Transfer	GAE GraphSAGE (unsp.)	$.403 \pm .114$ $.368 \pm .125$	$.626 \pm .093$ $.609 \pm .096$	$.836 \pm .084$ $.818 \pm .092$
	Graph Infomax	$.387 \pm .112$	$.612 \pm .097$.827±.084
	GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.396±.118 .413±.109 .420±.107	.623±.105 .635±.096 .641±.098	.834±.086 .842±.093 .848±.102
Time Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.384±.117 .352±.121 .369±.116	.619±.101 .601±.105 .606±.102	.828±.095 .815±.093 .821±.089
	GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.374±.114 .397±.105 .405±.108	.614±.098 .629±.102 .635±.101	.826±.089 .836±.088 .840±.093
Time + Field Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.371±.124 .349±.130 .360±.121	.611±.108 .602±.118 .600±.102	.821±.102 .812±.097 .815±.093
	GPT-GNN (Attr) — (w/o node separation) GPT-GNN (Edge) — (w/o adaptive queue) GPT-GNN	$.364 \pm .115$ $.347 \pm .128$ $.390 \pm .116$ $.376 \pm .121$ $.397 \pm .112$.609±.103 .601±.102 .622±.104 .617±.115 .628±.108	.824±.094 .813±.108 .830±.105 .828±.104 .833±.102

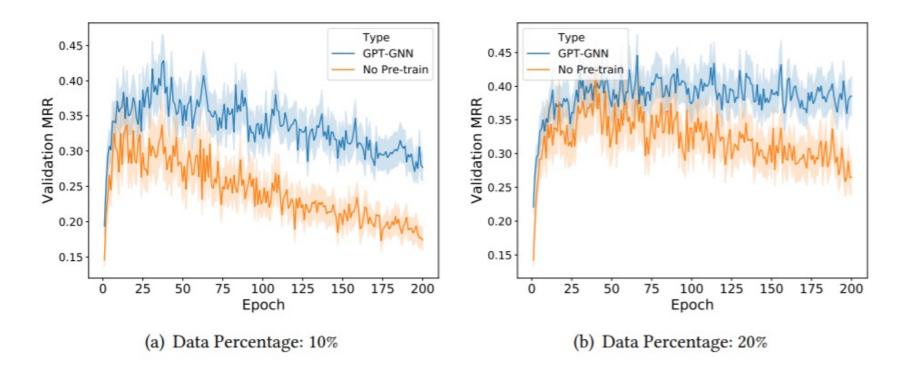
- All pre-training frameworks help the performance of GNNs
 - GAE, GraphSage, Graph Infomax
 - o GPT-GNN
- GPT-GNN helps the most by achieving a relative performance gain of 9.1% over the base model without pre-training
- Both self-supervised tasks in GPT-GNN help the pre-training framework
 - Attribute generation
 - Edge generation

• Data: Microsoft Academic Graph



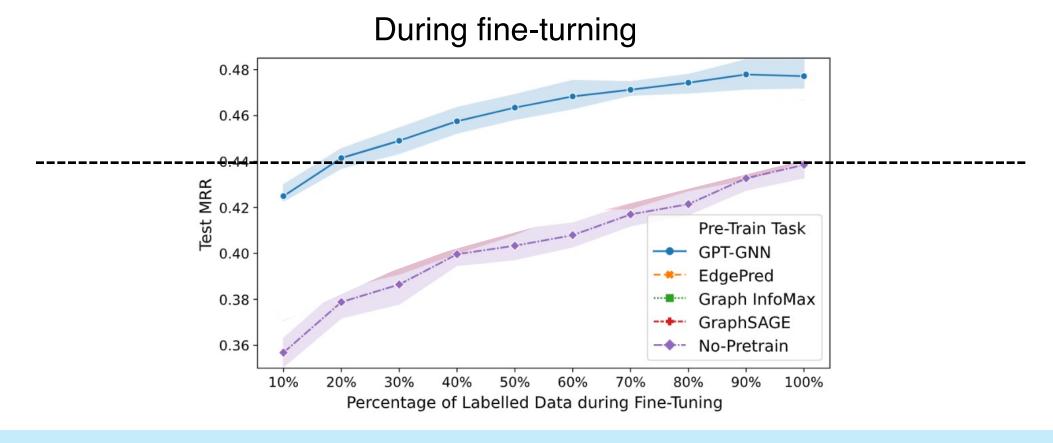
1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. **KDD** 2020.

The Promise of Graph Pre-Training!



Predict Paper Title	GroundTruth Paper Title
person recognition system using automatic probabilistic classification	person re-identification by probabilistic relative distance comparison
a novel framework using spectrum sensing in wireless systems	a secure collaborative spectrum sensing strategy in cyber physical systems
a efficient evaluation of a distributed data storage service storage	an empirical analysis of a large scale mobile cloud storage service
parameter control in wireless sensor networks networks networks	optimal parameter estimation under controlled communication over sensor networks
a experimental system for for to the analysis of graphics	an interactive computer graphics approach to surface representation

The Promise of Graph Pre-Training!



The GNN model **w/o** pre-training with **100%** training data **VS** The pre-trained GNN model with **10-20%** training data

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. **KDD** 2020.

Powering the Microsoft Office Graph

One enterprise graph (monthly)

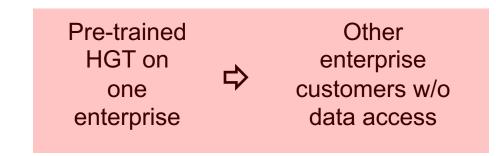
• 1.6 billion entities

 $_{\odot}$ 7 types of entities

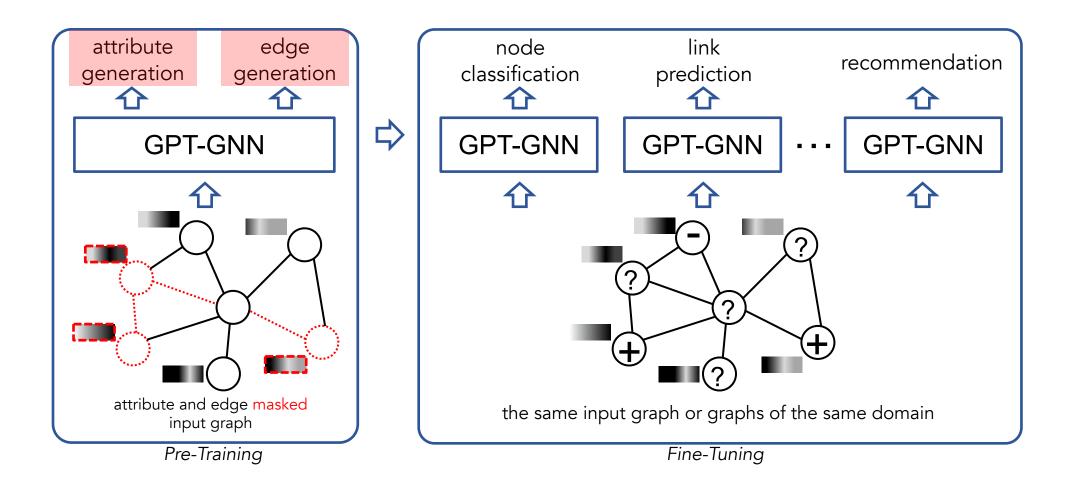
• 7.8 trillion edges

Anomaly detection on Microsoft Office Graph

	Prec.	Recall	F1	Accu.
GraphSage	+0.00	+0.09	+0.06	+0.03
Graph Attention	+0.01	+0.11	+0.08	+0.03
HGT	+0.01	+0.30	+0.19	+0.07

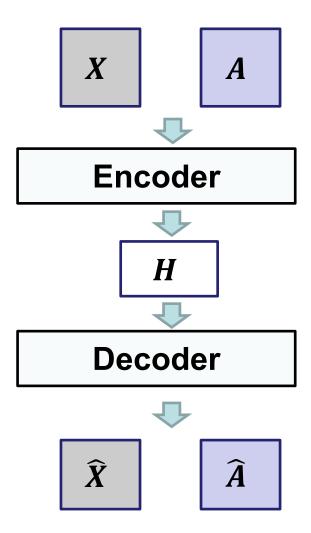


GPT-GNN: Generative Pre-Training of GNNs



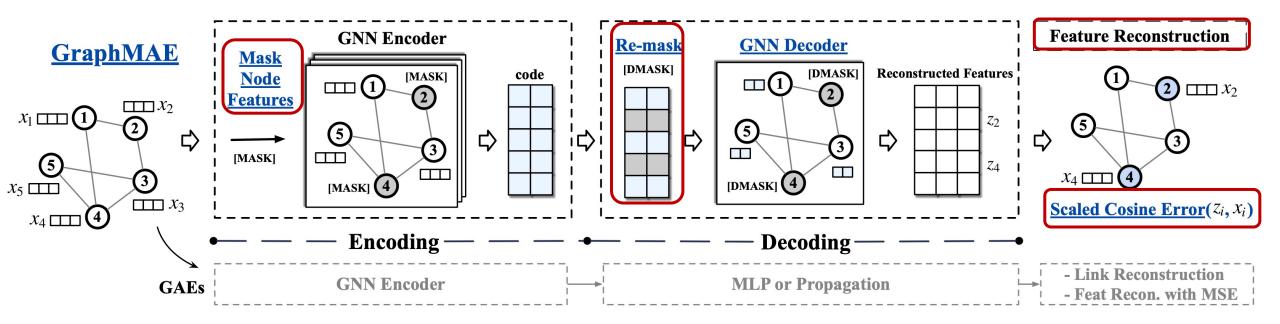
Graph AutoEncoder

- G = (V, A, X)
 - $A \in \{0, 1\}^{N \times N}$: adjacency matrix
 - − $X \in \mathbb{R}^{N \times d}$: node features
- Encoding
 - $H = f_E(A, X)$
- Decoding
 - $G' = f_D(A, H)$
- Reconstruction objectives
 - graph structure (link)
 - node features

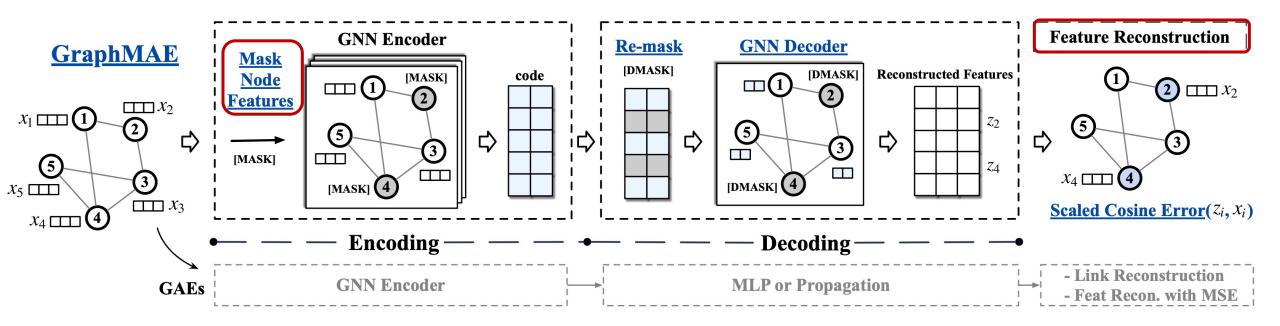


			onstruc Target	tion		oding Itegy	
Methods	Feat. Loss	AE	No Struc.	Mask Feat.	GNN Decoder	Re-mask Dec.	Space
VGAE [20]	n/a	\checkmark	-	-	-	-	$O(N^2)$
ARVGA [26]	n/a	\checkmark	-	-	-	-	$O(N^2)$
MGAE [42]	MSE	\checkmark	-	\checkmark	-	-	O(N)
GALA [27]	MSE	\checkmark	\checkmark	-	\checkmark	-	O(N)
GATE [31]	MSE	\checkmark	-	-	\checkmark	-	O(N)
AttrMask [16]	CE	\checkmark	\checkmark	\checkmark	-	-	O(N)
GPT-GNN [17]	MSE	-	-	\checkmark	-	-	O(N)
AGE [3]	n/a	\checkmark	-	-	-	-	$O(N^2)$
NodeProp [18]	MSE	\checkmark	\checkmark	\checkmark	-	-	O(N)
Error Re Function				onstruc Methoc			

GraphMAE



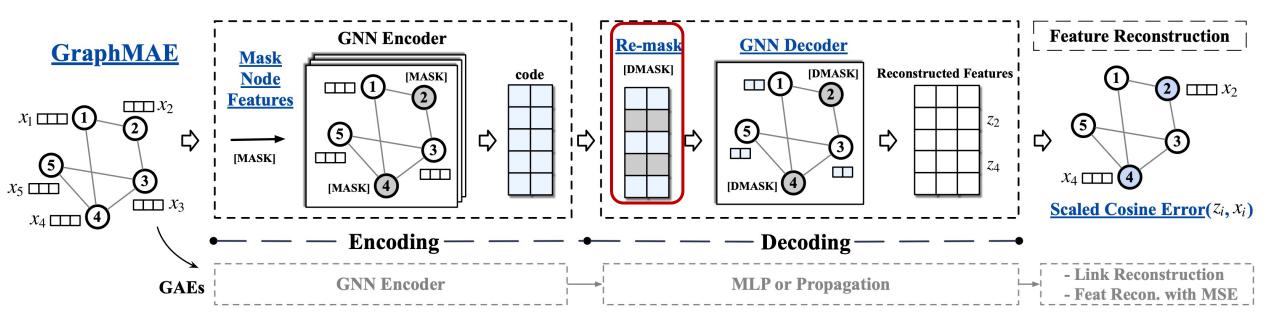
Masked Feature Reconstruction



- Feature construction as the learning objective
- Masked feature reconstruction
 - 1. Sample a subset of nodes $\widetilde{V} \subset V$
 - 2. Replace node feature with [MASK]

$$\widetilde{\boldsymbol{x}}_{i} = \begin{cases} \boldsymbol{x}_{[M]} & v_{i} \in \widetilde{\mathcal{V}} \\ \boldsymbol{x}_{i} & v_{i} \notin \widetilde{\mathcal{V}} \end{cases}$$
• $H = J_{E}(A, A)$

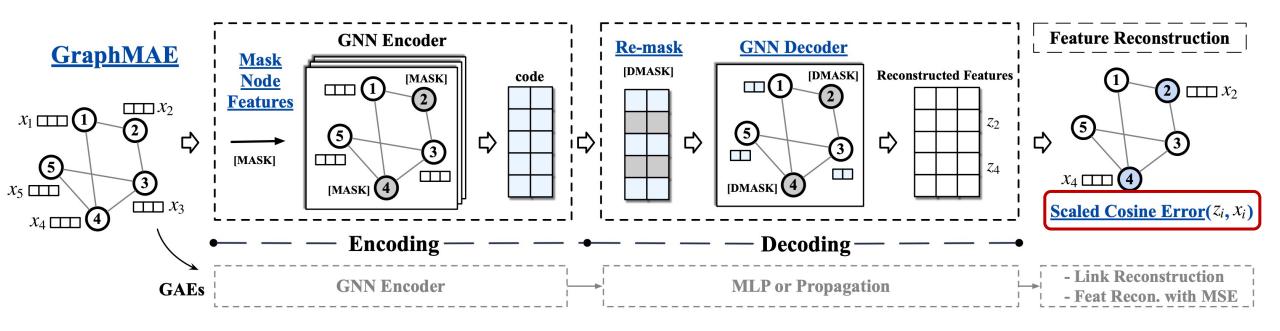
GNNs as Decoder with Re-Mask Decoding



- Use a GNN as the decoder
 - A more expressive decoder helps reconstruct low informative features
- Re-mask node features before decoder
 - Re-mask the "masked" nodes

•
$$\widetilde{H} = \operatorname{Remask}(H), \ Z = f_D(A, \widetilde{H})$$
 $\widetilde{h}_i = \begin{cases} h_{[M]} & v_i \in \widetilde{\mathcal{V}} \\ h_i & v_i \notin \widetilde{\mathcal{V}} \end{cases}$

Scaled Cosine Error as the Criterion



- MSE fails, especially for continuous features
 - Sensitivity & low selectivity

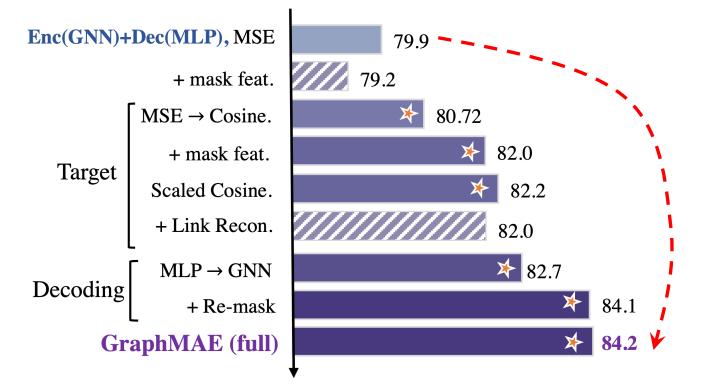
$$L_{MSE} = \frac{1}{|\tilde{V}|} \sum_{v_i \in \tilde{V}} (x_i - z_i)^2$$

- Scaled cosine error as the criterion
 - Cosine error & scaled coefficient

$$\mathcal{L}_{\text{SCE}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_i \in \widetilde{\mathcal{V}}} (1 - \frac{\boldsymbol{x}_i^T \boldsymbol{z}_i}{\|\boldsymbol{x}_i\| \cdot \|\boldsymbol{z}_i\|})^{\gamma}, \ \gamma \ge 1,$$

			onstruc Target	tion		oding itegy	
Methods	Feat. Loss	AE	No Struc.	Mask Feat.	GNN Decoder	Re-mask Dec.	Space
VGAE [20]	n/a	\checkmark	-	-	-	-	$O(N^2)$
ARVGA [26]	n/a	\checkmark	-	-	-	-	$O(N^2)$
MGAE [42]	MSE	\checkmark	-	\checkmark	-	-	O(N)
GALA [27]	MSE	\checkmark	\checkmark	-	\checkmark	-	O(N)
GATE [31]	MSE	\checkmark	-	-	\checkmark	-	O(N)
AttrMask [16]	CE	\checkmark	\checkmark	\checkmark	-	-	O(N)
GPT-GNN [17]	MSE	-	-	\checkmark	-	-	O(N)
AGE [3]	n/a	\checkmark	-	-	-	-	$O(N^2)$
NodeProp [18]	MSE	\checkmark	\checkmark	\checkmark	-	-	O(N)
GraphMAE	SCE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	O(N)
F	n		onstruc Methoo				

GraphMAE



(b) The effect of GraphMAE designs on the performance on Cora dataset.

Table 4: Ablation studies of decoder type, re-mask and reconstruction criterion on node- and graph-level benchmarks.

	Dataset		Node-Leve		Graph-Level		
	Dutabet	Cora	PubMed	Arxiv	Μ	UTAG	IMDB-B
	GraphMAE	84.2	81.1	71.75	ł	88.19	75.52
MP.	w/o mask	79.7	77.9	70.97	:	82.58	74.42
COMP.	w/o re-mask	82.7	80.0	71.61	:	86.29	74.42
Ŭ	w/ MSE	79.1	73.1	67.44	1	86.30	74.04
	MLP	82.2	80.4	71.54	1	87.16	73.94
Decoder	GCN	81.3	79.1	71.59	:	87.78	74.54
Jeco	GIN	81.8	80.2	71.41		88.19	75.52
<u>ц</u>	GAT	84.2	81.1	71.75		86.27	74.04

Downstream Tasks

Node Classification

Graph Classification

 Table 1: Experiment results in unsupervised representation learning for node classification.
 We report Micro-F1(%) score for PPI and accuracy(%) for the other datasets.

Table 2: Experiment results in unsupervised representation learning for graph classification. We report accuracy(%) for all datasets.

	Dataset	Cora	CiteSeer	PubMed	Ogbn-arxiv	PPI	Reddit
C	GCN	81.5	70.3	79.0	71.74±0.29	75.7±0.1	95.3±0.1
Supervised	GAT	83.0±0.7	72.5 ± 0.7	$79.0 {\pm} 0.3$	$72.10 {\pm} 0.13$	$97.30 {\pm} 0.20$	96.0 ± 0.1
	GAE	71.5±0.4	65.8±0.4	72.1±0.5	-	-	-
	GPT-GNN	80.1±1.0	68.4±1.6	76.3±0.8	-	-	-
	GATE	83.2±0.6	$71.8 {\pm} 0.8$	80.9±0.3	-	-	-
	DGI	82.3±0.6	71.8 ± 0.7	76.8±0.6	70.34 ± 0.16	63.80 ± 0.20	94.0 ± 0.10
0.16	MVGRL	83.5±0.4	73.3±0.5	80.1±0.7	-	-	-
Self-supervised	GRACE ¹	81.9±0.4	71.2 ± 0.5	80.6 ± 0.4	71.51 ± 0.11	69.71±0.17	94.72±0.04
	BGRL ¹	82.7±0.6	71.1 ± 0.8	79.6±0.5	71.64 ± 0.12	73.63 ± 0.16	94.22±0.03
	InfoGCL	83.5±0.3	73.5±0.4	79.1±0.2	-	-	-
	CCA-SSG ¹	84.0 ± 0.4	73.1 ± 0.3	81.0 ± 0.4	$71.24 {\pm} 0.20$	$73.34 {\pm} 0.17$	95.07±0.02
	GraphMAE	84.2±0.4	73.4±0.4	81.1±0.4	71.75±0.17	74.50±0.29	96.01±0.08

	Dataset	IMDB-B	IMDB-M	PROTEINS	COLLAB	MUTAG	REDDIT-B	NCI1
Supervised	GIN	75.1±5.1	52.3 ± 2.8	76.2 ± 2.8	80.2±1.9	89.4±5.6	92.4±2.5	82.7±1.7
Supervised	DiffPool	72.6±3.9	-	75.1 ± 3.5	78.9 ± 2.3	85.0 ± 10.3	92.1±2.6	-
Graph Kernels	WL	72.30 ± 3.44	46.95 ± 0.46	72.92 ± 0.56	-	80.72 ± 3.00	68.82 ± 0.41	80.31±0.46
Graph Kernels	DGK	66.96±0.56	44.55 ± 0.52	$73.30{\pm}0.82$	-	87.44 ± 2.72	78.04 ± 0.39	80.31±0.46
	graph2vec	71.10±0.54	50.44 ± 0.87	$73.30{\pm}2.05$	-	83.15±9.25	75.78±1.03	73.22±1.81
	Infograph	73.03±0.87	49.69 ± 0.53	74.44 ± 0.31	70.65 ± 1.13	89.01±1.13	82.50 ± 1.42	76.20 ± 1.06
	GraphCL	71.14±0.44	48.58 ± 0.67	74.39 ± 0.45	71.36 ± 1.15	86.80 ± 1.34	89.53±0.84	$77.87 {\pm} 0.41$
Salf ann amricad	JOAO	70.21±3.08	49.20 ± 0.77	74.55 ± 0.41	69.50 ± 0.36	87.35 ± 1.02	85.29±1.35	78.07 ± 0.47
Self-supervised	GCC	72.0	49.4	-	78.9	-	89.8	-
	MVGRL	74.20 ± 0.70	51.20 ± 0.50	-	-	89.70 ± 1.10	84.50 ± 0.60	-
	InfoGCL	75.10 ± 0.90	$\underline{51.40{\pm}0.80}$	-	80.00 ± 1.30	$91.20{\pm}1.30$	-	80.20 ± 0.60
	GraphMAE	75.52±0.66	51.63±0.52	75.30±0.39	80.32±0.46	88.19±1.26	88.01±0.19	80.40±0.30

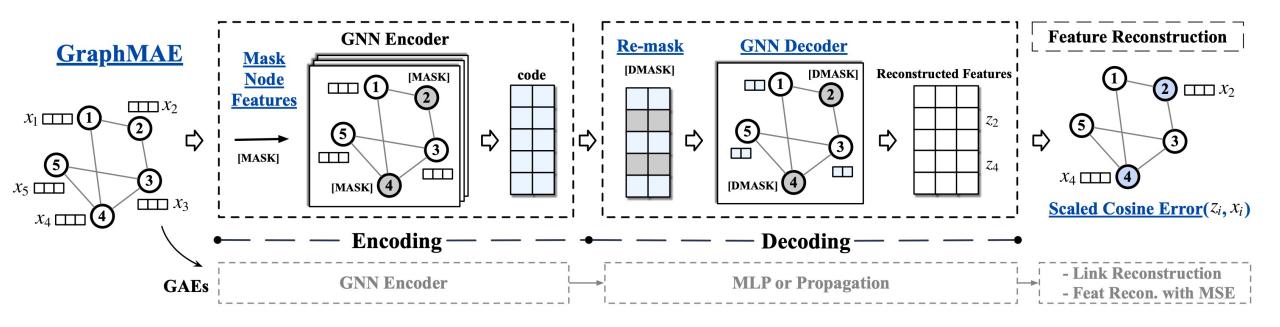
Transfer Learning

Table 3: Experiment results in transfer learning on molecular property prediction benchmarks. The model is first pre-trained on ZINC15 and then finetuned on the following datasets. We report ROC-AUC(%) scores.

	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Avg.
No-pretrain	65.5±1.8	74.3±0.5	63.3±1.5	57.2±0.7	58.2±2.8	71.7±2.3	75.4±1.5	70.0±2.5	67.0
ContextPred	64.3±2.8	75.7±0.7	63.9±0.6	60.9±0.6	65.9±3.8	75.8±1.7	77.3±1.0	79.6±1.2	70.4
AttrMasking	64.3±2.8	76.7±0.4	64.2±0.5	<u>61.0±0.7</u>	71.8±4.1	74.7±1.4	77.2 ± 1.1	79.3±1.6	71.1
Infomax	68.8 ±0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9±3.0	75.3 ±2.5	76.0 ±0.7	75.9 ±1.6	70.3
GraphCL	69.7±0.7	73.9±0.7	62.4±0.6	60.5±0.9	76.0±2.7	69.8±2.7	78.5±1.2	75.4±1.4	70.8
JOAO	70.2±1.0	75.0±0.3	62.9±0.5	60.0±0.8	81.3±2.5	71.7±1.4	76.7±1.2	77.3±0.5	71.9
GraphLoG	72.5±0.8	75.7±0.5	63.5±0.7	61.2±1.1	76.7±3.3	76.0 ± 1.1	77.8 ± 0.8	83.5±1.2	<u>73.4</u>
GraphMAE	72.0±0.6	75.5±0.6	<u>64.1±0.3</u>	60.3±1.1	82.3±1.2	76.3±2.4	77.2±1.0	83.1±0.9	73.8

Code: <u>https://github.com/THUDM/GraphMAE</u>

Summary of GraphMAE



- 1. Generative SSL on Graphs vs. Contrastive Learning on Graphs
- 2. Identify the common issues in current graph autoencoders
- 3. Present a simple masked graph autoencoder—GraphMAE

Reflection & Motivation

- Problems in masked-feature-prediction
 - more sensitive to the discriminability of input features.

	$Cora$ $raw \rightarrow w/PCA$	PubMed raw $\rightarrow w/PCA$
-	$83.0 \rightarrow 82.3 (\downarrow 0.7)$ $84.2 \rightarrow 82.6 (\downarrow 1.6)$	
GraphMAE2	84.5 → 83.5 (↓ 1.0)	$81.4 \rightarrow 80.1 \ (\downarrow 1.3)$

- *raw* : the original node features
- w/ PCA : the input features are reduced to 50-dimensional vectors using PCA

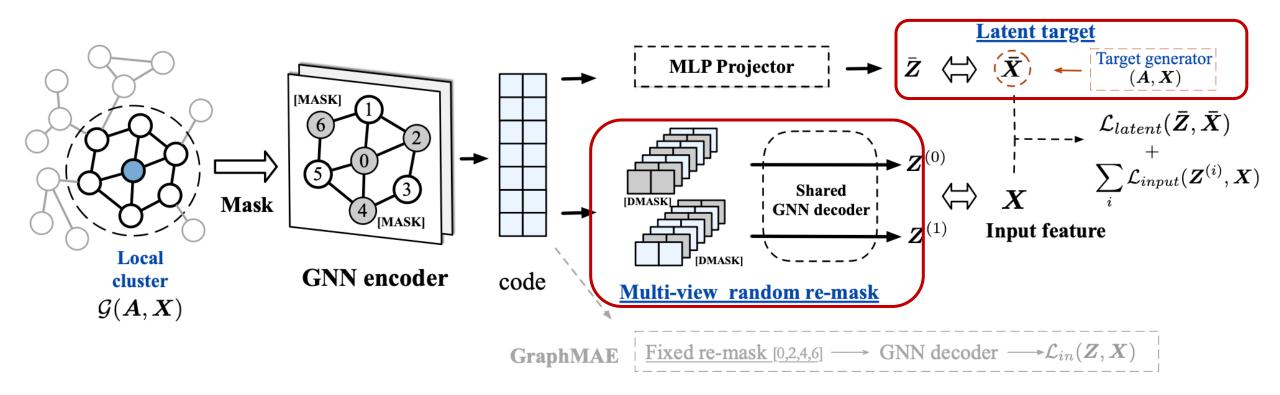
Resolution: imposing regularization on target reconstruction

GraphMAE2

A Decoding-Enhanced Masked Self-Supervised Graph Learner.

10:00-10:10 AM Thursday, May 4, 2023 @Classroom 107

GraphMAE2 Framework



- Multi-view random re-mask decoding
- Latent representation prediction
- Scaling to large-scale graphs with local clustering

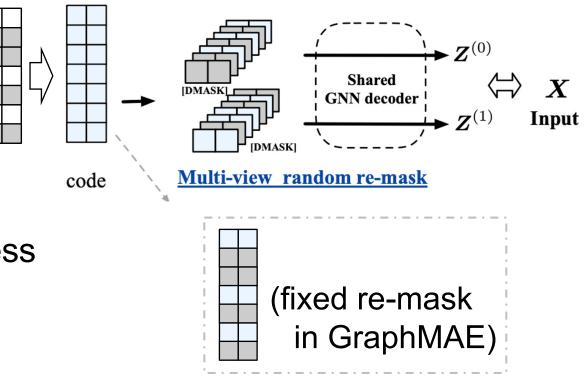
Multi-View Random Re-Mask Decoding

- Avoid representation overfitting to input features
- Randomly re-mask representations/code
 - $\widetilde{H} = \text{Remask}(H), \ Z = f_D(A, \widetilde{H})$

$$\widetilde{\boldsymbol{h}}_{i} = \begin{cases} \boldsymbol{h}_{[M]} & v_{i} \in \overline{\mathcal{V}} \\ \boldsymbol{h}_{i} & v_{i} \notin \overline{\mathcal{V}} \end{cases}$$

- Multiple re-masking
 - K-different randomly re-masking
 - better generalization and effectiveness

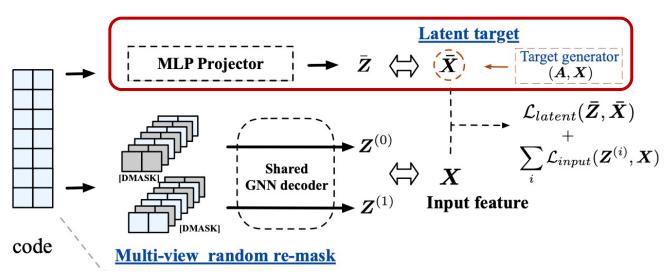
$$\mathcal{L}_{input} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{j=1}^{K} \sum_{v_i \in \widetilde{\mathcal{V}}} (1 - \frac{\boldsymbol{x}_i^{\top} \boldsymbol{z}_i^{(j)}}{\|\boldsymbol{x}_i\| \cdot \|\boldsymbol{z}_i^{(j)}\|})^{\gamma}$$



Latent Representation Prediction

- Additional informative prediction target
 - Minimally affected by input features & and GNN as a denoiser
- Predicting masked latent representations
 - A (momentum) target generator $f_{target}(\cdot|\xi)$
 - Prediction: $\overline{Z} = f_E(mask(G); \theta)$
 - Latent target: $\overline{X} = f_{target}(G; \xi)$
 - $\xi \leftarrow \tau \cdot \xi + (1 \tau) \cdot \theta$

$$\mathcal{L}_{latent} = \frac{1}{N} \sum_{i}^{N} (1 - \frac{\bar{z}_{i}^{\top} \bar{x}_{i}}{\|\bar{z}\| \cdot \|\bar{x}\|})^{\gamma}$$



Experiments

- Embedding evaluation with linear probing
- On large-scale graphs

Datasets	#Nodes	#Edges
Cora	2,485	5,069
Citeseer	2,110	3,668
Pubmed	19,717	44,324
ogbn-Arxiv	169,343	1,166,243
ogbn-Products	2,449,029	61,859,140
MAG-Scholar-F	12,403,930	358,010,024
ogbn-Papers100M	111,059,956	1,615,685,872

Linear Probing

- Setting: training a linear classifier
- Results:
 - 1. GraphMAE2 consistently outperforms all baselines
 - 2. Random-Init models can achieve decent results

	Arxiv	Products	MAG	Papers100N		Cora	CiteSeer	PubMed
MLP	55.50±0.23	61.06±0.08	39.11±0.21	47.24±0.31	GCN GAT	81.5 83.0±0.7	70.3 72.5±0.7	79.0 79.0±0.3
SGC Random-Init	66.92 ± 0.08 68.14 ± 0.02	$74.87{\scriptstyle\pm 0.25} \\74.04{\scriptstyle\pm 0.06}$	54.68 ± 0.23 56.57 ± 0.03	63.29±0.19 61.55±0.12	GAE DGI	$71.5{\scriptstyle\pm0.4}\\82.3{\scriptstyle\pm0.6}$	$\begin{array}{c} 65.8{\scriptstyle\pm0.4}\\ 71.8{\scriptstyle\pm0.7}\end{array}$	$72.1{\scriptstyle\pm0.5}$ $76.8{\scriptstyle\pm0.6}$
CCA-SSG	68.57±0.02	75.27±0.05	51.55±0.03	55.67±0.15	MVGRL GRACE	83.5 ± 0.4 81.9 ± 0.4	$73.3{\scriptstyle\pm0.5}\\71.2{\scriptstyle\pm0.5}$	80.1 ± 0.7 80.6 ± 0.4
GRACE BGRL	69.34 ± 0.01 70.51 ± 0.03	$\frac{79.47 \pm 0.59}{78.59 \pm 0.02}$	57.39 ± 0.02 57.57 ± 0.01	61.21 ± 0.12 62.18 ± 0.15	BGRL InfoGCL	82.7 ± 0.6 83.5 ± 0.3	71.1 ± 0.8 73.5 ± 0.4	79.6±0.5 79.1±0.2
GGD ¹ GraphMAE	- 71.03±0.02	75.70 ± 0.40 78.89 ± 0.01	- 58.75±0.03	$\frac{63.50\pm0.50}{62.54\pm0.09}$	CCA-SSG GGD	84.0 ± 0.4 83.9 ± 0.4	73.1±0.3 73.0±0.6	81.0 ± 0.4 81.3 ± 0.8
GraphMAE2	71.89 ±0.03	81.59 ±0.02	59.24 ±0.01	64.89 ±0.04	GraphMAE	<u>84.2±0.4</u>	$\underline{73.4{\pm}0.4}$	81.1±0.4
-					GraphMAE2	84.5 ±0.6	73.4 ± 0.3	81.4 ±0.5

Code: <u>https://github.com/THUDM/GraphMAE2</u>

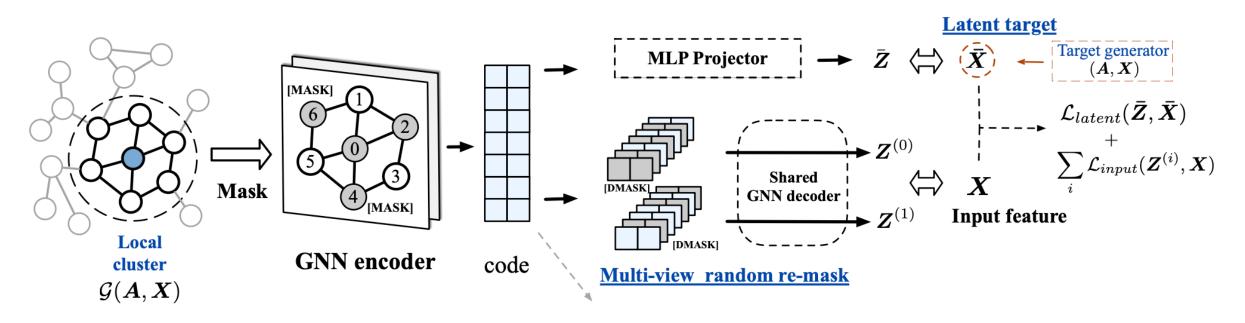
Ablation Studies

Component Ablation of GraphMAE2

- GraphMAE2 surpasses all baselines with the same sampling strategy
- Using local clusters brings further improvement

	Strategy	Products	MAG	Papers100M
GRACE	SAINT	79.47 ± 0.59	$57.39{\scriptstyle\pm0.02}$	61.21 ± 0.12
BGRL	SAINT	$78.59{\scriptstyle \pm 0.02}$	$57.57{\scriptstyle\pm0.01}$	62.18 ± 0.15
GraphMAE2	SAINT	$80.96{\scriptstyle\pm0.03}$	$58.75{\scriptstyle\pm0.03}$	64.21 ± 0.11
GraphMAE2	Cluster	$79.35{\scriptstyle \pm 0.05}$	$58.05{\scriptstyle\pm0.02}$	63.77 ± 0.11
GraphMAE2	LC	$81.59{\scriptstyle \pm 0.02}$	$59.24{\scriptstyle\pm0.01}$	$64.89{\scriptstyle \pm 0.12}$

GraphMAE2 Summary



- Analyze the problem in masked feature prediction
- Present GraphMAE2 with improved decoding strategies
- GraphMAE2 achieves promising performance in large-scale graphs

GraphMAE2: <u>https://github.com/THUDM/GraphMAE2</u> GraphMAE: <u>https://github.com/THUDM/GraphMAE</u>

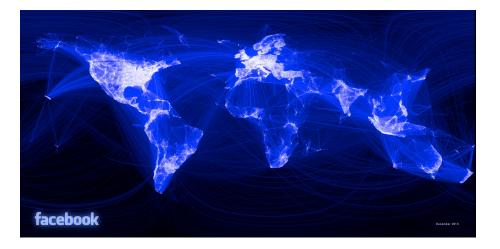
Generative Learning on Graphs

Pre-Train Graphs with Language/Image/Knowledge

Academic Graph

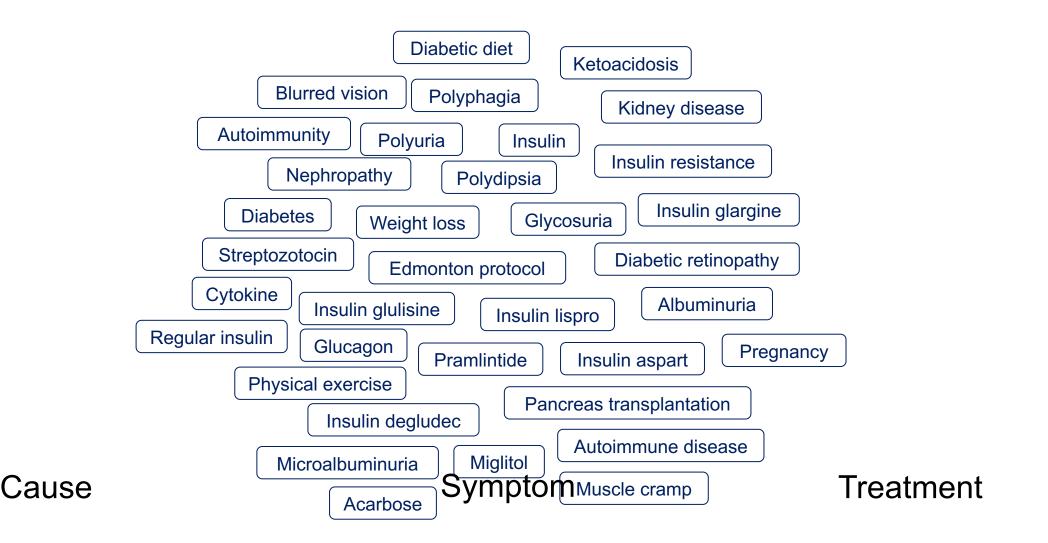
Microsoft Office Graph

LinkedIn Economic Graph

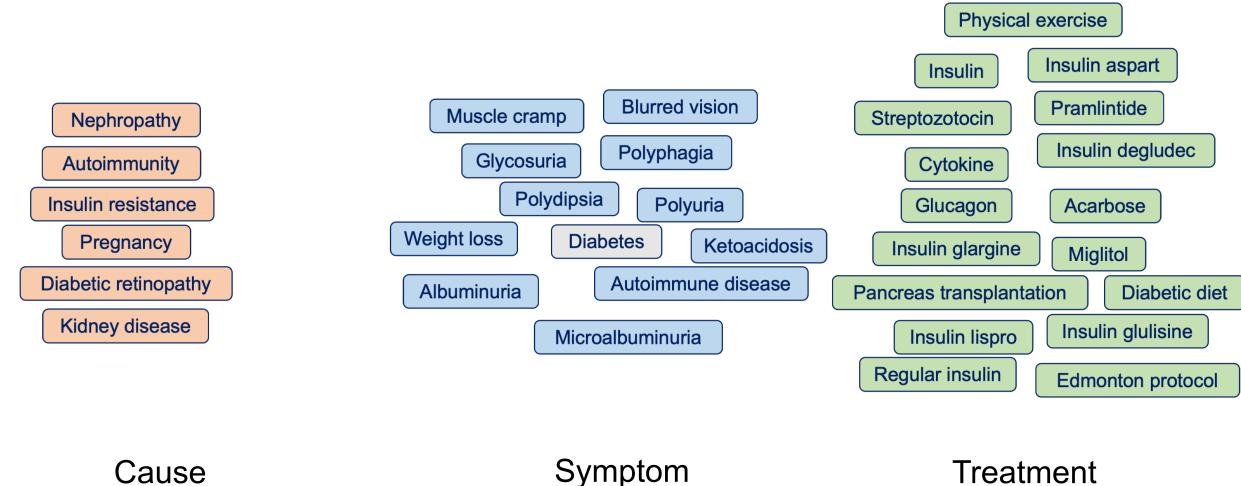


Facebook Entity Graph

Neural Symbolic Reasoning



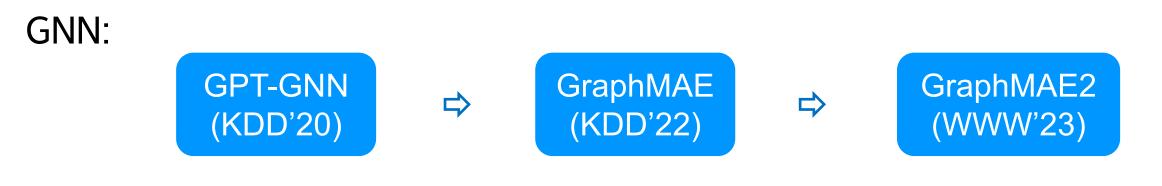
Neural Symbolic Reasoning



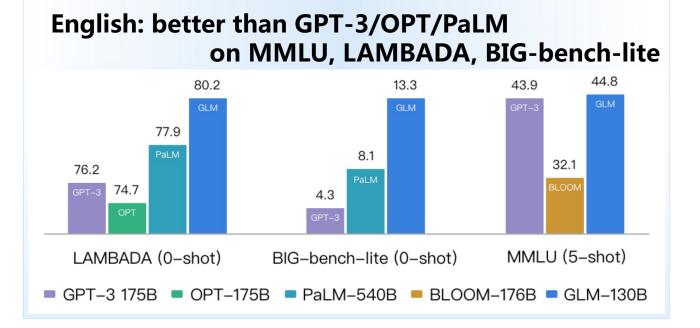
Cause

Treatment

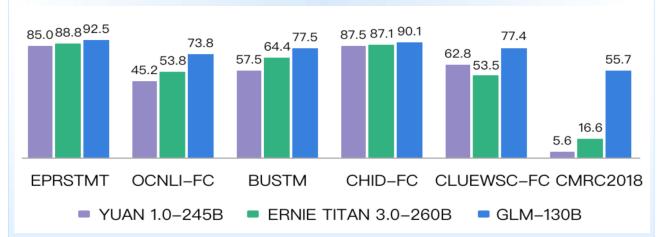
GNNs vs. LLMs



https://github.com/THUDM



Chinese: better than ERNIE 260B & YUAN 245B



Since Aug., 2022, requests from ~1000 orgs in 69 countries

- •Google •Microsoft
- Facebook • Stanford
- MIT
- •UC Berkely
- •CMU
- •Harvard
- Princeton
- Yale
- •Cornell
- •UIUC
- •Oxford

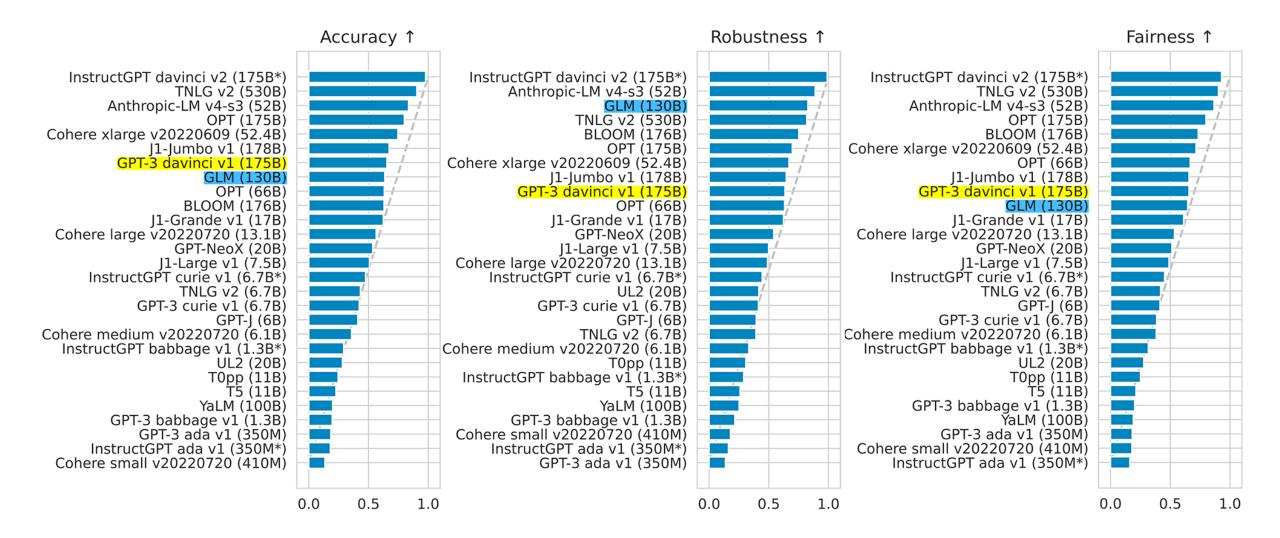
- •Huawei •Alibaba
- Tencent •Baidu
- •Meituan
- •Bytedance
- •Didi
- •Xiaoice
- •Xiaodu
 - •Xiaomi
 - •Xiaopeng
 - •Youdao
- •Cambridge •Face++
 - Ping An Cap Shanghai AI Lab

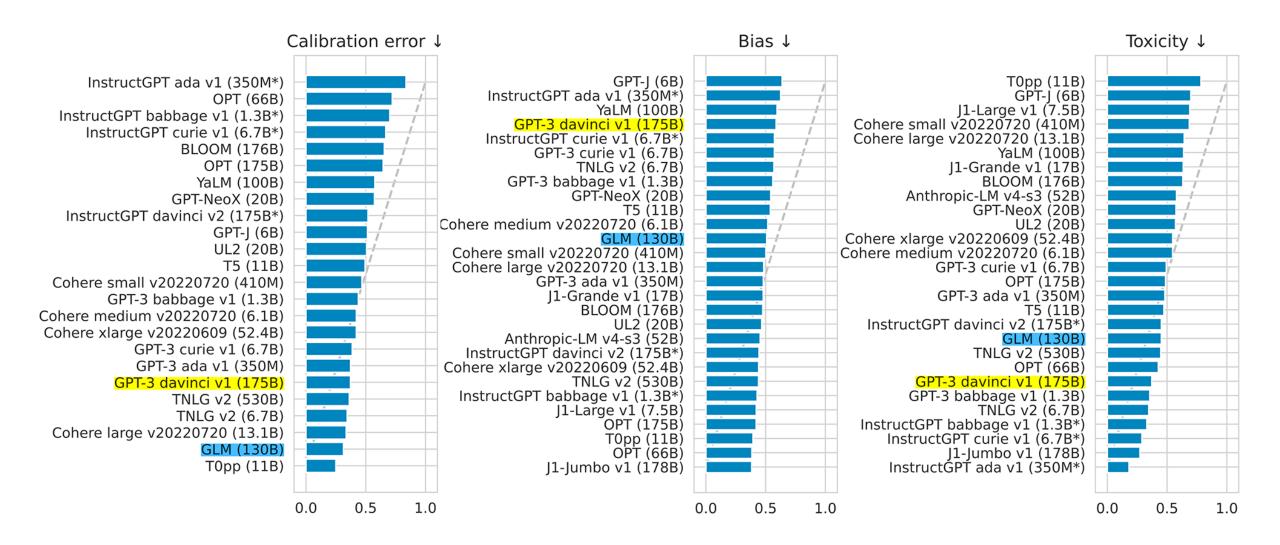
- •Peking U.
- •Zhejiang U.
- •Shanghai JT U.
- •Fudan U.
- •USTC
- U of CAS
- •Wuhan U.
- Naikai U.
- •Hongkong U.
- •CUHK
- HKUST
- BAAI
- •Zhejiang Lab

The only model from academia was covered by Stanford's HELM

Model	Model Creator	Modality	# Parameters	Tokenizer	Window Size	Access	Total Tokens	Total Queries	Total Cost			
J1-Jumbo v1 (178B) J1-Grande v1 (17B) J1-Large v1 (7.5B)	AI21 Labs AI21 Labs AI21 Labs	Text Text	178B 17B	AI21 AI21	2047 2047	limited limited	327,443,515 326,815,150	591,384 591,384	\$10,926 \$2,973			
Anthropic-LM v4-s3 (52B)	Anthropic			1				DieCeien		1		
BLOOM (176B) T0++ (11B)	BigScience BigScience	A	21 lak	S	ANTH	ROF	P/C	BigScien	ce	CO:ľ	nere	
Cohere xlarge v20220609 (52.4B) Cohere large v20220720 (13.1B) ⁵⁸ Cohere medium v20220720 (6.1B) Cohere small v20220720 (410M) ⁵⁹	Cohere Cohere Cohere Cohere		G	ood	e 🔿		ota		Vicroso	-4	Ø,	
GPT-J (6B) GPT-NeoX (20B)	EleutherAI EleutherAI	Eleuthe		oogi			eta		viicioso	Л		
T5 (11B) UL2 (20B)	Google Google	[_			5000	· 章						
OPT (66B) OPT (175B)	Meta Meta	S OpenAI			T-SINGH			Yandex TO		OGETH	GETHER	
TNLG v2 (6.7B) TNLG v2 (530B)	Microsoft/NVIDIA Microsoft/NVIDIA	-				1911- 1911-						
GPT-3 davinci v1 (175B) GPT-3 curie v1 (6.7B)	OpenAI OpenAI				https://c	erfm.s	stanford	.edu/hel	<u>m</u> , 2023.0	308		
GPT-3 babbage v1 (1.3B)	OpenAI	Text	1.3B	GPT-2	2048	limited	422,123,900	606,253	\$211			
GPT-3 ada v1 (350M)	OpenAI	Text	350M	GPT-2	2048	limited	422,635,705	604,253	\$169			
InstructGPT davinci v2 (175B*)	OpenAI	Text	175B*	GPT-2	4000	limited	466,872,228	599,815	\$9,337			
InstructGPT curie v1 (6.7B*)	OpenAI	Text	6.7B*	GPT-2	2048	limited	420,004,477	606,253	\$840			
InstructGPT babbage v1 (1.3B*)	OpenAI	Text	1.3B*	GPT-2	2048	limited	419,036,038	604,253	\$210			
InstructGPT ada v1 (350M*)	OpenAI	Text	350M*	GPT-2	2048	limited	418,915,281	604,253	\$168			
Codex davinci v2	OpenAI	Code	Unknown	GPT-2	4000	limited	46,272,590	57,051	\$925			
Codex cushman v1	OpenAI	Code	Unknown	GPT-2	2048	limited	42,659,399	59,751	\$85			
GLM (130B)	Tsinghua University	Text	130B	ICE	2048	open	375,474,243	406,072	2,100 GPU hours	s		
YaLM (100B)	Yandex	Text	100B	Yandex	2048	open	378,607,292	405,093	2,200 GPU hours	s		
		-										

1.Liang et al., Holistic Evaluation of Language Models. arXiv: 2211.09110





chatglm.cn

Alpha/beta test from Mar. 14, 2023

An Open ChatGLM-6B

- Mar. 14, 2023, open-soured model
- Mar. 16, 2023, **#1** on GitHub Trending
- Mar. 18-30, **#1** on Hugging Face Trending
- Apr. 30, 2023, 21.8k stars in GitHub

1M downloads in HF

States THUDM/chatglm-6b
Updated 3 days ago • ↓ 910k • ♥ 1.76k

THUDM/chatglm-6b-int4
Updated 3 days ago • \downarrow 91.9k • \heartsuit 199

THUDM/chatglm-6b-int8 Updated 3 days ago • \downarrow 14.1k • \heartsuit 12

https://huggingface.co/THUDM

Thank you!

 ☐ ChatGLM-6B Public :: ChatGLM-6B: An Open Bilingual Dialogue Language Model 开源双语对话语言模型 ● Python ☆ 21.9k ♀ 2.6k 	□ GLM-130B Public III GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023) III III ● Python ☆ 5.1k ♀ 365
□ CodeGeeX Public :: CodeGeeX: An Open Multilingual Code Generation Model	□ CogView Public :: Text-to-Image generation. The repo for NeurIPS 2021 paper "CogView: Mastering Text-to-Image Generation via Transformers". ● Python ☆ 1.4k ♀ 163
□ CogVideo Public III Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers" ● Python ☆ 2.8k ♀ 286	□ cogdl Public Image: Second constraints Image: Second constraints CogDL: A Comprehensive Library for Graph Deep Learning (WWW 2023) Image: Second constraints Image: Second constraints ● Python Image: Second constraints Image: Second constraints Image: Second constraints

