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Abstract With the advent of social coding sites, software development has entered a new
era of collaborative work. Social coding sites (e.g., GitHub) can integrate social networking
and distributed version control in a unified platform to facilitate collaborative develop-
ments over the world. One unique characteristic of such sites is that the past development
experiences of developers provided on the sites convey the implicit metrics of developer’s
programming capability and expertise, which can be applied in many areas, such as software
developer recruitment for IT corporations. Motivated by this intuition, we aim to develop
a framework to effectively locate the developers with right coding skills. To achieve this
goal, we devise a generativ e probabilistic expert ranking model upon which a consistency
among projects is incorporated as graph regularization to enhance the expert ranking and a
perspective of relevance propagation illustration is introduced. For evaluation, StackOver-
flow is leveraged to complement the ground truth of expert. Finally, a prototype system,
SCSMiner, which provides expert search service based on a real-world dataset crawled from
GitHub is implemented and demonstrated.
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1 Introduction

Along with the prevalence of social networks in the world, social coding sites (SCS) is
changing software development toward a more collaborative manner by the way of inte-
grating social media functionality and distributed version control tools. For instance, as a
large website for social coding, GitHub1 is developing fast and growing into one of the best-
known websites. Ever since the publication of Git and its successful application by Ruby
community for distributed version control, the size of GitHub has been increasing since
2008 and this trend has dramatically accelerated over the past few years. According to our
statistical analysis, until June 2015, the numbers of developers and projects in GitHub have
reached up to 11,610,094 and 20,598,603, respectively.

A systemic view of social coding sites Figure 1 describes the schema of developer and
project profiles in SCS. In SCS, information concerning user’s name, company, location
and followers count property is available, and the name, owner, description property and
README file of project are also provided. Specifically, for developers, the location feature
records where the developer is; the hireable feature records the current working status of
a developer. For projects, the contributors feature records a project’s contributors and lines
of codes each contributor contributes to; the language feature (e.g., C++, Java, Python)
refers to the main language of a project; the stargazers count is the number of developers
who have starred the project, and it can represent the quality of projects in some sense.
It’s worth noting that every project in SCS consists of a brief description, apart from some
detailed information in the README file for most projects. Unlike traditional open source
code platforms such as SourceForge2 and BitBucket,3 SCS like GitHub offers not only a
code hosting service, but also an online tool for collaborative software development. In
SCS, collaborators of projects can make changes to the content of repository and review
the contributions submitted to the repository, while those who are not collaborators but
wish to contribute to a project can fork it. In addition, users in GitHub can follow others
in order to be notified of their actions, and users can star interesting repositories if they
want to bookmark for later reference. Based on the information in SCS, we can construct a
heterogeneous collaborative network of developers and projects.

Motivation The past development experiences of developers in SCS demonstrate the
implicit metrics of developer’s programming capability and expertise which can be applied
in many areas such as software developer recruitment for IT corporations. In IT industry,
IT professional recruiting has always been a slog for everyone involved, so finding better
and easier ways to achieve successful recruiting is of great importance. The most common
practice in current recruitment is through LinkedIn service by referring to the information
published in LinkedIn to measure the professional level of targeted candidates. One limita-
tion of such practice is that a personal profile can only be updated intentionally, i.e., it’s a
static profile rather than a dynamic profile. Another limitation is that it’s difficult to mea-
sure the proficiency of developers only through static profile, e.g., recruiters can’t judge
the degree of proficiency of developer who declares that he/she is proficient in Java pro-
gramming. In contrast, the expertise information derived from SCS will undoubtedly be

1https://www.github.com
2http://www.sourceforge.net/
3http://www.bitbucket.org
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Figure 1 The schema of developer and project profiles in GitHub, one of the most popular social coding
site. In GitHub, each user has name, company, location and followers count property, each project has name,
owner, description and README property. A heterogeneous network between users and projects can be
constructed based on these information

more dynamic and accurate about developers’ portfolio, professional interest and influence
through their participated projects hosted in the site, which makes recruiters easier to make
selections. This intuition mainly motivate us to conduct this study for developing a practical
system to fulfill such aim.

Challenges Bearing the above in mind, we propose to develop a coding expert recommen-
dation system via SCS mining, named SCSMiner.4 This system is able to provide a list of
developers with ranking based on the given query and the rich information embedded in
SCSs, which we firmly believe will benefit the software developers online recruitment and
promote the development of open source community [19]. Although many SCSs such as
GitHub has its own search engine to rank developers based on some simple metrics, e.g., the
number of their followers, its performance is far from satisfaction. Having a certain num-
ber of followers usually indicates the popularity and professional competence of users to
some extent, however having less followers does not mean that the candidate is necessar-
ily uncompetitive. This work aims to address this ranking problem for a given query. There
are mainly two challenges existing in our work. On the one hand, the textual information in
projects is chaotic and limited. In the README files of projects, there exists many codes
and installation instructions, making the topic model which performs well in textual infor-
mation not satisfactorily in this context. On the other hand, existing expert finding models
heavily rely on the textual information of projects alone, ignoring the implicit informa-
tion in the network structure of projects and developers. Combining the embedded network
structure along with the limited textual information has proved to an option to alleviate the
limited textual information problem of projects [31]. Therefore, the challenge is how to inte-
grate the textual information with the network structure in a unified framework to enhance
the performance of expert searching and ranking simultaneously. Another difficulty is that
unlike the academic network (e.g., DBLP) that many researches have been conducted on,
the expertise of retrieved developers is difficult to quantitatively evaluate for the reason that
no ground truth is available.

To implement this system, we design an expertise ranking algorithm. We first extract
the textual information of projects from README file and then use a vector space model
with cosine similarity to calculate the semantic similarity between a project and a given

4http://scsminer.wanyao.me
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query. Furthermore, a graph based regularization framework is proposed to incorporate con-
sistency hypothesis among the network structure of projects alongside probabilistic model
to measure the expertise score of each candidate developer. Comprehensive experiments
conducted on a real-world dataset demonstrate the performance of our proposed approach.
Finally, a prototype system of SCSMiner is developed and demonstrated.

Contributions The main contributions of this paper can be summarized as follows.

• To the best of our knowledge, this work is the first attempt to discover local experts on
social coding sites, which can benefit many applications.

• We apply a probabilistic model to evaluate the expertise of SCS developers and extend
this model by graph regularization to incorporate the consistency hypothesis among
projects. Furthermore, we also illustrate the inner connections between those two
models from a relevance propagation perspective.

• Comprehensive experiments based on real-world data crawled from GitHub are con-
ducted to demonstrate the performance of the proposed approach. Due to the lack of
ground truth, we use the experts from StackOverflow to verify the experts retrieved by
our model creatively.

• Our prototype SCSMiner providing expert search service is built based on the pro-
posed approach. The involved data, codes have been released, which will facilitate other
researchers to repeat our experiments and verify their own idea.5

Organization The remainder of this paper is organized as follows. Section 2 highlights
some works related to this paper. Section 3 defines our problemmathematically and gives an
overview of SCSMiner’s system architecture. In Section 4, a probabilistic model is proposed
to measure the expertise of each candidate related to a given query. Consistency hypothesis
are proposed and incorporated to improve the performance of expertise ranking in Section 5.
Section 6 describes the dataset we use in our experiment and shows the experimental results
and analysis. Finally, we conclude this paper and propose some future research directions
in Section 7.

2 Related work

In this section, we will make a thorough investigation of existing works about the social
coding sites and present some related works about it. Generally, the related works can be
grouped into three categories.

Mining on social coding sites The important role of social network played in software
development and the transparency and collaboration the social network brings have been
confirmed in [4, 8]. Social coding sites have been studied from several different perspec-
tives. The first is the study of social network among social coding sites [15, 16, 25], where
the collaboration between users, the dissemination of projects and the interaction among
them are analyzed systematically. In those works, the social coding sites are seen as a kind
of social network. The second is on mining of source code and commit log. For instance,
[12] aims to characterize the known coding errors to improve the automatic detection of

5http://wanyao.me/projects/scsminer.html
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software defects, [27] quantitatively and qualitatively investigates when and why developer
change software licenses. These works can be used to promote the development of software
engineering. Besides, some interesting related applications are also emerging. In [13], the
authors extract the professional skill of developers in GitHub and propose a pipeline that
automatizes the process of recruiting and job recommendation. For software development,
[18] investigate the team formation problem for better collaboration. In [19], the authors
analyze the impression formation in an online distributed software development commu-
nity with social media functionality. In [26], the authors investigated the interplay between
StackOverflow activities and the development process, reflected by code changes commit-
ted to the largest social coding repository GitHub. Different from those works, our paper
mainly focus on finding the experts by their domain knowledge and social network.

README extraction and text analysis In [3], a new statistical approach is introduced
to automatically partitioning text into coherent segments. Sodedant et al. [22] develop an
approach to learn text extraction rules automatically for text styles ranging from highly
structured to free text. In [28], a novel measure is proposed for semantic parsing evaluation
of interpreters for instructions in computer program README files. The description infor-
mation extracted from README file are used to calculate the semantic similarities in our
model. Some models can handle it. A non-probabilistic language model [20] based on TF-
IDF is proposed. ln [14], Hofmann et al. propose the probabilistic latent semantic indexing
(pLSI) and apply it to information retrieval. Blei et al. [5] put forward a generative proba-
bilistic model called Latent Dirichlet Allocation (LDA). Based on these topic models, some
other works have been conducted for modeling both author interests and document contents.
The Author-Topic model [23] extends the LDA by integrating the authorship and can find a
topic mixture over documents and authors. Jie et al. [24] proposed a unified topic model to
simultaneously model the topical aspects of different types of information in the academic
network. Conducting experiments using those classical methods, we find that the simplest
TF-IDF method achieves the best performance.

Expertise finding Broadly related to our scenario is expert finding. Considerable works
have been conducted to associate query topics to people for expertise retrieval [2]. In [10],
the authors propose a general probabilistic framework for studying expert finding prob-
lem and derived two families of generative models e.g., candidate generation models and
topic generation models from the framework. In [11], a discriminative learning framework
is proposed for expert finding and two specific probabilistic models i.e., the arithmetic
mean discriminative model and the geometric mean discriminative model are derived from
this framework. In [17], the authors propose a novel voting model for predicting and rank-
ing candidate expertise with respect to a query inspired by techniques from the field of
data fusion. In [21] the authors model the multi-step relevance probability dissemination in
topic-specific expertise graphs consisting of persons and top retrieved documents. In [9], the
authors propose a joint regularization framework to enhance expertise retrieval by model-
ing heterogeneous networks as regularization constraints on top of document-centric model.
With the succesfully development of deep learning, some deep learning based method such
as RNN is utilized to learn the representation of users’ topics [30]. In [30], Zhao et al. pro-
pose a ranking metric network learning framework for expert finding in community question
answering by exploiting both users’ relative quality rank to given questions and their social
relations. Our work mainly refers to [9] but not limited to. Although our proposed model is
mainly borrowed from [9], we transfer it to a novel scenario that is expert finding in social
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coding sites and analyze the topics of developers from the README files of their developed
projects. Besides, we discuss the connection between our proposed model and generative
probabilistic model from the perspective of random walk. Furthermore, we design a novel
method to indirectly evaluate the performance of proposed model.

3 Preliminaries

In this section, we introduce the information we can get from a SCS, and formally define
the problem of expertise search and ranking in a heterogeneous network.

3.1 Problem definition

As shown in Figure 1, a collaborative heterogeneous network consists of two types of object
sets, including a developer set D = {d1, d2, · · · , dm} and a project set R = {r1, r2, · · · , rn}.
Such a heterogeneous network can be defined as G =< V,E >, where V = VD

⋃
VR and

E = ED

⋃
ER

⋃
ED,R . This network can be decomposed into three subnetworks, GD is

a collaborative network between developers, GR is a network of projects, while GD,R is a
network representing the relationship between developers and projects.

In a developer-developer network GD , each node represents a given developer. A link is
assigned to two nodes when the corresponding developers collaboratively develop at least
one common project. We associate a weight to each edge taking into account the number of
projects where the two developers work together. For a project-project network GR , each
node represents a given project, two nodes are connected if the corresponding projects have
at least one common developer. In developer-developer network, we associate a weight to
each edge taking into account the number of common developers the projects have. For
GD,R , a link is assigned, if there exists a “develop” or “developed by” relationship between
a developer and a project.

Given a heterogeneous network between developers and projects, as well as the profile
information of each project and developer, and the collaborative relationship between them,
the goal is to learn the expertise vector f ∈ RD , where each element corresponds to the
expertise of each developer given a query.

3.2 An overview of system architecture

Based on the model proposed in this paper, we implement an expert search system on
social coding sites named SCSMiner. The initial version of this system is accessible on
http://scsminer.wanyao.me. Figure 2 shows the system architecture of our SCSMiner search
system. The system consists of four main components.

• Extraction: The crawler(s) crawls all the user and project information from social
coding sites, and the features which will be used in our model are extracted. Due
to the README file of projects information is chaotic with many codes and instal-
lation instruction, some special processes are conducted to extract descriptions from
README files.

• Storage and Access: This component is the data center of SCSMiner. The information
of users, projects and the relationship between them are recorded here, and this compo-
nent provides an interface for invoking. Specifically, we employ Mongodb for storage
and inverted file indexing method for index.
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Figure 2 The system architecture of SCSMiner

• Modeling: It utilizes a probabilistic model to measure the expertise of each developer
for a given query basically, and a regularization framework is utilized to incorporate one
consistency existing in the heterogeneous network between developers and projects.

• Search Services: Based on the modeling results, SCSMiner provides its search service
to client users.

4 Generative probabilistic model for expertise ranking

Generative probabilistic models are efficient approaches in expertise retrieval as their good
empirical performance and their potential for incorporating various extensions in a trans-
parent and theoretically sound fashion. The probabilistic model proposed in this section
follows the basic idea of a document-centric probabilistic model, which is proposed to esti-
mate the expertise of a candidate by summing the relevance of its associated documents [1,
9]. In this model for a given query q, the relevance probability of candidate developer d is
determined by the following equation:

p(d|q) = p(q|d)p(d)

p(q)
, (1)

in which, p(d|q) denotes the expertise score of candidate developer d for the given query
q; p(q|d) is the probability of query q given the candidate developer d; p(d) is the prior
probability of being expert for an expert candidate d, and p(q) is the prior probability of a
given query q. As p(q) is a constant in expert ranking, it can be ignored from above equa-
tion. Therefore, relevance probability of each experts can be estimated by the probability of
a query given expert candidate, weighted by the prior probability that expert candidate d is
an expert:

p(d|q) ∝ p(q|d)p(d). (2)
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According to the document centric model [1], the expertise score of a developer related
to a given query can be formulated as:

p(q|d) =
∑

r∈Rd

p(r|d)p(q|r, d), (3)

where Rd indicates the subset of projects associated with the candidate developer d. In this
equation, to simplify the calculations, it is assumed that candidate developer d is condition-
ally independent of the query q given project r (i.e., p(q|r, d) ≈ p(q|r)). As a result, by
substituting p(q|d) in (2) and expanding p(r|d), p(d|q) can be estimated as follows:

p(d|q) =
∑

r∈Rd

p(q|r)p(r|d)p(d)

=
∑

r∈Rd

p(q|r)p(d|r)p(r)

p(d)
p(d)

=
∑

r∈Rd

p(q|r)p(d|r)p(r), (4)

where p(r) denotes the prior relevance probability of project r , p(q|r) is the probability
of a query q given the project r , and p(d|r) is the probability of the association between
the project and the candidate developer d. The probability p(d|r) provides a ranking of
candidates associated with a given project r , based on their contribution made to project r .
According to (4), in order to rank candidate developers, we should estimate three probabil-
ities, namely, prior probability of retrieval for project r (i.e., p(r)), relevance probability of
project r (i.e., p(q|r)), and association probability of project r and candidate developer d

(i.e., p(d|r)).
In (4), p(q|r) denotes the semantic similarities between project r and a given query q. In

our paper, we simply apply vector space represented by TF-IDF determine p(q|r), where
TF-IDF is a typical vector space model and it is defined as:

T F -IDF(w, r, R) = f (w, r) × log
|D|

|{r ∈ R : w ∈ r}| , (5)

where f (w, r) is the frequency of word w in project r , |R| is the total number of documents
in the corpus, |{r ∈ R : w ∈ r}| is the number of documents in which the term w appears.

In our paper, we use cosine similarity to determine the semantic similarity between a
given query and project. The cosine similarity is defined as follows:

sim(q, rj ) = rj · q
∥
∥rj

∥
∥ · ‖q‖ =

∑n
i=1 wijwiq

√∑n
i=1 w2

ij

√∑n
i=1 w2

iq

, (6)

where q, rj are the word vector of query q and project rj respectively.
For a project r developed by multiple developers, we assume that each developer has

the same level of knowledge about the topics described in the project and therefore the
association probability of project r and candidate developer d is estimated as follows:

p(d|r) =
{

cd∑D
i ci

d is a contributor of r,

0 otherwise.
(7)

where cd is the number of commits submitted by developer d,
∑D

i ci is the total number of
commits submitted to project r .
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In addition, p(r) can be seen as the quality of project. Indeed, p(r) can be set to be the
combination of star number and total lines of code of a project, which can be represented as
followers.

p(r) = ηsr + (1 − η)lr , (8)

where sr and lr is the stars count and total lines of code of the project r , respectively; η is
the tuning parameter that controls the weight between quality coming from the stars count
and lines of code. In our experiments, we scale the sr and lr to a same range via min-max
noamalization, and η is set to be 0.5.

For simplicity, let x be the relevance vector between project ri and query q with xi =
p(q|ri), QR be the diagonal matrix that represents the project quality, and PRD be the
composition matrix between projects and developers. Then the primary model as shown in
(4) can be rewritten as:

f = PT
RDQRx (9)

where f represents the relevance score vector of all candidate developers. The underlying
intuition of this model is to estimate the expertise of candidate developers based on the
relevance and quality of associated projects.

5 Modeling the network

In the previous section we propose a probabilistic model to determine the expertise score of
each developer. As shown in Figure 3a, the generative probabilistic model can be considered
as an one-step relevance propagation [21] from projects to related candidate developers. In
this model, only textual information of projects are used to calculate the relevance between
query and projects, ignoring the network structure among projects. In this section, we pro-
pose a consistency among projects and extend the probabilistic model to incorporate project
consistency via graph regularization. The intuition is that relevance can not only propagate
from projects to developers, it can also propagate among projects, which is considered as
a consistency in our paper. Figure 3 gives a graphical illustration of connections between
generative probabilistic model (PM) and that with graph regularization (regPM).

(a) (b)

Figure 3 Graphical illustration of connections between generative probabilistic model and that with
relevance propagation
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5.1 Project consistency regularization

According to our common sense and observation, we propose the following consistency
hypothesis.

Project consistency hypothesis Usually similar projects tend to be of similar relevance
with respect to a given query. In the project layer network, it is reasonable to assume that
the neighbors of project r are those projects that are similar to it.

In the generative probabilistic model, we need to calculate the semantic similarity
between query and project. However, as declared before, the textual information of projects
are limited. Incorporating the project consistency will connect the neighbor projects, and the
similarity of similar projects will consistent with each other, this will alleviate the limited
textual information problem. In this subsection, we will enforce the consistency hypothesis
proposed above with the probabilistic model by defining the regularization constraints.

Graph regularization is an effective technique in the semi-supervised learning where
the goal is to estimate the labels of unlabeled data using other partially labeled data and
their similarities. For project consistency hypothesis in our scenario, the goal is to refine
relevance score vector x based on the project consistency regularization that similar projects
tend to be of similar relevance with respect to a given query. In the probabilistic model, the
initial relevance score x0 can be determined by the vector space model. According to [31],
the problem can be addressed by minimizing the regularization loss below:

�(x) = xT (I − SR)x + μR

∥
∥
∥x − x0

∥
∥
∥
2

(10)

where μR > 0 is the regularization parameter, SR ∈ R
|R×R| denotes the pairwise similari-

ties among projects GR . The first term of the loss function defines the project consistency,
which prefers small difference in relevance scores between nearby projects; the second term
is the fitting constraint, which measures the difference between final relevance scores x
and the initial relevance scores x0. The initial relevance score vector x0 can be calculated
according to (9) in the probabilistic model.

Minimizing �(x) will force the neighbor projects to have similar relevance scores. Set-
ting ∂�(x)/∂x = 0, we can see that the solution x∗ is essentially the solution to the linear
equation:

(I − αSR)x∗ = (1 − α)x0 (11)

where α = 1/(1+μR). In this equation, we need to calculate the inverse matrix (I−αSR)−1.
Fortunately, matrix SR is always very sparse, causing calculation to be costly. One iterative
solution to this equation is given in a related work using a power method [32].

x(t + 1) = αSRx(t) + (1 − α)x0 (12)

where x∗ = x(∞) is the solution. Here L = (I−αSR) is essentially a variant Laplacian on
this graph using SR as the adjacency matrix; and K = (I − αSR)−1 = L −1 is the graph
diffusion kernel.

Now the interesting question is how to calculate SR in R. For graph data, several
works [7] borrow results form spectral graph theory for obtaining the similarity measures.
Specifically for an undirected graph, SR is simply the normalized adjacency matrix W:

SR = �
−1/2
R WR�

−1/2
R (13)
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where W is the adjacency matrix of projects in GR , Wij = 1 if node i is linked to node j ,
otherwise,Wij = 0, and � is a diagonal matrix with �ii = ∑

j Wij .

5.2 Connections and discussions

In the regularization framework, suppose α = 0(μR → ∞); as shown in (10), � puts all

weight on the second term
∥
∥x − x0

∥
∥2 to ensure that the final scores are equal to the initial

scores x0. In this case, the regularization framework boils down to the baseline generative
probabilistic model.

The regularization framework can also be interpreted as lazy random walks with the
transition probability matrix P = (1−ρ)I+ρS−1

R WR where ρ is a parameter in (0, 1) [33].
This means, with probability ρ, following on a link coincident with the vertex of the current
position and chosen with probability proportional to the weight of the link, and with the
probability 1 − ρ, it stays at the current position. This can also be observed from Figure 3.
Comparing with the generative probabilistic model, the regularized framework introduce
more random walk rules (e.g., walks among projects).

6 Experiments

6.1 Dataset collection

As we describe before, our experiments are conducted on the GitHub dataset. How-
ever, the most significantly difficulty is the lack of ground truth of whether the retrieved
developer is expert or not. One simple approach is to select some queries and judge the
relevance of retrieved results manually. However, this approach can not be implemented in
large scale and may be affected by many human factors. As such, we deliberately utilize
StackOverflow6 as an indirect ground truth to conduct evaluation.

6.1.1 Dataset1: intersection of github and stackoverflow

According to [26], expertise derived from StackOverflow can somehow reflect those from
GitHub indirectly. In [26], the authors investigate the interplay between StackOverflow
activities and the development process reflected by code changes committed to GitHub.
They find that the StackOverflow activity rate correlates with the code changing activity in
GitHub. So we extend their finding to validate our model via StackOverflow. Here the key
is first to identify the developers both appeared in GitHub and StackOverflow, then to ver-
ify the developers recommended by our GitHub-base system against the results given by
StackOverflow.

GitHub GitHub, one of the most popular social coding sites, has gained much popularity
among a large number of software developers around the world. It has a publicly accessible
API. Crawling GitHub website by its API, we get 28,362,019 projects, 15,647,255 users
and make out the relationships between them.

6http://stackoverflow.com/
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Table 1 Top 20 tags in
StackOverflow Tag Frequency Tag Frequency

javascript 182,509 ruby 55,463

php 146,926 ios 51,025

java 144,660 css 49,756

c# 143,001 mysql 49,642

python 120,203 .net 48,523

jquery 118,475 objective-c 45,180

c++ 79,503 iphone 43,805

android 76,592 c 39,789

ruby-on-rails 74,207 asp.net 36,026

html 70,047 sql 32,371

StackOverflow StackOverflow is a popular online programming question and answer
community started in 2008. It dumps and releases the dataset every three months. The data
used in our experiment is released in August 2012, containing about 1,295,622 registered
users dating from July 2008 to August 2012.

Intersection To intersect data from GitHub and StackOverflow, a conservative approach
matching email address is adopted in our experiment. In the GitHub dataset email address
are present, while in the StackOverflow dataset email addresses are obscured, but their MD5
hashed are available. Therefore, we merge a GitHub and a StackOverflow user if their MD5
email hashes are identical. Furthermore, for computation simplicity, only those users whose
reputation in StackOverflow is greater than 5 and followers number in GitHub is greater
than 10 are considered. Finally, we obtain 16,567 users and 458,639 related projects.

Ground truth In StackOverflow, each user answers many programming problems and the
tags and their corresponding count of those problems they answer are collected.7 In terms
of the retrieved results, we consider the retrieved developer who has also answered some
corresponding problems in StackOverflow as relevant, and the count of answering questions
can be taken as the degree of relevance. Actually, we divide the degree of relevance into
five degrees (0–4) by four thresholds (e.g., 0, 5, 10, 50). In this evaluation, top 50 queries in
StackOverflow are used as queries (the top 20 queries are shown in Table 1).

6.1.2 Dataset2: human labeled data

Since the some popular users in GitHub may not appear in StackOverflow, and to have a clear
understanding on the retrieved results, we also evaluate our model on some popular users.
We extract projects whose star number is greater than 400 firstly, and then extract users who
make contributions to the projects. Finally, we obtain 11,437 projects and 158,646 users.

Ground truth Evaluation on this dataset is also a nontrivial task since the ground truth is
difficult to obtain. Here, we consider this strategy. We first random select 8 popular queries
(e.g, linux, javascript, app, plugin, angular, framework, game, image) a developer may be
interested in. Then a pooling methods (see Section 6.3.2) are used to select an initial set of

7https://api.stackexchange.com/2.2/users/1335234/tags?order=desc&sort=popular&site=stackoverflow
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developers for judgment. Then we invited 4 computer science graduated students to judge
our retrieved result. The followers count and the projects the developer contributed to are
two criteria the judge referred when determining the relevance of developers to queries. As
it’s difficult to measure the degree of relevance by human, the judges just need to determine
whether the candidate developer is expert or not, so the NDCG metric is not calculated on
this dataset. The queries and their corresponding expert used in our experiment are listed in
http://wanyao.me/projects/scsminer.html.

6.1.3 Dataset characteristics

Figure 4 presents an overview of the network structure of GitHub and the collaboration
relationship between developers. Figure 4a shows the number of participants in each project
(the size of each node is related to its indegree). From this figure, we observe that the number
of participants in projects such as “foundation”, “node”, “three.js” is maximal. To further
study the relationship between the number of participants and projects, we examine each
project’s popularity by its stars, from which we notice that for most projects, the number of
participants indicates its popularity.

Figure 4b illustrates relationships between developers where each sector represents a
developer. In this figure, we observe that the sectors indicate the developer’s activity degree
of coorperation with others. We note that olliwolli and vachzar are the most active user in
out GitHub dataset.

Figure 5 shows the cumulative distribution function of star count with respect to projects
as well as the cumulative distribution function of followers number with respect to develop-
ers. Figure 5a shows that in our experimental dataset, most projects have a little more than
400 stars, only few developers have many stars. From Figure 5b, we note that the distribu-
tion of followers roughly follows a power law. This indicates that only few developers have
more 10 followers; most developers have few or none.

Table 1 lists the Top 20 tags in StackOverflow. The frequency column in this table repre-
sents the number of question which are tagged with the corresponding tag. From this table,
we can find that most tags in Q&A sites are programming languages like java, php and java,
which is in accordance with our expectation.

(a) (b)

Figure 4 The GitHub network. a An overview of network structure in GitHub. b Collaboration network
between developers in GitHub
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(a) (b)

Figure 5 a The cumulative distribution function of projects with respect to stars number. b The cumulative
distribution function of developers with respect to followers number

6.2 Preprocessing

Through statistics of 1,406,409 README files, the README files fall into three main
three categories: markdown (89.14%), txt (7.4%) and html (0.008%). Since the number of
html README files is limited, we consider them as txt files simply. Regarding the other
two types, the process consists of 3 steps: (1) separating the README file into paragraphs;
(2) selecting the description paragraphs; and (3) removing unnecessary parts.

In the paragraph separation step, for markdown files, by utilizing regular expressions, we
separate the whole README file by the subtitle separator in markdown (e.g., ‘##’, ‘==’,
‘–’) into two sequences. One is the separator sequence which only contains separators, the
other is the words sequence. Then we check the separator type. If it is “#”, combining the “#”
with words to obtain the paragraph from the two sequences. If it is “-” or “=”, things may
be complex. The subtitle of the paragraph has been split into the previous paragraph, which
is its last line. So we have to choose the last line of the last paragraph as the new subtitle,
then combine it with the separator (‘–’ or ‘==’) and the sequence into a new paragraph. For
txt files, it’s hard to get a common separator. The method for finding a subtitle is to judge
each line of text by four conditions: (a) Delete the lines contain a Web link. It is probably
the download link won’t be useful for description. (b) The whole line is English characters
from A-Z or a-z. (c) The line has no special signals (e.g. ‘,’ ‘.’ ‘$ ’) that seldom appear in
subtitles (d) Shorter than 40 characters. If the line meets conditions (b), (c) or (d), we regard
it as a subtitle. Then we can use it to separate the text.

When selecting description paragraphs, we only consider the first three paragraphs in
a README file, because description text is usually fount there. We check and select the
descriptions by using regular expression to search for key words in the subtitle. The key
words we use are ‘description’, ‘feature’, the project name and other words that could rep-
resent the meaning of ‘description’ (e.g. introduction). As for removing unnecessary parts,
we remove Web links and common Linux commands (e.g., ‘mkdir’, ‘apt’), which won’t
contribute to a useful description. After these three steps, the textual information can be
extracted from the README file (Figure 1 gives a graphical illustration of these processes).
According to our manual analysis based on 100 samples, the accuracy of the proposed
approach reaches as high as 82.0%.
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6.3 Experimental setup

6.3.1 Evaluation metrics

For our evaluation, several categories of Web search evaluation metrics are used to measure
the performance of our proposed model from different aspects, including some relevance
based metrics and ranking based metrics. To measure the relevance of our search results,
we use the precision at rank k (P@k), which is widely used and is defined as: P@k =
# relevant in top k results

k
. P@k measures the fraction of the top-K retrieved results that are

relevant to the given query. Another metric MAP is the mean value of the average preci-

sion computed for all queries. MAP =
∑Q

q=1 AP(q)

|Q| and AP =
∑N

n=1(P@n×rel(n))

R
, where

n is the rank, N the number retrieved, and rel(n) is a binary function indicating the rel-
evance of a given rank. We use Mean Reciprocal Rank (MRR) to evaluate the ranking
of our search results. A larger MRR value means a better result. The MRR is defined as
MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, where |Q| is the size of query set. Another ranking metric we

use in our evaluation is normalized discounted cumulative gain (NDCG), which measures
the performance of a retrieval system based on the graded relevance of the retrieved enti-

ties. The NDCG@k is defined as: NDCG@k = 1
|Q|

∑|Q|
q=1 Zkq

∑k
j=1

2r(j)−1
log(1+j)

, where Zkq

is a normalization factor calculated to make it so that a perfect ranking’s NDCG at k for
query q is 1; r(j) is the relevance score assessors give to retrieved entity for query q.
Beside the measurement of precisions, bpref [6] is a good function that evaluates how fre-
quently relevant documents are retrieved before non-relevant documents. It is defined as

bpref = 1
R

∑
r

(
1 − |n ranked higher than r|

R

)
, where R is the number of relevant documents, r

is the relevant document retrieved and n is member of the first R non-relevant documents
retrieved.

6.3.2 Comparison models

In this subsection, comparisons between the models described above and the state-of-the-art
are made to show the effectiveness of our proposed approach.

• Voting Model (Voting). The voting model ranks candidates by the number of top
projects they have contributed to [17]. In [17], the authors evaluate 12 voting tech-
niques based on known data fusion techniques. Here, we only consider the reciprocal
rank data fusion technique, which will highly rank candidates who contribute to many
top projects.

• Infinite Random Walk (IRW). In [21], the authors propose three kinds of random
walks based on the principle of multi-step relevance propagation in topic-specific
expertise graphs. Here, only the infinite random walk is considered.

• Probabilistic Model (PM). This is the probabilistic model proposed in Section 4.
• Probabilistic Model with Graph Regularization (regPM). Based on PM model, this

model incorporates the consistency hypothesis among projects with probabilistic model
via graph regularization (see Section 5).

All the experiments in this paper are implemented with Python 2.7, and run on a computer
with an 2.2 GHz Intel Core i7 CPU and 64 GB 1600MHz DDR3 RAM, running Debian 7.0.
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6.4 Experimental results

The experimental results of those comparison methods on two datasets are shown in Table 2.
In this experiment, the regPM model achieves its best performance when we set α = 0.8,
#iteration = 10 and T op-K = 50. Some conclusions can be drawn from this table. Firstly,
the state-of-the-art voting model has a bad performance for the reason that it doesn’t so
well integrate the relevance between query and project as the proposed probabilistic model,
nor does it integrate the quality of the the project and the contribution users make to the
project. The voting model just takes the number of top projects they have contributed to into
consideration. Secondly, when compared with voting model, the generative probabilistic
model has obtained remarkable results by way of integrating the relevance between query
and project, the quality of project and the contribution users make to the project. Thirdly, as
described before, the PM model can be interpreted as one-step relevance propagation from
projects to developers. IRW is a multi-step relevance propagation model which considers
both the relevance propagation from developers to projects, and the relevance propagation
from projects to developers. However, from the experimental results, we note that IRW
model doesn’t perform better than PM model in our dataset. This may be illustrated by that
the propagation between projects and developers is unidirectional, thus the bidirectional
propagation may reduce the performance instead.

Finally, comparing regPM with PM, we notice that integrating relevance propagation
among similar projects contributes dramatically to performance improvement in many eval-
uation metrics, for example, the P@5 of regPM has reached up to 0.508 on Dataset1, which
improves 9.48%, gains outstanding performance when compared with the PM model. The
above results have verified our intuition that the network structure among projects is com-
plementary and the consistency hypothesis characterizes the relevance propagation among
projects well. Another interesting finding from the results is that on Dataset1 the MRR
of regPM is smaller than that of PM model. We can illustrate this phenomenon from two
aspects. On the one hand, it may be caused by the ground truth since the regPM performs
better than PM in MRR on Dataset2. On the other hand, introducing the consistency among
projects may dispersed the divergence of expert ranking, which may have an impact on the
MRR metric.

Table 2 The experimental results of different models on different metrics

Methods / Metrics P@5 P@10 P@20 P@50 MAP MRR bpref NDCG

Dataset1

Votes 0.100 0.160 0.173 0.158 0.210 0.051 0.104 0.034

IRW 0.448 0.428 0.405 0.394 0.447 0.145 0.395 0.170

PM 0.464 0.440 0.413 0.403 0.463 0.151 0.404 0.171

regPM 0.508 0.452 0.412 0.398 0.476 0.121 0.420 0.172

v.s. PM + 9.48% + 9.44% − 0.24% − 1.24% + 2.81% − 19.87% + 3.96% + 0.58%

Dataset2

Votes 0.100 0.075 0.081 0.065 0.248 0.283 0.185 –

IRW 0.500 0.413 0.350 0.280 0.555 0.637 0.517 –

PM 0.775 0.738 0.650 0.515 0.710 0.200 0.690 –

regPM 0.800 0.788 0.675 0.535 0.723 0.236 0.701 –

v.s. PM + 0.65% + 6.78% + 3.85% + 3.88% + 1.83% + 18.00% + 1.59% –

Best scores are in boldface
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(b) (c)(a)

(d) (e)

Figure 6 Impact of α on different metrics

Impact of α In our model, α = 1/(μR + 1) where μR is a regularization parameter that
controls project consistency, i.e., similar projects tend to be of similar relevance with respect
to a given query. To study the impact of α on the metrics of our approach, we change α

from 0 to 1 with a step value of 0.1. We set λ = 0.8, T op-K = 50, and #iteration = 10 in
this experiment. Experiments are conducted on Dataset1. Figure 6 shows the impact α on
different metrics.

From this figure, we can observe that the value of α has a significant impact on the
performance of searching experts on SCSMiner and the optimal α lies between 0.4 and 0.8.
As α increases, the metrics increase at first, but when α surpasses a certain threshold, they
decrease with further increase in the value of α. This indicates that incorporating project
consistency approximately may improve the performance of searching results. While when
α approaches 1, the μR will approach 0, which indicates that the rule that the final relevance
score x∗ should be close to the initial score x0 is ignored. On this condition, the regPM
model gets its worst performance.

6.5 Search example analysis

To gain a better insight into the proposed algorithm, we chose “linux” as an example query
for showing detailed results. The top-20 developers are listed in Table 3. It is obvious that
the results of the regPWmodel make more sense than those of the PWmodel. After looking
into details, we see that, unlike their ranking in GitHub, and some other developer ranking in
websites according to the “followers” number, although the followers number of a developer
is small, it can still get a high rank in our method. This can be illustrated by the ranking
mechanism in the probabilistic model and the consistency among projects we introduce in
this paper. For example, broonie has a high rank, although his followers number is small.
This is because he collaborated much with torvalds on the development of the Linux kernel
source, with a contribution of 3%, which is as high as the contribution of torvalds.
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Table 3 The top-20 experts with their corresponding number of followers retrieved by PM and regPM
models

Query: linux

Ground truth PM regPM

Rank 1–10 #followers Rank 11–20 #followers Rank 1–10 Rank 11–20 Rank 1–10 Rank 11–20

torvalds 27,283 liewegas 97 torvalds bzolnier torvalds arndb

broonie 40 lwfinger 87 broonie AxelLin broonie ralfbaechle

tiwai 32 bigguiness 44 tiwai arndb tiwai jacknagel
davem330 26 AxelLin 18 davem330 wishstudio davem330 tj

gregkh 1,055 pmundt 18 gregkh ralfbaechle gregkh olofj

0xAX 609 jingoo 17 jmberg jacknagel jmberg danvet
BrewTestBot 23 kaber 12 pmundt kovidgoyal pmundt jingoo
adamv 245 rjwysocki 10 bigguiness olofj bigguiness kaber
rustyrussell 102 danvet 8 vladikoff danvet bzolnier 0xAX
jacknagel 108 tmlind 8 0xAX BrewTestBot AxelLin larsclausen

Relevant experts are in bold-face

6.6 Demonstration

Based on the model proposed in this paper, we implement a search system based on GitHub
named SCSMiner. This system is dedicate to mining of activities of developers on social
coding sites such as GitHub for online recruitment. The initial version of this system is
accessible on http://scsminer.wanyao.me. Figure 7 shows a screenshot of SCSMiner search
system. This prototype system just gives a general overview currently, and in our future
work, more functions and visualizations will be integrated.

We demonstrate SCSMiner search system mainly from two parts, the search portal part
and the returned results display part. As shown in Figure 7a, in the homepage of SCSMiner
search system, client users can search developers not only by entering a keyword in the input
box but also by clicking the hot topic word for a quick access. After obtaining the keyword
inputted by users, SCSMiner need to determine whether it is in the cache. If the keyword is

Hot Topics

SCSMiner Home Report About

SCSMiner
Mining Social Coding Sites for Online Recruitment

linux javascript app

plugin framework game

15,647,255

Users

28,362,019

Repositories

810,629

Organizations

507,469,566

Events

Copyright © 2014-2016 by githuber. All Rights Reserved. Contact Introduction Services

Please input the keyword Search

# followers:

# followings:

Selected:

Search results for linux

Home Report About

Expert repository

1-4 5-9 10-19 20-49 50-99 100-499 500-999 >1000

1-4 5-9 10-19 20-49 50-99 100-499 500-999 >1000

Linus Torvalds
Location: Portland, OR

Email:

# public_repos: 2

# followers: 27283

# following: 0

Mark Brown
Location: Edinburgh, Scotland

Email: broonie@sirena.org.uk

# public_repos: 8

# followers: 40

# following: 10

Takashi Iwai
Location: Nuremberg

Email: tiwai@suse.de

# public_repos: 6

# followers: 32

# following: 0

Please input the keyword SearchSCSMiner

(a) (b)

Figure 7 Screenshot of SCSMiner search system
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in cache, corresponding results will be returned immediately, otherwise, the model proposed
in this paper will be executed, which may take about 7 seconds. In addition, we also show
some statistics of GitHub dataset in the foot of this page. It’s worth mentioning that 7 s is
really a bit long for online service, it’s necessary for us to parallelize the calculation of big
matrices in the updated version.

When the ranked retrieved developers are returned, SCSMiner will jump to the result
display page as shown in Figure 7b. In this page, information of developers including name,
email and gravatar are displayed. In our future work, some other properties of developers
such as their ego network will also be included. The client user can also filter the returned
results by some defined conditions such as followers/following number, location, gender
and so on.

7 Conclusion and future work

Social coding sites are changing software development. The developers’ programming capa-
bility and expertise which conveyed by the past development experiences can benefit many
applications such as software developer online recruitment for IT corporations. In this paper,
we devise a generative probabilistic expertise ranking model and incorporate a consistency
among projects via graph regularization. Meanwhile, a prototype of SCSMiner which pro-
vides expert search service is implemented. Comprehensive experiments conducted on the
GitHub dataset show that our model performs better than the the state-of-the-art voting
model and random walk model.

Besides applied in developer recruitment for IT corporation, expert finding on social cod-
ing sites can also be extended to some other areas such as question routing and developer
recommendation. a) Question routing. To the best of our knowledge, most question rout-
ing approaches fall into the content-based method and graph-based method. For these two
methods, one of the biggest challenge is the cold start problem. For programmers, many of
them are active in both SCSs (e.g., GitHub) and Q&A sites (e.g, StackOverflow). Domain
knowledge retrieved from SCS can be transferred to alleviate the cold start problem in Q&A
sites. b) Developer recommendation. In collaborative development, developers can easily
find a partner with specific expertise to collaborate with through our system. Moreover, if
the SCSs know about each developer’s expertise, it can recommend appropriate developers
to other to encourage them to collaborate.

In our future work, we will first parallelize the calculation of languages models and some
big matrices to accelerate the performance of SCSMiner. With the success application of
deep learning in natural language processing, maybe in the future we will apply the deep
learning based method such as RNN to learn the representation of users. Furthermore, we
also plan to extend our model for question routing and developer recommendation based
on the domain skills of developers via fusing the GitHub with StackOverflow or LinkedIn
[13]. In addition, integrating data sources from multiple social coding and recruitment sites
also attracts us [29, 34]. For instance, we can combine the data from GitHub and that from
LinkedIn. After integrating multiple data sources, many interesting topics such as entity
matching and job recommendation can be attacked.
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25. Thung, F., Bissyandé, T.F., Lo, D., Jiang, L.: Network structure of social coding in github. In: 17th
European Conference on Software Maintenance and Reengineering (CSMR), 2013, pp. 323–326. IEEE
(2013)

26. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: associations between software devel-
opment and crowdsourced knowledge. In: International Conference on Social Computing (Socialcom),
2013, pp. 188–195. IEEE (2013)

27. Vendome, C., Linares-Vásquez, M., Bavota, G., Di Penta, M., German, D., Poshyvanyk, D.: License
usage and changes: a large-scale study of java projects on github. In: IEEE 23rd International Conference
on Program Comprehension (ICPC), 2015, pp. 218–228. IEEE (2015)

28. White, J.P.: Towards readme-eval: interpreting readme file instructions. ACL 2014, 76 (2014)
29. Zhao, Z., Cheng, J., Wei, F., Zhou, M., Ng, W., Wu, Y.: Socialtransfer: transferring social knowledge for

cold-start cowdsourcing. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 779–788. ACM (2014)

30. Zhao, Z., Yang, Q., Cai, D., He, X., Zhuang, Y.: Expert finding for community-based question answering
via ranking metric network learning. In: IJCAI, pp. 3000–3006 (2016)

31. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency.
Advances in Neural Information Processing systems 16(16), 321–328 (2004)

32. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In:
Proceedings of the 22nd International Conference on Machine Learning, pp. 1036–1043. ACM (2005)

33. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop
on Statistical Relational Learning and its Connections to Other Fields, vol. 15, pp. 67–68 (2004)

34. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification.
IEEE Transactions on Cybernetics 46(2), 450–461 (2016)

World Wide Web (2018) 21:1523–1543 1543


	SCSMiner: mining social coding sites for software developer recommendation with relevance propagation
	Abstract
	Introduction
	A systemic view of social coding sites
	Motivation
	Challenges
	Contributions
	Organization



	Related work
	Mining on social coding sites
	README extraction and text analysis
	Expertise finding



	Preliminaries
	Problem definition
	An overview of system architecture

	Generative probabilistic model for expertise ranking
	Modeling the network
	Project consistency regularization
	Project consistency hypothesis

	Connections and discussions

	Experiments
	Dataset collection
	Dataset1: intersection of github and stackoverflow
	GitHub
	StackOverflow
	Intersection
	Ground truth

	Dataset2: human labeled data
	Ground truth

	Dataset characteristics

	Preprocessing
	Experimental setup
	Evaluation metrics
	Comparison models

	Experimental results
	Impact of 

	Search example analysis
	Demonstration

	Conclusion and future work
	Acknowledgments
	References




