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The model alleviates the sparseness issue by projecting

Forecasting Performance

e Dataset: a collection of real medical records

Table 2: Performance of diabetes complication forecasting
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Micro-level: association between 10
complications and 9 parameters of routine
urine anlaysis discovered by the proposed
mode.
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WBC in the urine typically is
found in urinary tract
infections which cause
frequent voiding, which
causes insomnia.

Hyperlipidemia (HPL) can be
diagnosed more precisely,
while depression (depr.) is
usually recognized from
psychological investigation
instead of physiological lab
tests.
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Macro-level: study how each complication is
diagnosable from lab test results.
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