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Forecasting Potential Diabetes 
Complications 
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Diabetes Complications 
•  Life-Threatening 

–  Over 4.8 million people died in 2012 due to diabetes[1]. 
–  Over 68% of diabetes-related mortality is caused by 

diabetes complications[2]. 
–   471 billion USD, while 185 million patients remain 

undiagnosed[1]. 
•  Need to be diagnosed in time 

[1] http://www.diabetes.org/ 
[2] http://www.idf.org/diabetesatlas/ 

coronary heart disease 
diabetic retinopathy 
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Forecasting Diabetes Complication 
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Output: diabetes 
complications 

Input: a patient’s lab 
test results 
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Data Set 
!  A collection of real clinical records from a hospital in 

Beijing, China over one year. 

Clinical record 

Challenge: feature sparseness 
•  Each clinical record only contains 

24.43 different lab tests 

•  65.5% of lab tests exist in < 10 
clinical records (0.00054%).  

Item Statistics 
Clinical records 181,933 

Patient 35,525 
Lab tests 1,945 
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Our Approach 
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Baseline Model I 

Learning task:  f (xi )→ yi

Limitations: 
1.  Cannot model 

correlations between y 
2.  Cannot handle sparse 

features 
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xi x j
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Baseline Model II 

Objective function: 

Still cannot handle sparse features! 
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Proposed Model 
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Learning Algorithm 
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Learning Algorithm (cont.) 
•  Update the dimensional reduction parameters 

– The remaining part of SparseFGM could be regarded 
as a mixture generative model, with the log-
likelihood 

 
–  Jensen’s inequality tells us that 

– Derivate with respect to each parameters, set them to 
zero, and get the update equations. 
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Learning Algorithm (cont.) 

•  Update the classification 
parameters 
– New log-likelihood 
 
– Adopt a gradient descent 

method to optimize the 
new log-likelihood 
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Theoretical Analysis 
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Experiments 
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Setting 

•  Experiments 
!  Is our model effective? 
!  How do different diabetes complications associate with

 each lab test? 
!  Can we forecast all diabetes complications well? 

•  Comparison Methods 
•  SVM (model I) 
•  FGM (model II) 
•  FGM+PCA (an alternative method to handle feature

 sparseness) 
•  SparseFGM (our approach) 
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Experimental Results 
HTN: hypertension, CHD: coronary heart disease, HPL: hyperlipidemia 

SVM and FGM suffer from 
feature sparseness. -59.9% 

in recall. 

FGM vs. FGM + PCA 
(increase +40.3% in recall) 

PGM+PCA vs. SparseFGM 
(increase +13.5% in F1) 
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Association Pattern Illustration 
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Can We Forecast All Diabetes 
Complications? 

HPL can be forecasted 
precisely based on lab test 
results. 
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Conclusion 

•  We study the problem of forecasting diabetes 
complications. 

•  We propose a graphical model which integrates 
dimensional reduction and classification into a uniform 
framework. 

•  We further study the underlying associations between 
different diabetes complications and lab test types. 
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Thanks! 
Q&A? 

@ Yang Yang 
http://yangy.org/ 


