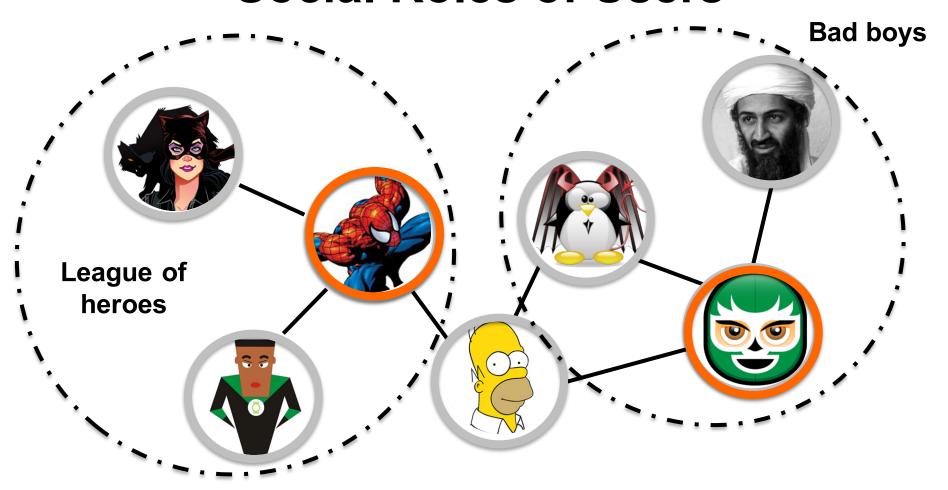


Yang Yang, Jia Jia, Boya Wu, and Jie Tang

Department of Computer Science and Technology
Tsinghua University


Image social network (e.g., Flickr) users post photos, which express their emotional statuses.

Emotion Contagion: The cascade of users' emotional statuses influence each other

Social Roles of Users

Opinion leaders: users taking central positions in communities

Social Roles of Users

Structural hole spanners: users bridge otherwise disconnected communities

Predicting Users' Emotional Status

- Input: An image social network G=<V, M, E, R>, where V is a set of users, M is a set of images, E represents following relationships between users, and each element in R (v, m, t) denotes that user v publishes image m at time t.
- We use a matrix Y to denote users' **emotional status**, where y_{vt} indicates v's emotion at time t. $y_{vt} \in \{\text{happiness}, \text{surprise}, \text{anger}, \text{disgust}, \text{fear}, \text{sadness}\}$
- Task: Given G, Y, a time stamp t, our goal is to learn

$$f: G = (V, M, E, R), t, Y_{\cdot 1 \dots t-1} \to Y_{\cdot t}$$

Related Work

Predicting users' emotions by jointly modeling images and comments.

Yang, Y.; Jia, J.; Zhang, S.; Wu, B.; Chen, Q.; Li, J.; Xing, C.; and Tang, J. 2044 ow do your friends on social media disclose your emotion of

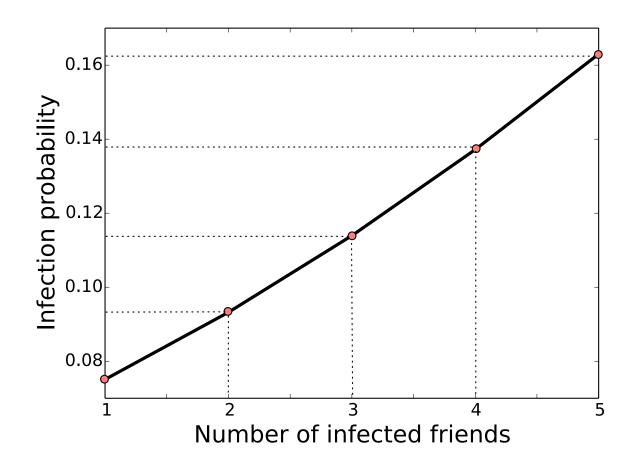
Predicting u calling/mess

Tang, J.; Zhang study of individ

How to better predict users' emotions by considering emotion contagions?

Images drive Jagement (e.g., clicking "like" or adding comments) 100 times faster than text on Facebook.

Wang, X.; Jia, J.; Cai, L.; and Tang, J. Modeling emotion influence from images in social networks. IEEE TAFFECT COMPUT'15, 2015.


Treat each individual independently

Three Qs to Answer

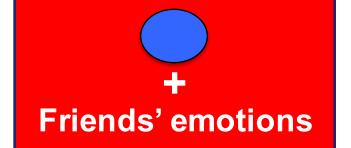
- Q1: Does emotion contagion exist in image social networks?
- Q2: Will social roles influence emotion contagion?
- Q3: How to better predict the emotional status of users in social networks by considering emotion contagion?

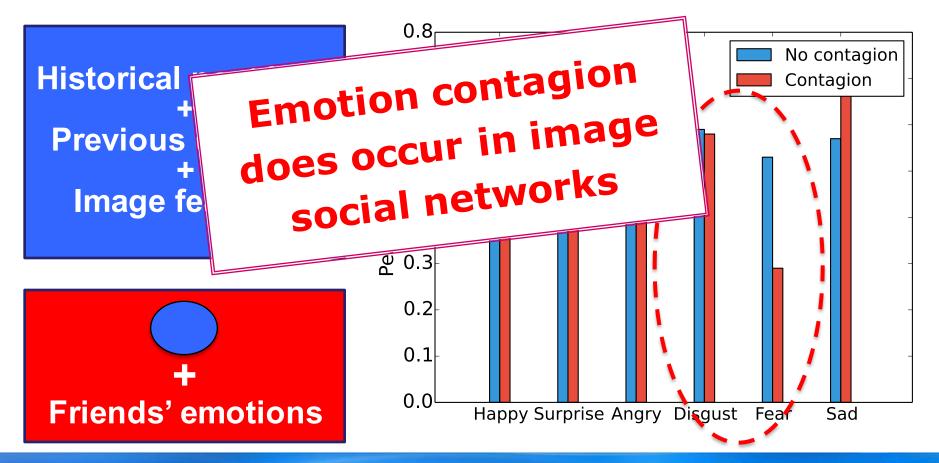
Q1: Existence

Q1.1: When your friends are happy, will you be happy?

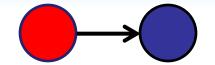
Q1: Existence

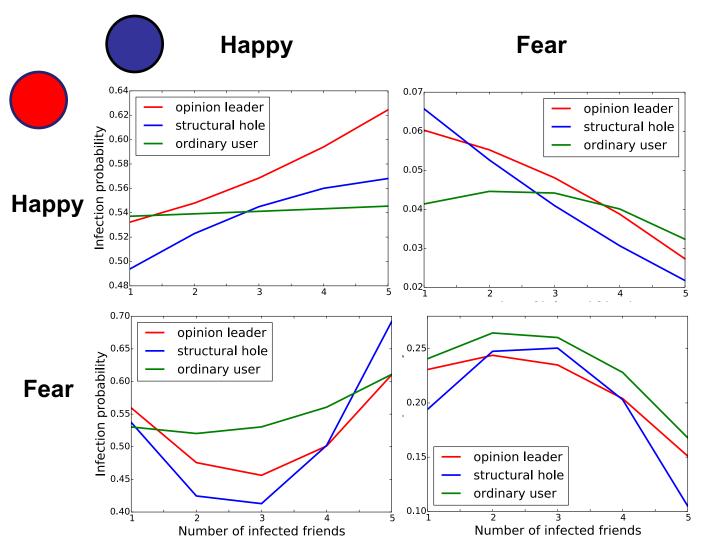
Q1.2: When predicting a user's emotional status, will her friends help?


Historical post logs
+
Previous emotion
+
Image features

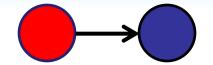

User v's emotional status at time t

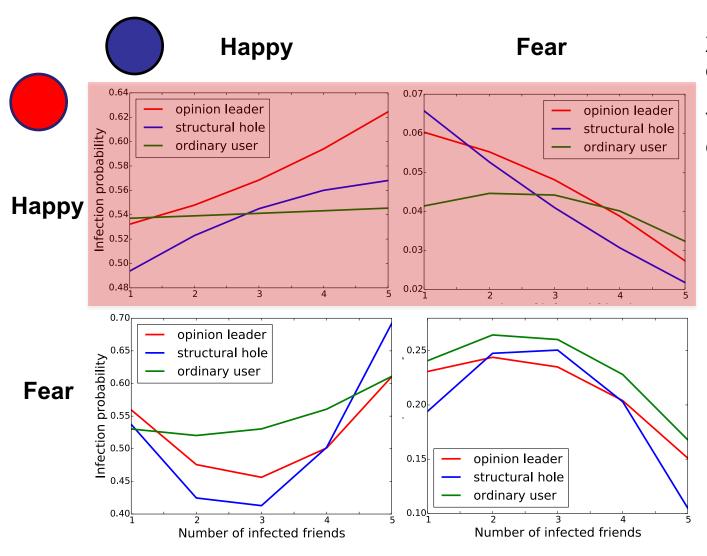
happiness, surprise, anger, disgust, fear, sadness


Q1: Existence


Q1.2: When predicting a user's emotional status, will her friends help?

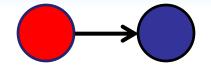
- Opinion leaders: 20% of users with largest PageRank scores;
- Structural hole spanners: 20% of users with lowest network constraint scores;
- Others are remaining as ordinary users.

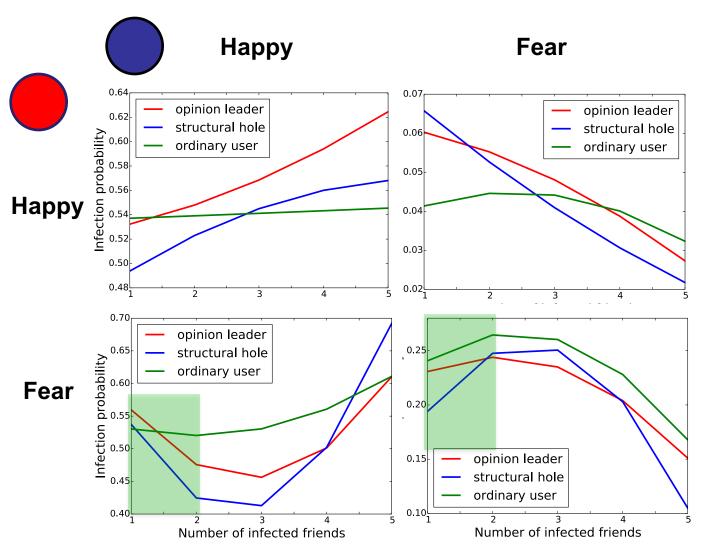




X: number of friends with different social roles.

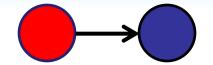
Y: probability being a certain emotion.

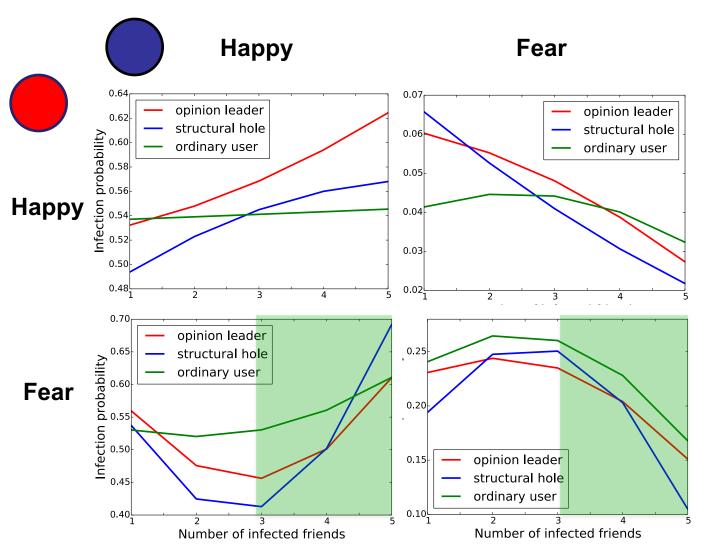




X: number of friends with different social roles.

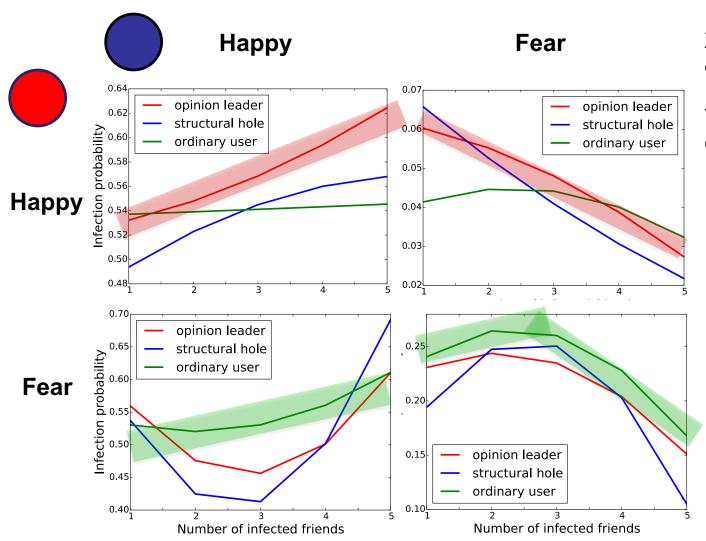
Y: probability being a certain emotion.


positive emotion delights friends



X: number of friends with different social roles.

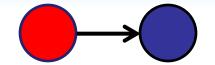
Y: probability being a certain emotion.



X: number of friends with different social roles.

Y: probability being a certain emotion.

"Emotional comfort" phenomena

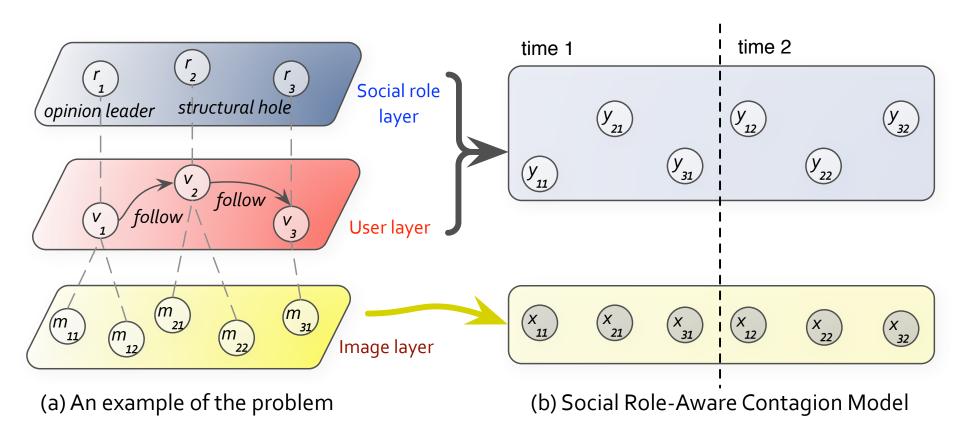


X: number of friends with different social roles.

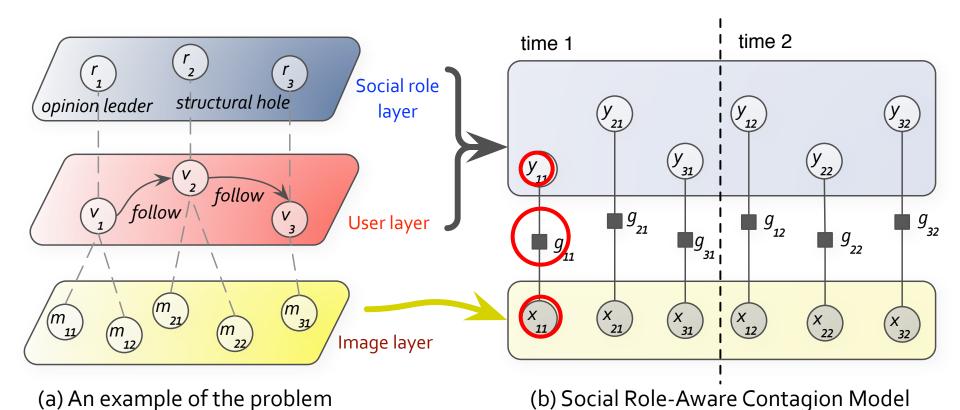
Y: probability being a certain emotion.

Opinion leaders are more influential on positive emotions

Ordinary users are more influential on negative emotions

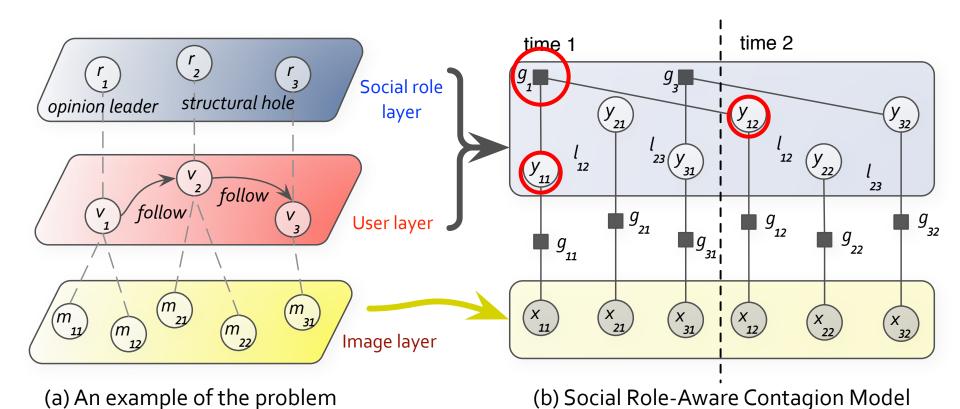


X: number of friends with different social roles.


Y: probability being a certain emotion.

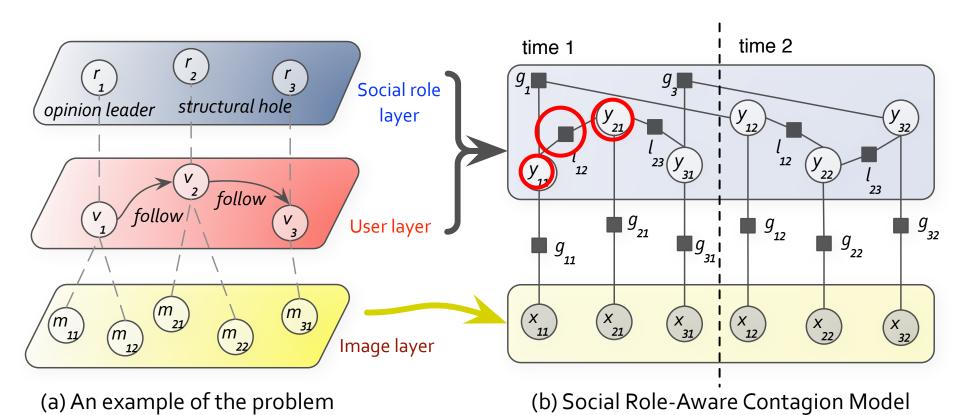
Influence of opinion leaders and structural holes change faster than ordinary users.

P(Y|G): Conditional probability of users' emotional status given input data


$$P(Y|G)=\pi g(.)...$$

 $g(x_{vt}, y_{vt})$: Correlation between v's emotion and the image she posts at t.

$$g(x_{vt}, y_{vt}) = \frac{1}{Z_1} \exp\{\alpha_{y_{vt}} \cdot x_{vt}\}$$


$$P(Y|G)=\pi\{g(.)h(.)\}...$$

h(y_{ut-t'}, y_{vt}): Correlation between v's emotion at time t and t-t'.

$$h(y_{vt-\Delta t}, y_{vt}) = \frac{1}{Z_2} \exp\{\beta_{\Delta t} \cdot I(y_{vt-\Delta t}, y_{vt})\}$$

 $P(Y|G)=\pi\{g(.)h(.)l(.)\}$

 $I(y_{ut-1}, y_{vt})$: How v's emotion at t is influenced by her friend u's emotion at t-1.

$$l(y_{ut-1}, y_{vt}) = \frac{1}{Z_3} \exp\{\gamma_{r_u r_v} \cdot I(y_{ut-1}, y_{vt})\}$$

Social role sensitive parameter

Emotion Flickr dataset: Happiness 2,060,353 images, 1,255,478 users ground truth obtained by user tags Distribution of users' emotional statuses on Flickr: happiness: 46.2% Surprise surprise: 9.7% anger: 8.0% disgust: 5.3% fear:17.3% sadness: 13.5% Anger

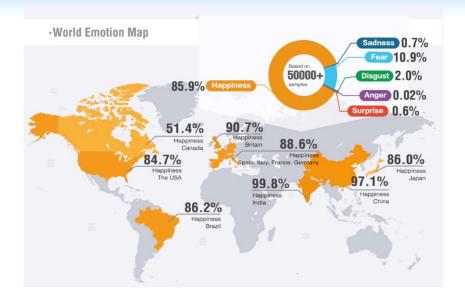
Method			
SVM			
LR			
NB			
BN			
RBF			
CRF			
ole-aware			
SVM			
LR			
NB			
BN			
RBF			
CRF			
ole-aware			
SVM			
LR			
NB			
BN			
RBF			
CRF			
ole-aware			

Baselines

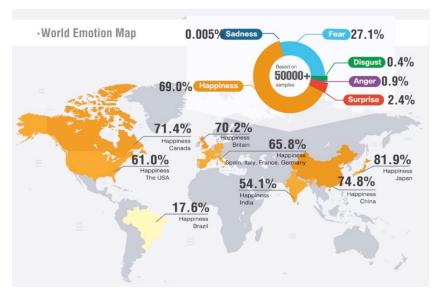
Methods do not consider emotion contagion:

SVM, Logistic Regression (LR),

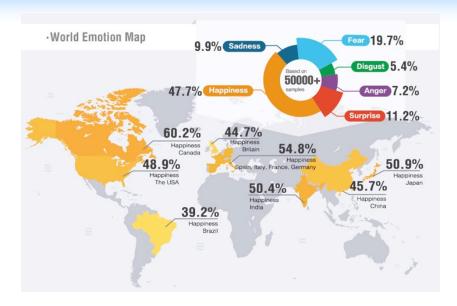
Naïve Bayes (NB), Bayesian Network (BN),

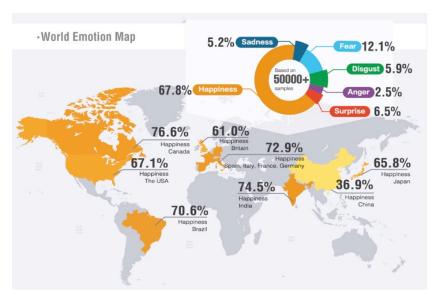

Gaussian Radial Basis Function Neural Network (RBF).

Methods ignore social role information: CRF


Our model: Role-aware

Emotion	Method	Precision	Recall	F1-score	Emotion	Method	Precision	Recall	F1-score	
Happiness	SVM									
	LR									
	NB									
	BN									
	RBF									
	CRF									
	Role-aware		4.5							
	SVM	Evalu	ation	Metri	CS:					
	LR									
	NB									
Surprise	BN	Pr€	ecision							
	RBF	Re	call							
	CRF		Meası	Ire						
	Role-aware		Wicast	ai C						
Anger	SVM									
	LR									
	NB									
	BN									
	RBF									
	CRF									
	Role-aware									


Emotion	Method	Precision	Recall	F1-score	Emotion	Method	Precision	Recall	F1-score
Happiness	SVM	0.5490	0.4682	0.5054	Disgust	SVM	0.5721	0.6223	0.5962
	LR	0.5726	0.4234	0.4868		LR	0.5902	0.5847	0.5874
	NB	0.5604	0.4679	0.5100		NB	0.5657	0.7244	0.6353
	BN	0.5605	0.5129	0.5357		BN	0.5666	0.6811	0.6186
	RBF	0.5744	0.2676	0.3651		RBF	0.5246	0.4346	0.4754
	CRF	0.5590	0.5938	0.5759		CRF	0.8304	0.5889	0.6891
	Role-aware	0.5285	0.9327	0.6747		Role-aware	0.9758	0.9947	0.9852
Surprise	SVM	0.5103	0.4821	0.4958	Fear	SVM	0.5253	0.5521	0.5384
	LR	0.5231	0.4108	0.4602		LR	0.5523	0.4703	0.5080
	NB	0.5124	0.5324	0.5222		NB	0.5350	0.5295	0.5322
	BN	0.5241	0.4712	0.4963		BN	0.5446	0.5189	0.5315
	RBF	0.4990	0.1756	0.2597		RBF	0.5227	0.2859	0.3696
	CRF	0.5810	0.8014	0.6736		CRF	0.5074	0.2123	0.2993
	Role-aware	0.8992	0.9181	0.9086		Role-aware	0.8123	0.9996	0.8963
Anger	SVM	0.5186	0.6371	0.5718	Sadness	SVM	0.5733	0.5740	0.5723
	LR	0.5275	0.4634	0.4934		LR	0.5664	0.4866	0.5234
	NB	0.5201	0.4959	0.5078		NB	0.5632	0.4991	0.5292
	BN	0.5260	0.5207	0.5233		BN	0.5730	0.5662	0.5695
	RBF	0.5062	0.2441	0.3294		RBF	0.5344	0.4292	0.4761
	CRF	0.6036	0.8015	0.6886		CRF	0.6382	0.8726	0.7372
	Role-aware	0.9346	0.9593	0.9468		Role-aware	0.8741	0.9550	0.9128


(a) Ground truth

(c) Opinion leaders

(b) Random users

(d) Structural hole spanners

Conclusion

- We study the interplay between users' social roles and emotion contagions by answering 3 questions.
 - Does emotion contagion exist?
 - How social roles influence emotion contagion?
 - How to better *predict* users' emotional status?
- We propose the social role-aware contagion model and validate it on a real social network.

THANK YOU!

Social Role-Aware Emotion Contagion in Image Social Networks

Yang Yang, Jia Jia, Boya Wu, and Jie Tang

Department of Computer Science and Technology
Tsinghua University

Contact:

SherlockBourne@gmail.com

http://yangy.org