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Social Influence

Social Influence

Social influence is the phenomenon that people’s opinions,
emotions or behaviors are affected by others

Application: viral marketing, propaganda, advertising
promotion...
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Motivation

Cascaded Indirect Influence

Cascaded Indirect Influence

Social influence between non-adjacent users in the social
network
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Application: friend recommendation, link prediction, ...
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Challenges

Information about non-adjacent users is rare

The number of potential paths between two users is
exponentially large

Most of the previous works infer the direct influence from the
cascade data – partial, sparse and dynamic
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Cascaded Indirect Influence

Given a dynamic influence network Gt = (V ,E ,Wt)

Direct influence

we,t =
∑

i e−(t−τi )/δ

Influence path from u to v

It(pi ) =
∏

e∈pi we,t

Influence probability v is activated by u indirectly

It = 1−
N∏
i=0

(1− It(pi )) =
N∑
i=0

It(pi ) + o(It(pi ))

Omit the high-order terms of It(pi ) and take the top-k terms
of the first-order It(pi )
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Problem Formulation

Cascaded Indirect Influence

Definition

Cascaded Indirect Influence. The cascaded indirect influence
from u to v is defined as the sum of the top k influence score
among all the paths in P,

It = max
Q⊂P

∑
pi∈Q

It(pi )

s.t. |Q| = k
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Problem Formulation

Partial Monitoring Setting

The number of the intermediate paths are exponentially large
– Intractable to learn indirect influence from all the paths

Partial Monitoring Setting & Online Learning

Problem

min
decision

1

T
(max
Q⊂P

∑
pi∈Q

T∑
t=1

It(pi )−
T∑
t=1

Ît(Dt))

s.t. |Q| = k
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Problem

min
decision

1

T
(max
Q⊂P

∑
pi∈Q

T∑
t=1

It(pi )−
T∑
t=1

Ît(Dt))

s.t. |Q| = k

Regret

Normalized Regret
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Problem Formulation

Regret

Growth rate of the Regret

Our Goal
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Algorithm – E-EXP3 Example
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Algorithm

Algorithm Theory Analysis

Parameter

mixing coefficient : γ =

√
|C| ln N

(e − 1)T

learning rate : η =
1

K

√
ln N

(e − 1)|C|T

Regret Upper Bound

2K
√

(e − 1)T |C| ln N

More Proof Details:
http://www.jiaqima.me/papers/learning-cascaded-
influence.pdf
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Algorithm – RE-EXP3

Algorithm 1: Preprocessing Schedule of RE-EXP3

Input : Preprocessing Round Tp γ, K , |C|
Output: η

1 η ← γ/K |C|
2 G ← ∅
3 foreach t in range(Tp) do
4 Choose Dt with E-EXP3
5 G ← G ∪ {g ′i ,t : i ∈ Dt}
6 η ← η ×min{ 1

mean(G)+3var(G) , 1}
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Datasets

Experiments: Datasets

Synthetic Networks

2000 vertexes
edge generation probability 0.01
edge weight U[0, 0.3] or U[0.6, 1]
60,000 times

WeiBo

1,776,950 users
308,739,489 following relationships
23,755,810 retweets
100 time stamps

Aminer

231,728 papers
269,508 authors
347,735 citation relationships
44 time stamps
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Experiments on Normalized Regrets

Experiments on Normalized Regrets(Synthetic)
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Figure: Normalized Regret on Synthetic Data
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Experiments on Normalized Regrets(Weibo & Aminer)
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Figure: Average Normalized Regret on real social networks
(1500 pairs of users)



Learning Cascaded Influence under Partial Monitoring

Experiments

Experiments on Application Improvement

Outline

1 Motivation
Social Influence
Cascaded Indirect Influence

2 Challenges

3 Problem Formulation

4 Algorithm

5 Experiments
Datasets
Experiments on Normalized Regrets
Experiments on Application Improvement

6 Conclusion



Learning Cascaded Influence under Partial Monitoring

Experiments

Experiments on Application Improvement

Experiments on Application Improvement(Weibo)

Table: Application Improvement - Logistic Regression

Methods Accuracy Precision Recall F1 score
PF 0.55 0.58 0.45 0.51

P-EXP3 0.57 0.58 0.55 0.57
E-EXP3 0.59 0.61 0.55 0.58

RE-EXP3 0.64 0.65 0.63 0.64
FO 0.70 0.77 0.60 0.68

Table: Application Improvement - SVM

Methods Accuracy Precision Recall F1 score
PF 0.58 0.57 0.72 0.63

P-EXP3 0.56 0.58 0.53 0.55
E-EXP3 0.58 0.60 0.55 0.57

RE-EXP3 0.63 0.65 0.61 0.63
FO 0.70 0.77 0.57 0.66
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Conclusion

Formalized a novel problem of cascade indirect influence
based on IC model

Proposed two online learning algorithms (E-EXP3 and
RE-EXP3) in the partial monitoring setting

Theoretically proved that E-EXP3 has a cumulative regret
bound of O(

√
T ).

Compared the algorithms with three baseline methods on both
synthetic and real networks (Weibo and AMiner).

Applied the learned cascaded influence to help behavior
prediction
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