Jiaqi Ma¹ Jie Zhang² Jie Tang³

¹Dept. of Automation, Tsinghua University

²Dept. of Physics, Tsinghua University

³Dept. of Computer Science, Tsinghua University

ASONAM, 2016

Outline

1 Motivation

- Social Influence
- Cascaded Indirect Influence
- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Motivation

Social Influence

Outline

1 Motivation

Social Influence

- Cascaded Indirect Influence
- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Motivation

Social Influence

 Social influence is the phenomenon that people's opinions, emotions or behaviors are affected by others

 Application: viral marketing, propaganda, advertising promotion...

- Motivation
 - Cascaded Indirect Influence

Outline

1 Motivation

Social Influence

Cascaded Indirect Influence

- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

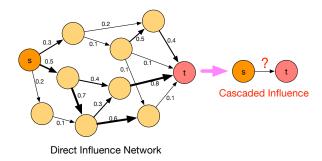
- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Motivation

Cascaded Indirect Influence

Cascaded Indirect Influence

 Social influence between non-adjacent users in the social network



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application: friend recommendation, link prediction, ...

- Challenges

- Information about non-adjacent users is rare
- The number of potential paths between two users is exponentially large
- Most of the previous works infer the direct influence from the cascade data partial, sparse and dynamic

Problem Formulation

Cascaded Indirect Influence

Given a dynamic influence network $G_t = (V, E, W_t)$

Direct influence

$$w_{e,t} = \sum_{i} e^{-(t-\tau_i)/\delta}$$

Influence path from u to v

$$I_t(p_i) = \prod_{e \in p_i} w_{e,t}$$

Influence probability v is activated by u indirectly

$$I_t = 1 - \prod_{i=0}^{N} (1 - I_t(p_i)) = \sum_{i=0}^{N} I_t(p_i) + o(I_t(p_i))$$

Omit the high-order terms of $I_t(p_i)$ and take the top-k terms of the first-order $I_t(p_i)$

Problem Formulation

Cascaded Indirect Influence

Definition

Cascaded Indirect Influence. The cascaded indirect influence from u to v is defined as the sum of the top k influence score among all the paths in \mathcal{P} ,

$$egin{aligned} I_t &= \max_{Q \subset \mathcal{P}} \sum_{p_i \in Q} I_t(p_i) \ & ext{ s.t. } |Q| = k \end{aligned}$$

Problem Formulation

Partial Monitoring Setting

- The number of the intermediate paths are exponentially large
 Intractable to learn indirect influence from all the paths
- Partial Monitoring Setting & Online Learning

Problem

$$\min_{decision} \frac{1}{T} (\max_{Q \subset \mathcal{P}} \sum_{p_i \in Q} \sum_{t=1}^{T} I_t(p_i) - \sum_{t=1}^{T} \hat{I}_t(\mathcal{D}_t))$$
s.t. $|Q| = k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem Formulation

Partial Monitoring Setting

Problem

$$\min_{decision} \frac{1}{T} (\max_{Q \subset \mathcal{P}} \sum_{p_i \in Q} \sum_{t=1}^{T} I_t(p_i) - \sum_{t=1}^{T} \hat{I}_t(\mathcal{D}_t))$$

s.t. $|Q| = k$

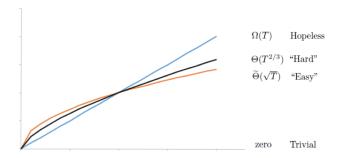
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

RegretNormalized Regret

Problem Formulation

Regret

Growth rate of the Regret



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our Goal

Algorithm – E-EXP3

Algorithm 1: E-EXP3

Input : The edge set E, The path set \mathcal{P} , initialize $w_{e,0} = 1$ for each $e \in E$, $\overline{w}_{i,0} = 1$ for each $i \in \mathcal{P}$, normalization factor $\overline{W}_0 = |\mathcal{P}|$, mixing coefficient $\gamma > 0$, learning rate $\eta > 0$

Output: The set of k paths \mathcal{D}_T chosen at the time T

```
1 t \leftarrow 1
```

5 6

7

```
2 while t \leq T do
3 | foreach i \in \mathcal{P} do
```

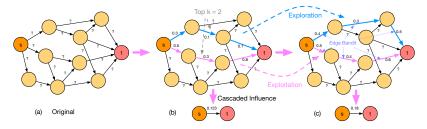
```
4 | if i \in C then
```

else

8 foreach $e \in E$ do

Algorithm – E-EXP3

Algorithm – E-EXP3 Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exploration & Exploitation

Algorithm Theory Analysis

Parameter

mixing coefficient :
$$\gamma = \sqrt{\frac{|\mathcal{C}| \ln N}{(e-1)T}}$$

learning rate : $\eta = \frac{1}{K} \sqrt{\frac{\ln N}{(e-1)|\mathcal{C}|T}}$

Regret Upper Bound

2
$$K\sqrt{(e-1)\,\mathcal{T}|\mathcal{C}|}$$
 In N

More Proof Details: http://www.jiaqima.me/papers/learning-cascadedinfluence.pdf

Algorithm – RE-EXP3

Algorithm 1: Preprocessing Schedule of RE-EXP3

Input : Preprocessing Round T_p γ , K, |C|**Output:** η

 $\mathbf{1} \ \eta \leftarrow \gamma/\mathbf{K}|\mathcal{C}|$

2
$$\mathcal{G} \leftarrow \emptyset$$

- 3 foreach t in range (T_p) do
- 4 Choose \mathcal{D}_t with E-EXP3

5
$$\int \mathcal{G} \leftarrow \mathcal{G} \cup \{g'_{i,t} : i \in \mathcal{D}_t\}$$

6
$$\eta \leftarrow \eta \times \min\{\frac{1}{mean(\mathcal{G})+3var(\mathcal{G})}, 1\}$$

- Experiments
 - Datasets

Outline

1 Motivation

- Social Influence
- Cascaded Indirect Influence
- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Experiments

Datasets

Experiments: Datasets

- Synthetic Networks
 - 2000 vertexes
 - edge generation probability 0.01
 - edge weight U[0, 0.3] or U[0.6, 1]
 - 60,000 times
- WeiBo
 - 1,776,950 users
 - 308,739,489 following relationships
 - 23,755,810 retweets
 - 100 time stamps
- Aminer
 - 231,728 papers
 - 269,508 authors
 - 347,735 citation relationships

44 time stamps

- Experiments
 - Experiments on Normalized Regrets

Outline

1 Motivation

- Social Influence
- Cascaded Indirect Influence
- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Experiments

Experiments on Normalized Regrets

Experiments on Normalized Regrets(Synthetic)

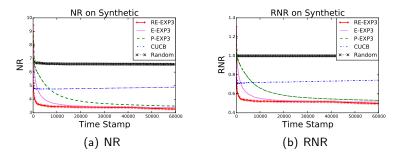


Figure: Normalized Regret on Synthetic Data

- Experiments

Experiments on Normalized Regrets

Experiments on Normalized Regrets(Weibo & Aminer)

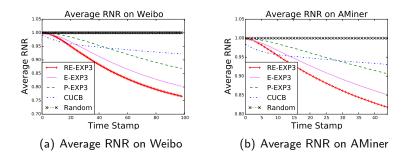


Figure: Average Normalized Regret on real social networks (1500 pairs of users)

(日)、

э

- Experiments
 - Experiments on Application Improvement

Outline

1 Motivation

- Social Influence
- Cascaded Indirect Influence
- 2 Challenges
- 3 Problem Formulation
- 4 Algorithm

5 Experiments

- Datasets
- Experiments on Normalized Regrets
- Experiments on Application Improvement

- Experiments

Experiments on Application Improvement

Experiments on Application Improvement(Weibo)

Table: Application Improvement - Logistic Regression

Methods	Accuracy	Precision	Recall	F1 score
PF	0.55	0.58	0.45	0.51
P-EXP3	0.57	0.58	0.55	0.57
E-EXP3	0.59	0.61	0.55	0.58
RE-EXP3	0.64	0.65	0.63	0.64
FO	0.70	0.77	0.60	0.68

Table: Application Improvement - SVM

Methods	Accuracy	Precision	Recall	F1 score
PF	0.58	0.57	0.72	0.63
P-EXP3	0.56	0.58	0.53	0.55
E-EXP3	0.58	0.60	0.55	0.57
RE-EXP3	0.63	0.65	0.61	0.63
FO	0.70	0.77	0.57	0.66

Conclusion

Conclusion

- Formalized a novel problem of cascade indirect influence based on IC model
- Proposed two online learning algorithms (E-EXP3 and RE-EXP3) in the partial monitoring setting
- Theoretically proved that E-EXP3 has a cumulative regret bound of $O(\sqrt{T})$.
- Compared the algorithms with three baseline methods on both synthetic and real networks (Weibo and AMiner).

 Applied the learned cascaded influence to help behavior prediction