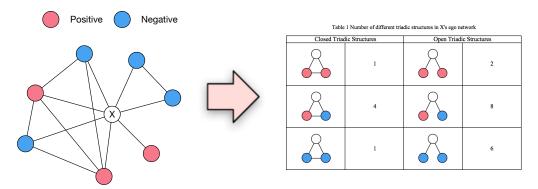
Learning Triadic Influence in Large Social Networks

Chenhui Zhang*, Sida Gao*, Jie Tang*, Tracy Xiao Liu*,
Zhanpeng Fang* and Xu Cheng*

*Tsinghua University, Beijing, China


#Tencent Corporation, Shenzhen, China

Triadic Influence Analysis

- Social influence from the structural level
 - Triad is the simplest group structure in networks.

- Behavior Prediction
 - What role the triadic structures among one's friends play in influencing her behavior?
 - Datasets: Retweeting on Weibo, Paying on CrossFire

Triadic Influence Patterns

- OLS analysis on different feature variables
 - Basic Features---Extracted from user profiles
 - Neighborhood Features---Number of positive (or negative)
 friends with strong (or weak) relationships
 - Triadic Features---Number of 30 triadic influence patterns with the label information and the strength of relationships
- Regression coefficients on Weibo dataset

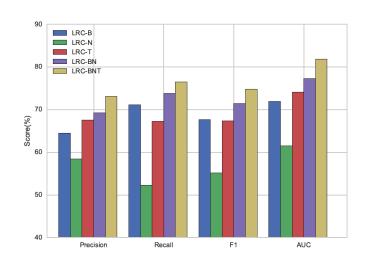
REGRESSION ANALYSIS FOR NEIGHBORHOOD FEATURES

	Edge	В+Е	B+E+Triads
#PosStrong	0.0840***	0.0544***	0.0602***
#F08Strong	(0.002)	(0.002)	(0.006)
#PosWeak	0.1268***	0.0700***	0.0679***
π1 OS WCak	(0.003)	(0.002)	(0.012)
#NegStrong	0.0355***	0.1670***	0.0490***
#Negstiong	(0.001)	(0.002)	(0.009)
#NegWeak	-0.0490***	-0.0040**	0.0201
#INEg Weak	(0.001)	(0.002)	(0.023)
R^2	0.041	0.242	0.301

REGRESSION ANALYSIS FOR 30 KINDS OF TRIADS

No.	Triad	Coef	No.	Triad	Coef	No.	Triad	Coef	No.	Triad	Coef	No.	Triad	Coef
1	BC	0.0827*** (0.003)	2	BC	0.0110*** (0.004)	3	BC	-0.0543*** (0.003)	4	BC	0.0004 (0.004)	5	BC	0.0429*** (0.003)
6	BC	-0.0587*** (0.003)	7	B C	0.0205*** (0.002)	8	BC	0.0313*** (0.002)	9	BC	-0.0283*** (0.003)	10	BC	0.0168*** (0.002)
11	B	-0.0091*** (0.002)	12	BC	0.0861*** (0.004)	13	BC	-0.0563*** (0.001)	14	B C	-0.0221*** (0.002)	15	BC	0.0157*** (0.003)
16	B	0.0167*** (0.003)	17	BC	0.0164*** (0.003)	18	BC	-0.0184* (0.010)	19	BC	-0.0263*** (0.002)	20	B	0.0066*** (0.002)
21	BC	-0.0001 (0.002)	22	BC	0.0099*** (0.002)	23	B	0.0534*** (0.002)	24	BC	-0.0054** (0.002)	25	BC	0.0089*** (0.001)
26	B	-0.0783*** (0.002)	27	BC	0.0818*** (0.002)	28	BC	0.0130*** (0.002)	29	B C	0.0494*** (0.002)	30	BC	-0.0772*** (0.003)

- Although Neighborhood features are included in the model, most of the triadic influence patterns are significant.
- Most of the open triads result in negative coefficients even when the neighbors are positive (triad 3, 6, 9).
- The strength of relationship plays an important role in influencing one's behavior, but it is not necessarily positively correlated.


Triadic Patterns in Behavior Prediction

- Logistic regression as classifier
 - LRC-B/LRC-N/LRC-T: Logistic regression classifier with only Basic/Neighborhood/Triadic features
 - LRC-BN: Logistic regression classifier with Basic and Neighborhood features
 - LRC-BNT: Logistic regression classifier with all of the three features

PERFORMANCE OF BEHAVIOR PREDICTION ON TWO DATASETS. (%)

Dataset	Model	Precision	Recall	F1	AUC
	LRC-B	64.54	71.19	67.70	71.90
	LRC-N	58.46	52.27	55.19	61.53
Weibo	LRC-T	67.59	67.25	67.42	74.09
	LRC-BN	69.27	73.83	71.47	77.31
	LRC-BNT	73.16	76.46	74.78	81.85
	LRC-B	69.63	72.27	70.92	77.62
	LRC-N	71.35	57.06	63.41	72.64
CussiFins	LRC-T	71.52	58.85	64.57	73.56
CrossFire	LRC-BN	71.37	70.27	70.81	78.35
	LRC-BNT	71.53	71.02	71.27	78.76

Triadic Patterns in Behavior Prediction

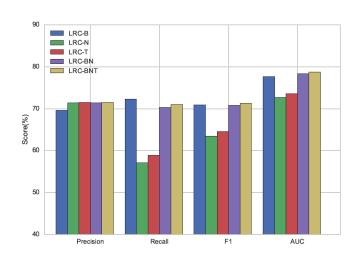


Fig. 4. Performance of retweeting behavior prediction in Weibo

Fig. 5. Performance of buying behavior prediction in CrossFire

- Triadic features alone is almost as good as combining Basic and Neighborhood features.
- Triadic features can further improve the performance when augmented to LRC-BN.

Conclusions

Classify triadic influence patterns

 Verify the existence of different triadic influence by OLS analysis

 Competitive performance in behavior prediction by leveraging the triadic influence

ASONAM 2016 - San Francisco, USA