¥/

é}@ MORGAN &CLAYPOOL PUBLISHERS

Semantic Mining of
Social Networks

Jie Tang

Juanzi Li

SYNTHESIS L.LECTURES ON
THE SEMAaNTIC WEB: THEORY AND TECHNOLOGY

Ying Ding and Paul Groth, Series Editors

e







Semantic Mining
of Social Networks




Synthesis Lectures on the
Semantic Web: Theory and
Technology

Editors
Ying Ding, Indiana University
Paul Groth, Elsevier Labs

Founding Editor Emeritus
James Hendler, Rensselaer Polytechnic Institute

Synthesis Lectures on the Semantic Web: Theory and Application is edited by Ying Ding of Indiana
University and Paul Groth of Elsevier Labs. Whether you call it the Semantic Web, Linked Data, or
Web 3.0, a new generation of Web technologies is offering major advances in the evolution of the
World Wide Web. As the first generation of this technology transitions out of the laboratory, new
research is exploring how the growing Web of Data will change our world. While topics such as
ontology-building and logics remain vital, new areas such as the use of semantics in Web search, the
linking and use of open data on the Web, and future applications that will be supported by these
technologies are becoming important research areas in their own right. Whether they be scientists,
engineers or practitioners, Web users increasingly need to understand not just the new technologies
of the Semantic Web, but to understand the principles by which those technologies work, and the
best practices for assembling systems that integrate the different languages, resources, and
functionalities that will be important in keeping the Web the rapidly expanding, and constantly
changing, information space that has changed our lives.

Topics to be included:
* Semantic Web Principles from linked-data to ontology design

* Key Semantic Web technologies and algorithms

* Semantic Search and language technologies

* The Emerging "Web of Data” and its use in industry, government and university applications
* Trust, Social networking and collaboration technologies for the Semantic Web

* 'The economics of Semantic Web application adoption and use

¢ Publishing and Science on the Semantic Web

* Semantic Web in health care and life sciences



Semantic Mining of Social Networks
Jie Tang and Juanzi Li
2015

Social Semantic Web Mining
Tope Omitola, Sebastian A. Rios, and John G. Breslin
2015

Semantic Breakthrough in Drug Discovery
Bin Chen, Huijun Wang, Ying Ding, and David Wild
2014

Semantics in Mobile Sensing
Zhixian Yan and Dipanjan Chakraborty
2014

Provenance: An Introduction to PROV
Luc Moreau and Paul Groth
2013

Resource-Oriented Architecture Patterns for Webs of Data
Brian Sletten
2013

Aaron Swartz’s A Programmable Web: An Unfinished Work
Aaron Swartz

2013

Incentive-Centric Semantic Web Application Engineering
Elena Simperl, Roberta Cuel, and Martin Stein
2013

Publishing and Using Cultural Heritage Linked Data on the Semantic Web

Eero Hyvonen
2012

VIVO: A Semantic Approach to Scholarly Networking and Discovery
Katy Bérner, Michael Conlon, Jon Corson-Rikert, and Ying Ding
2012

Linked Data: Evolving the Web into a Global Data Space
Tom Heath and Christian Bizer
2011

iii




Copyright © 2015 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Semantic Mining of Social Networks
Jie Tang and Juanzi Li

WwWW.morganclaypool.com

ISBN: 9781608458578 paperback
ISBN: 9781608458585 ebook

DOI 10.2200/500629ED1V01Y201502WBEO011

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON THE SEMANTIC WEB: THEORY AND TECHNOLOGY

Lecture #11
Series Editors: Ying Ding, Indiana University
Paul Groth, Elsevier Labs
Founding Editor Emeritus: James Hendler, Rensselaer Polytechnic Institute
Series ISSN
Print 2160-4711  Electronic 2160-472X


www.morganclaypool.com

Semantic Mining

of Social Networks

Jie Tang and Juanzi Li
Tsinghua University

SYNTHESIS LECTURES ON THE SEMANTIC WEB: THEORY AND
TECHNOLOGY #11

1\@ MORGAN CLAYPOOL PUBLISHERS



ABSTRACT

Online social networks have already become a bridge connecting our physical daily life with the
(web-based) information space. This connection produces a huge volume of data, not only about
the information itself, but also about user behavior. The ubiquity of the social Web and the wealth
of social data offer us unprecedented opportunities for studying the interaction patterns among
users so as to understand the dynamic mechanisms underlying difterent networks, something that
was previously difficult to explore due to the lack of available data.

In this book, we present the architecture of the research for social network mining, from a
microscopic point of view. We focus on investigating several key issues in social networks. Specif-
ically, we begin with analytics of social interactions between users. The first kinds of questions we
try to answer are: What are the fundamental factors that form the different categories of social
ties? How have reciprocal relationships been developed from parasocial relationships? How do
connected users further form groups?

Another theme addressed in this book is the study of social influence. Social influence
occurs when one’s opinions, emotions, or behaviors are affected by others, intentionally or unin-
tentionally. Considerable research has been conducted to verify the existence of social influence
in various networks. However, few literature studies address how to quantify the strength of in-
fluence between users from different aspects. In Chapter 4 and in [138], we have studied how
to model and predict user behaviors. One fundamental problem is distinguishing the effects of
different social factors such as social influence, homophily, and individual’s characteristics. We
introduce a probabilistic model to address this problem.

Finally, we use an academic social network, ArnetMiner, as an example to demonstrate how
we apply the introduced technologies for mining real social networks. In this system, we try to
mine knowledge from both the informative (publication) network and the social (collaboration)
network, and to understand the interaction mechanisms between the two networks. The system
has been in operation since 2006 and has already attracted millions of users from more than 220
countries/regions.

KEYWORDS

social tie, strong/weak ties, parasocial interactions, reciprocity, social influence, col-
lective classification, graphical model, social network analysis, social relationship,
relationship mining, link prediction, influence maximization, network centrality,
user modeling, social action, social theories, social balance, social status, triadic clo-
sure, factor graph, influence propagation, conservative influence propagation, non-
conservative influence propagation, user behaviour prediction, profile extraction, ex-
pert finding, name disambiguation, ArnetMiner
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CHAPTER 1

Introduction

A social network is a social structure made up of a set of actors (such as individuals or organiza-
tions) and a complex set of the dyadic ties between these actors. Social network mining aims to
provide a comprehensive understanding of global and local patterns, mechanism of the network
formation, and dynamics of user behaviors. Social network analysis and mining is an inherently
interdisciplinary academic field which emerged from sociology, psychology, statistics, and graph
theory. However, due to the lack of efficient computational models and the nonavailability of
large-scale social networking data, traditional research on social networks has mainly focused on
qualitative study in small-scale networks. For example, Milgram spent many years validateng the
existence of small-world phenomenon, also referred to as six-degrees of separation by sending
mail to thousands of people [107]. In the 1910s, Georg Simmel proposed the concept of struc-
tural theories in sociology, which focuses on the dynamic formation of triads [132] and in the
1930s, Jacob Moreno was the first to develop sociograms to analyze people’s inter-relationships.
Later, for quantitatively analyzing social networks, researchers gave mathematical formulations
for social network analysis and developed computational methods [157]. However, most social
network research was still conducted by interviewing the participants with small-scale social net-
works.

More recently, with the emergence and rapid proliferation of online social applications
and media—such as instant messaging (e.g., IRC, AIM, MSN, Jabber, Skype), sharing sites
(e.g., Flickr, Picassa, YouTube, Plaxo), blogs (e.g., Blogger, WordPress, LiveJournal), wikis (e.g.,
Wikipedia, PBWiki), microblogs (e.g., Twitter, Jaiku, Weibo), social networks (e.g., Facebook,
MySpace, Ning), collaboration networks (e.g., DBLP, ArnetMiner), to mention a few—these
online services bring many opportunities for studying social networks, while also posing a num-
ber of new challenges. First, the online social network is much larger than the physical social
networks in traditional research. Facebook had more than 1.3 billion users in 2014 and Tencent,
the largest social networking service in China, attracted 800 million users in 2014. Twitter, the
largest microblogging service, has hit half a billion tweets a day. All these big numbers bring new
challenges and also the requirements for developing new methods to store, search, analyze, and
mine the “big social data.” Second, from a microscopic viewpoint, what are the subtle changes
of behaviors when users go online from the offline physical networks? Are the traditional social
theories still applicable?

Existing research related to social network mining can be categorized into micro-level,
meso-level, and macro-level, although the levels of mining are not necessarily mutually exclu-
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Figure 1.1: Research roadmap for social network mining.

sive. At the micro-level, social network mining is mainly concerned with modeling individuals’
behaviors and interactions between users; at the macro-level, it focuses on studying the global
patterns of the social networks, for example, network topology [47] and network generative mod-
els [10, 46, 158]; and at the micro-level, social network mining is mainly concerned with modeling
individuals’ behaviors and interactions between users, for example social action theory [159], so-
cial ties [56], social influence [79, 143], and user modeling [48]. The meso-level research falls
between the micro- and macro-levels, for example community detection [53, 113, 114], struc-
tural hole [21, 100], and group behavior analysis [4, 34]. Figure 1.1 gives the research roadmap
for social network mining. On top of social network mining, we can consider many applications
such as social prediction [138], social search [41, 148], information diffusion [59], and social ad-
vertisement [9]. The underlying theories for social network mining include theories from social
science and algorithmic foundations from computer science.

In this book, we study social network mining from a microscopic viewpoint. We focus on
modeling users’ behaviors and their interactions between each other. In particular, we present key

technologies for social tie analysis, social influence analysis, and user behavior modeling.

1.1 BACKGROUND

We introduce several related social theories and then briefly review existing literatures on social
tie analysis, social influence analysis, and user behavior modeling.
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Figure 1.2: Illustration of structural balance theory. (A) and (B) are balanced, while (C) and (D) are not
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Figure 1.3: Illustration of status theory. (A) and (B) satisfy the status theory, while (C) and (D) do not

«,

satisfy the status theory. Here positive “+” denotes the target node has a higher status than the source node; and

« »

negative “-” denotes the target node has a lower status than the source node. In total there are 16 different cases.

1.1.1 SOCIAL THEORIES

A basic principle for mining social networks in this book is to incorporate social theories into data
mining (or machine learning) model. For social theories, we mainly consider social balance [45],
social status [34], structural hole [21], two-step information-flow [89], and strong/weak tie hy-
pothesis [56, 83].

Social balance theory suggests that people in a social network tend to form into a balanced
network structure. Figure 1.2 shows such an example to illustrate the structural balance theory
over triads, which is the simplest group structure to which balance theory applies. For a triad, the
balance theory implies that either all three of these users are friends—“the friend of my friend is
my friend”— or only one pair of them are friends—“the enemy of my enemy is my friend.”

Another social psychological theory is the zheory of status [34, 60, 93]. This theory is based
on the directed relationship network. Suppose each directed relationship is labeled by a positive

“« o o»

sign “+” or a negative sign “-’

4 [

(where sign “+”/“-” denotes the target node has a higher/lower
status than the source node). Then status theory posits that if, in a triangle on three nodes (also-
called triad), we take each negative edge, reverse its direction, and flip its sign to positive, then
the resulting triangle (with all positive edge signs) should be acyclic. Figure 1.3 illustrates four
examples. The first two triangles satisfy the status ordering and the latter two do not satisfy it.
Roughly speaking, a user is said to span a structural hole in a social network if she is linked
to people in parts of the network that are otherwise not well connected to one another [21]. Such
a user is also referred to as structural hole spanner [100]. Arguments based on structural holes
suggest that there is an informational advantage to have friends in a network who do not know
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Figure 1.4: An example of inferring social ties in a mobile communication network. The left figure is
the input of the task, and the right figure is the output of the task of inferring social ties.

each other. A sales manager with a diverse range of connections can be considered as a structural
hole spanner, with a number of potentially wea fies [56] to individuals in different communities.
More generally, we can think about websites, such as eBay, as spanning structural holes, in that
they facilitate economic interactions between people who would otherwise not be able to find
each other.

The two-step information-flow theory is first introduced in [89] and further elaborated in
literature [75, 76]. The theory suggests that ideas (innovations) usually flow first to opinion leaders,
and then from them to a wider population. In the enterprise email network, for example, managers
may act as opinion leaders to help spread information to subordinates.

Interpersonal ties generally come in three varieties: strong, weak, or absent. Strong tie hy-
pothesis implies that one’s close friends tend to move in the same circles that she/he does, while
weak tie hypothesis argues that weak ties are responsible for the majority of the embeddedness and
structure of social networks in society as well as the transmission of information through these
networks [56].

1.1.2 SOCIAL TIE ANALYSIS

Mining social ties is an important problem in social network analysis. Based on the strong/weak
tie hypothesis, there is a bunch of research conducted in recent years. The goal of social tie analysis
is to automatically recognize the semantics associated with each social relationship. Awareness
of the semantics of social relationships can benefit many applications. For example, if we could
have extracted friendships between users from the mobile communication network, then we can
leverage the friendships for a “word-of-mouth” promotion of a new product. Figure 1.4 gives an
example of relationship mining in a mobile calling network. The left figure is the input of the
problem: in a mobile calling network consisting of users, calls and messages between users, and
users’ location logs, etc. The objective is to infer the type of the relationships in the network. In the
right figure, the users who are family members are connected with red-colored lines, friends are
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connected with blue-colored dash lines, and colleagues are connected with green-colored dotted
lines. The probability associated with each relationship represents our confidence on the detected
relationship types.

There are several works on mining the relationship semantics. Diehl et al. [38] tried to
identify the manager-subordinate relationships by learning a ranking function. They defined a
ranking objective function and cast the relationship identification as a relationship ranking prob-
lem. Menon et al. [106] proposed a log-linear matrix model for dyadic prediction. They used
matrix factorization to derive latent features and incorporate the latent features for predicting
the label of user relationships. Wang et al. [155] proposed a probabilistic model for mining the
advisor-advisee relationships from the publication network. The proposed model is referred to as
time-constrained probabilistic factor graph model (TFGM), which supports both supervised and
unsupervised learning. Eagle et al. [44] presented several patterns discovered in mobile phone
data, and try to use these pattern to infer the friendship network. Tang et al. [149] developed a
classification framework of social media based on differentiating different types of social connec-
tions. However, these algorithms mainly focus on a specific domain, while our model is general
and can be applied to diftferent domains. Moreover, these methods also do not explicitly consider
the correlation information between difterent relationships.

Another research branch is to predict and recommend unknown links in social networks.
Liben-Nowell et al. [96] studied the problem of inferring new interactions among users given a
snapshot of a social network. They developed several unsupervised approaches to deal with this
problem based on measures for analyzing the “proximity” of nodes in a network. The principle
is mainly based on similarity of either content or structure between users. Backstrom et al. [6]
proposed a supervised random walk algorithm to estimate the strength of social links. Leskovec et
al. [92] employed a logistic regression model to predict positive and negative links in online social
networks, where the positive links indicate the relationships such as friendship, while negative
indicates opposition. However, these works consider only the black-white social networks, and
do not consider the types of the relationships.

Recently, Hopcroft et al. [70] explored the problem of reciprocal relationship prediction
and Lou et al. [101] extended to study how social relationships develop into triadic closure. They
proposed a learning framework to formulate the problem of reciprocal relationship prediction
into a graphical model and evaluate the proposed method on a Twitter data set. The framework
is demonstrated to be very effective, i.e., it is possible to accurately infer 90% of reciprocal re-
lationships in a dynamic network. Tang et al. [142] further proposed a general framework for
classifying the type of social relationships by learning across heterogeneous networks. The idea
is to use social theories (e.g., social balance theory, social status theory, structural hole theory,
two-step flow theory, and strong/weak tie) as bridge to connect different social networks. Social
theory-based features are defined and incorporated into a triad-based factor graph model to infer
the type of social relationships in different networks.
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Figure 1.5: An example of social influence for political mobilization. The left figure is the input of
the task, and the right figure is the output: influence probability between users, individual conformity
of each user, and key influencers (A, B, C).

Another related research topic is relational learning [23, 51]. However, the problem pre-
sented in this book is very different. Relational learning focuses on the classification problems
when objects or entities are presented in relations, while social tie analysis focuses on exploring
the relationship types in social network. A number of supervised methods for link prediction in
relational data have been developed [118, 151].

1.1.3 SOCIAL INFLUENCE ANALYSIS

Social influence occurs when one’s opinions, emotions, or behaviors are affected by others, inten-
tionally or unintentionally [78]. Recently, social influence analysis has attracted a lot of interest
from both research and industry communities. In general, existing research on social influence
analysis can be classified into three categories: influence test, influence measure, and influence
diffusion models. Figure 1.5 shows an example of social influence for political mobilization. The
left figure is the input of the task: opinion of each user for “Obama” in the social network, and the
right figure is the output: influence probability between users on this topic “Obama,” individual
conformity of each user, and key influencers (A, B, C).

Influence Test. Several efforts have been made for identifying the existence of the social influ-
ence in the online social networks. For example, Anagnostopoulos et al. [2] gave a theoretical
justification to identify influence as a source of social correlation when the time series of user ac-
tions is available. They propose a shuffle test to prove the existence of the social influence. Singla
and Richardson [133] studied the correlation between personal behaviors and their interests. They
found that in the online system people who chat with each other (using instant messaging) are
more likely to share interests (their Web searches are the same or topically similar), and the more
time they spend talking, the stronger this relationship is. Bond et al. [18] reported results from a
randomized controlled trial of political mobilization messages delivered to 61 million Facebook
users. They found that when one is aware that their friends have made the political votes, their
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likelihood to vote will significantly increase. Crandall et al. [31] further investigated the corre-
lation between social similarity and influence. More recently, some efforts have been made for
analyzing the dynamics in the social network. For example, Scripps et al. [128] investigated how
different pre-processing decisions and different network forces such as selection and influence
affect the modeling of dynamic networks. Other similar work can be referred to Dourisboure et
al. [43].

Influence Measure. The goal of influence measure is to quantify the strength of influence between
users. Tang et al. [143] introduced the problem of topic-based social influence analysis. They
proposed a Topical Affinity Propagation (TAP) approach to describe the problem via using a
graphical probabilistic model. However, these works neither consider heterogeneous information
nor learn topics and influence strength jointly. Goyal et al. [55] and Saito et al. [124] measured the
pairwise influence between two individuals based on the idea of independent cascade model [79].
Liu et al. [99] also studied the problem of measuring the influence on different topics. They
proposed a generative graphical model which leverages both heterogeneous link information and
textual content associated with each user in the network to mine topic-level influence strength.
Based on the learned direct influence, we further study the influence propagation and aggregation
mechanisms: conservative and non-conservative propagations to derive the indirect influence.
Xin et al. [131] studied the indirect influence using the theory of quantum cognition. Myers et
al. [112] proposed a probabilistic model to quantify the external influence out-of-network sources.
Belak et al. [12] investigated and measured the influence on the cross-community level so as to
provide a coarse-grained picture of a potentially very large network. They presented a framework
for cross-community influence analysis and evaluated the proposed method on a ten-year data
set from the largest Irish online discussion system Boards.ie, Boards.ie is the name of the system.
Zhang et al. [174] proposed the notion of social influence locality and applied it for modeling
users’ retweeting behaviors in the social networks. They developed two instantiation functions
based on pairwise influence and structural diversity.

Influence Diffusion Models. Social influence has been applied in the application of influence
maximization in viral marketing. Domingos and Richardson [42, 121] were the first to study
influence maximization as an algorithmic problem. Kempe et al. [79] took the first step to for-
mulating influence maximization as a discrete optimization problem. Leskovec et al. [94] and
Chen et al. [26, 27] made efforts to improve the efficiency of influence maximization. Gruhl et
al. [59] proposed a time-decayed diffusion model for blogging writing, and use an EM-like al-
gorithm to estimate the influence probabilities. Yang et al. [167] studied the interplay between
users’ social roles and their influence on information diffusion. They proposed a Role-Aware IN-
formation diffusion model (RAIN) that integrates social role recognition and diffusion modeling
into a unified framework.
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1.1.4 USERMODELING AND ACTIONS

User modeling describes the process of building up a user model to characterize users’ skills,
declarative knowledge, and specific needs to a system [48].

A number of models have been proposed to model users’ behaviors in dynamic social net-
works. Sarkar et al. [125] developed a generalized model associating each entity in Euclidean
latent space and used kernel functions for similarity in latent space to model friendship drifting
over time. Tan et al. [138] studied how users’ behaviors (actions) in a social network are influenced
by various factors such as personal interests, social influence, and global trends. They proposed a
Noise Tolerant Time-varying Factor Graph Model (NTT-FGM) for modeling and predicting
social actions, which simultaneously models social network structure, user attributes, and user
action history for better prediction of the users’ future actions. Tan et al. [137] investigated how
users’ sentiment can be inferred in the social network by incorporating the social network informa-
tion. Scripps et al. [128] presented a model to investigate how different pre-processing decisions
and different network forces such as selection and influence affect the modeling of dynamic net-
works. They also demonstrated the effects of attribute drifting and the importance of individual
attributes in forming links over time.

Group analysis is based on the view that deep lasting change can occur within a carefully
formed group whose combined membership reflects the wider norms of society. There is an in-
terest, in group analysis, on the relationship between the individual group member and the rest
of the group resulting in a strengthening of both, and a better integration of the individual with
his or her community, family and social network. Shi et al. [130] studied the pattern of user par-
ticipation behavior, and the feature factors that influence such behavior on different forum data
sets. Backstrom et al. [5] proposed a partitioning on the data that selects for active communities
of engaged individuals.

1.1.5 GRAPHICAL MODELS

From the perspective of machine learning and data mining, for analyzing networking data, graph-
ical probabilistic models are often employed to describe the dependencies between observation
data. Bayesian networks [72], Markov random field [134], factor graph [50, 84], Restricted Boltz-
mann Machine (RBM) [162], deep neural networks [68], and many others are widely used graph-
ical models.

1.2 BOOKOUTLINE

Despite much work having been conducted for mining social networks, we are still facing a num-
ber of challenges. In this book, from the microscopic viewpoint, we introduce key technologies
for social tie analysis, social influence analysis, and user behavior modeling. Figure 1.6 gives an
overview of the topics covered in this book and their relationships. Specifically, the book is orga-
nized as follows.
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Introduction
(Chapter One)
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Social Tie Analysis Social Influence Analysis User Behavior Modeling
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Research Frontiers
(Chapter Six)

Figure 1.6: Outline of this book.

* In Chapter 2, we begin with the analytics of social interactions between users. The first
o . « 1
question we try to answer is: “What are the fundamental factors that form the different cat-
egories of social ties?.” We incorporate social network theories into a probabilistic graphical
model for learning to automatically infer the types of social relationships.

* In Chapter 3, we investigate the problem of social influence. We introduce theoretical
methodologies for verifying the existence of social influence, and for quantifying the in-
fluence strength between users on different topics.

* In Chapter 4, we study how to model and predict user behaviors. One fundamental problem
is to distinguish the effects of different social factors such as social influence, homophily,
and individual’s characteristics. We introduce a probabilistic model to address this problem.

* In Chapter 5, we use ArnetMiner, an academic social network developed by the authors, as
an example to demonstrate how we apply the introduced technologies for mining real social
networks at the micro-level.

* Finally, in Chapter 6, we present potential future directions in this field.
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CHAPTER 2

Social Tie Analysis

Social ties, also referred to as interpersonal ties, are defined as information-carrying connections
between people. In general, from a sociological perspective, social ties can be categorized into
three varieties: strong, weak, or absent." From the computational perspective, related research
on social tie analysis includes: predicting missing links, inferring social ties, and predicting reci-

procity.

2.1 OVERVIEW

In social networks, the basis for social tie analysis is predicting missing links. Liben-Nowell and
Kleinberg [96] systematically investigated the problem of inferring new links among users given
a snapshot of a social network. They introduced several unsupervised approaches to deal with this
problem based on “proximity” of nodes in a network—or the principle of homophily [88] (“birds
of a feather flock together” [105]). Besides predicting new links, another important topic in social
tie analysis is to automatically recognize the semantics associated with each social relationship,
referred to as inferring social ties. In online social networks, most relationships are not meaningfully
labeled (e.g., “colleague” and “intimate friends”), simply because users do not want to label them
in order to protect privacy. Statistics show that only 16% of mobile phone users in Europe have
created custom contact groups [58, 123] and less than 23% connections on LinkedIn have been
labeled. Awareness of the types of social relationships can benefit many applications. For example,
if we could have extracted friendships between users from the mobile communication network, we
can leverage the friendships for a “word-of-mouth” promotion of a new product [79]. Figure 2.1
shows the major research topics on social tie analysis. In addition to predicting missing links and
inferring social ties, another important topic to understand is how a social reciprocal (two-way)
relationship has been developed from a parasocial (one-way) relationship, and why. The problem
is called reciprocity. In this chapter, we will focus on introducing the first two problems: predicting
missing links and inferring social ties. For predicting reciprocity, the interested reader should refer
to Hopcroft et al. [70] and Lou et al. [101].

To begin with, let us define the general input of the problems we will address in this chapter.
Basically, we are given a social network G = (V, E), where V is a set of |V'| = N users and E C
V x Visasetof |E| = M relationships between users. Let ¢;; € E denote a directed relationship
from user v; to user v;. In a undirected network, we have e;; = ¢;;. In this case, we use either e;;
or ej; to represent the relationship between v; and user v;.

'http://en.wikipedia.org/wiki/Interpersonal_ties
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Predicting missing links
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Inferring social ties

Predicting reciprocity

Lady Gaga

Figure 2.1: Research on social tie analysis.

2.2 PREDICTING MISSING LINKS

In this section, we conducted a survey of existing approaches for link prediction in social networks.
As shown in Table 2.1, we classify those approaches into several groups.

Similarity Metric-Based Methods. Similarity metric-based methods compute a similarity score
between a pair of nodes (users) and predict the missing links based on the obtained similarity
scores—a higher similarity score results in a higher probability to create a link.

Liben-Nowell and Kleinberg [96] proposed a similarity metric-based method to solve the
link prediction problem. Given a social network, they first computed the similarity between a
pair of vertices by various graph-based similarity metrics and then used the similarity scores to
predict the missing link between two vertices. Kashima et al. presented a parameterized proba-
bilistic model of network evolution based on the topological features of network structures for
link prediction [74]. Schifanella et al. [127] showed semantic similarity measures among users
based solely on their social media annotation metadata are predictive of social links. Richard et al.
proposed finding the missing links using the dynamics of the graph through a set of topological
features, such as the degrees of the vertices; for additional information see [120]. Clauset et al.
[29] showed that knowledge of hierarchical structure can be used to predict missing connections
in partly known networks with high accuracy. In [29] they presented the computationally less
expensive features based on social vector clocks to solve the link prediction problem.
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Table 2.1: Survey of major methodologies for missing link prediction

Category Method Description

LPP [96] Similarity Survey

PPM [74] Topological Features

FIF [127] Features for Folks in Folksonomies
GFT [120] Graph Feature Tracking
HSLP [29] Hierarchical Structure-based Similarity
SVC [90] Social Vector Clocks

Similarity Metrics VCP [97] Vertex Collocation Profile
DLP [35] Local and Global Properties

LP-MPSN [156]

Features for Mobile Phone Social Network

LP-LSN [126]

Features for Location-based Social Network

CTLP [115] Dimension Reduction to Latent Features
NLEM [177] Latent Feature Model
LP-PS [117] Popularity vs. Similarity
LP-SSN [98] Similarity-based Method for Sparse Net-
work
Matrix Factorization SGT [86] Spectral Graph Transformations
NMD [85] Nondiagonal Matrix Decompositions
LPGM [154] Local Probabilistic Graphical Model
SBM [61] Stochastic Block Models
TPFG [155] Time-Constrained  Probabilistic ~ Factor
Graph Model
CSLP [91] Bootstrap Probabilistic Graph Model
Graphical Models | LINKREC [172] | Random Walk
SRW [6] Supervised Random Walk
DBN [103] Dynamic Bayesian Network
MTLM [178] Mixed-Topic Link Models
LFPM [176] Latent Friendship Propagation Model
PFGM [164] Factor Graph Model
DLEFPM [67] Dynamic Latent Feature Propagation Model

13

Lichtenwalter et al.[97] introduced the concept of a vertex collocation profile (VCP) for the
purpose of topological link analysis and prediction. VCPs provide nearly complete information
about the surrounding local structure of embedded vertex pairs. De et al. combined the global
properties (graph conductance, hitting or commute times, Katz score), local properties (Adamic-
Adar or node feature vectors), and the link densities at the intermediate level of communities
into a discriminative link predictor [35]. Wang et al. [156] and Scellato et al. [126] presented




14 2. SOCIAL TIE ANALYSIS

different features for link prediction in mobile phone social networks and location-based social
networks, respectively. Oyama et al. proposed a dimension reduction approach to cross-temporal
link prediction by jointly learning a set of feature projection matrices from the training data [115].
Zhu [177] presented a max-margin nonparametric latent feature model to discover discriminative
latent features for link prediction and to automatically infer the unknown latent social dimension.

Papadopoulos et al. showed that popularity is just one dimension of attractiveness; another
dimension is similarity. They developed a framework in which new connections optimize certain
trade-offs between popularity and similarity, which predicts the probability of new links with high
precision in the technological, biological, and social networks [117]. Lichtenwalter et al. [98] ex-
plored many factors significant in influencing and guiding classification and presented an effective
flow-based predicting algorithm which offers formal bounds on imbalance in sparse network link
prediction.

Matrix Factorization-Based Methods. Matrix factorization-based methods model the social
network as a matrix and solve the problem of link prediction using the matrix decompositions
from linear algebra or graph theories.

Kunegis and Lommatzsch [86] presented a unified framework for learning link predic-
tion and edge weight prediction functions in large networks, based on the transformation of a
graph’s algebraic spectrum. Their approach generalizes several graph kernels and dimensionality
reduction methods and provides a method to estimate the parameters efficiently. Kunegis and
Fliege [85] also presented a method for trust prediction based on nondiagonal decompositions of
the asymmetric adjacency matrix of a directed network. They used a nondiagonal decomposition
into directed components (DEDICOM) to learn the coefficients of a matrix polynomial of the
network’s adjacency matrix. Their method can be used to compute better low-rank approximations
to a polynomial of a network’s adjacency matrix than using the singular value decomposition.

Probabilistic Graph Model-Based Methods. The probabilistic graph model based methods
model the joint-probability among the nodes by Bayesian graphical models, which are usually
complex to mine the latent relations inside the network.

Wang et al. [154] introduced a local probabilistic graphical model method that can scale
to large graphs to estimate the joint co-occurrence probability of two nodes. Guimera and Sales
Pardo [61] presented a general mathematical and computational framework to deal with the
problem of data reliability in complex networks based on stochastic block models, by which both
missing and spurious interactions could be reliably identified in noisy network observations.

Wang et al. proposed a time-constrained probabilistic factor graph model (TPFG), which
takes a research publication network as input and models the advisor-advisee relationship mining
problem using a jointly likelihood objective function [155]. Leroy et al. [91] proposed a two-
phase method based on the bootstrap probabilistic graph. The first phase generates an implicit
social network under the form of a probabilistic graph. The second phase applies probabilistic
graph-based measures to produce the final prediction. Yin et al. [172] presented estimating the
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link relevance using a random walk algorithm on an augmented social graph with both attribute
and structure information. Backstrom et al. developed an algorithm based on supervised random
walks that naturally combines the information from the network structure with node- and edge-
level attributes [6].

Mathur et al. [103] utilized a dynamic Bayesian network to detect interaction links in a
collaborating group using manually annotated data. Zhu et al. combined classic ideas in topic
modeling with a variant of the mixed-membership block model, and proposed the mixed-topic
link models for unsupervised topic classification and link prediction [178]. Zhang et al. modeled
link formation as results of individuals’ friend-making behaviors combined with personal inter-
ests [176]. They proposed the Latent Friendship Propagation Network (LFPN) to depict the
evolution progress of one’s egocentric network, and modeled individuals’ social behaviors using
the Latent Friendship Propagation Model (LFPM). In [164], Wu et al. proposed an interac-
tive learning framework to formulate the problem of recommending patent partners into a factor
graph model. The framework involves three phases: candidate generation, candidate refinement,
and interactive learning method to efficiently update the existing recommendation model based
on inventors’ feedback. Heaukulani et al. proposed a latent feature propagation model for link
prediction by capturing how observed social relationships from the past affect future unobserved
structure in the network [67].

In the following section, we first introduce some different kinds of approaches for missing
link prediction.

2.2.1 SIMILARITY METRICS

We first introduce different similarity metrics for link prediction, including the node neighbor-
hood based metrics, path-based metrics, node and edge attributes-based metrics, and latent met-
rics. Then we introduce the primary challenge for link prediction as classification. Most of the
similarity features have been surveyed in Al Hasan and Zaki [64].

Node Neighborhood-based Metrics

Common Neighbors. For two users (nodes), u and v, the number of their common neighbors is
denoted as |I"(1) N I'(v)|, where T'(-) represents the set of neighbors of a node. The idea of using
the size of common neighbors is just an attestation to the network transitivity property. In other
words, if user u and user v are connected by many common nodes, then it is very likely that user
u and v are (or will be) connected.

Jaccard Coefhicient. The common neighbors metric will bias toward high-degree users. Jaccard
Coefhicient is a metric to address this problem by normalizing the number of common neighbors:

[T'(w) N T'(v)]

TG UT ()] @1

Jaccard — coefficient(u, v) =
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Conceptually, it defines the probability that a common neighbor of a pair of nodes u and
v would be selected if the selection is made randomly from the union of the neighbor-sets of u
and v. Thus, for a high number of common neighbors, the score would be higher.

Adamic-Adar. Adamic and Adar [1] proposed a new score as a metric of similarity between two
nodes. It is defined as below:

Adamic — Adar(u,v) = (2.2)

> iogh

— log freq(z)
where z denotes any feature shared by u and v, and freq(z) denotes the frequency of feature
occurring between u and v. When considering common neighbors as features, then the metric
can be re-written as:

1
Adamic — Adar(u,v) = Z _ (2.3)
zeT'(u)NT (v) IOg |F(Z)|

Based on the past results of existing literature on link prediction, Adamic-Adar usually
works better than the previous two metrics.

Path-Based Metrics

Shortest Path Distance. The basic idea of this method is that if two nodes’ distance (by shortest
path) in a social network is short, then it is likely that a link would be created between the two
nodes. However, according to the theory of six degrees of separation, everyone and everything is
six or fewer steps away [107]. Thus, this feature sometimes does not work that well.

Katz. Leo Katz proposed this metric as an extension of the shortest path distance. It works much
better for link prediction. It directly sums over all the paths that exist between a pair of nodes u
and v. To penalize the contribution of longer paths in the similarity computation it exponentially
damps the contribution of a path by a factor of B, where [ is the path length. The exact equation
to compute the Katz score is as below:

o0
Katz(u,v) = Y _ By - |paths{l),|. (2.4)
=1

where paths(l) is a set of paths of length / from u to v. The parameter (< 1) can be used to
regularize this feature. A small f indicates that we only consider shorter paths. In an extreme
case, this metric would behave like node neighborhood-based metrics. One problem with this
feature is that it is computationally expensive. It can be shown that the Katz score between all
the pairs of nodes can be computed by finding (I — BA)™! — I, where A is the adjacency matrix
and [ is an identity matrix of proper size. This task has roughly cubic complexity which could be
infeasible for large social networks.
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Hitting Time. The concept of hitting time comes from random walks on a graph. For two nodes,
u and v in a graph, the hitting time, H,,, denotes the expected number of steps required for a
random walk starting at u to reach v. Shorter hitting time denotes that the nodes are similar to
each other, so they have a higher chance of linking in the future. Since this metric is not symmetric,
for undirected graphs the commute time, Cy,,, = Hy,y + Hy, can be used. The benefit of this
metric is that it is easy to compute by performing some trial random walks. On the downside, its
value can have high variance; hence, performance of link prediction by this metric could be not
ideal. For instance, the hitting time between u and v can be affected by a node w, which is far
away from u and v; for instance, if w has high stationary probability, then it could be hard for a
random walk to escape from the neighborhood of w. To protect against this problem we can use
random walks with restart, where we periodically reset the random walk by returning to u with
a fixed probability o in each step. Due to the scale-free nature of a social network some of the
nodes may have very high stationary probability () in a random walk; to safeguard against it, the
hitting time can be normalized by multiplying it with the stationary probability of the respective
node, as shown below:

Normalized — Hitting — Time(u,v) = Hy,yp - 7wy + Hyy - 7y. (2.5)

Rooted Pagerank. Pagerank value can also be used as a metric for link prediction. However, since
Pagerank itself quantifies the importance of a single vertex, it requires to be modified so that it
can estimate a similarity between a pair of vertices u and v. The original definition of Pagerank
denotes the importance of a vertex under two assumptions: for some fixed probability «, a surfer
at a web-page jumps to a random web-page with probability o and follows a linked hyperlink
with probability 1 — «. Under this random walk, the importance of a web-page v is the expected
sum of the importance of all the web-pages u that link to v. In random walk terminology, one can
replace the term importance by the term stationary distribution. For link prediction, the random
walk assumption of the original Pagerank can be altered as below: similarity score between two
nodes 1 and v can be measured as the stationary probability of v in a random walk that returns
to u with probability 1 — & in each step, moving to a random neighbor with probability «. This
metric is asymmetric and can be made symmetric by summing with the counterpart where the role
of u and v are reversed, which is also named as rooted Pagerank. The rooted Pagerank between
all node pairs (represented as R PR) can be derived as follows. Let D be a diagonal degree matrix
with D[i,i] = }_; A[i, j]. Let, N = D~! A4 be the adjacency matrix with row sums normalized
to 1. Then,

RPR=(1—a)-(I —aN)™ (2.6)
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Metrics Based on Node and Edge Attributes

Vertex and edge attributes play an important role for link prediction. Note that in a social net-
work the links are directly motivated by the utility of the individual representing the nodes and
the utility is a function of node and edge attributes. Many studies showed that node or edge at-
tributes as proximity features can significantly increase the performance of link prediction tasks.
For example, Hasan et al. [64] showed that, for link prediction in a co-authorship social network,
attributes such as the degree of overlap among the research keywords used by a pair of authors is
the top ranked attribute for some datasets. Here the node attribute is the research keyword set
and the assumption is that a pair of authors are close (in the sense of a social network) to each
other, if their research work evolves around a larger set of common keywords. Similarly, the Katz
metric computed the similarity between two web-pages by the degree to which they have a larger
set of common words where the words in the web-page are the vertex attributes. The advantage of
such a metric set is that it is generally cheap to compute. On the down-side, the metrics are very
tightly tied with the domain, so, it requires good domain knowledge to identify them. Below,
we will provide a generic approach to show how these features can be incorporated into a link
prediction task.

Node Feature Aggregation. Once we identify an attribute a of a node in a social network, we
need to devise some meaningful aggregation function f. To compute the similarity value between
nodes u and v, f accepts the corresponding attribute values of these nodes to produce a similarity
score. The choice of function entirely depends on the type of the attribute. In the following we
show two examples where we aggregated some local metric of a node.

* Preferential Attachment Score. In general, a node connects to other nodes in the network
based on the probability of their degree. So, if we consider the neighborhood size as feature
value, then multiplication can be an aggregation function, which is named as preferential
attachment score:

Preferential — Attachment — Score(u,v) = T'(u) - T'(v). (2.7)

* Clustering Coefficient Score. Clustering coeflicient of a vertex u is denoted as below:

3 x #triangles adjacent to v

Clustering — Coefficient(u) = (2.8)

#possible triples adjacent to v’

To compute a score for link prediction between the vertex u and v, one can sum or multiply
the clustering coeflicient score of u and v.
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Generic SimRank. Jeh and Widom suggested a generic metric called SimRank which recursively
captures that “two objects are similar if they are similar to two similar objects.” The SimRank score
is the fixed point of the following recursive equation:

SimRank(u. v) : if u=v o)
imRank(u,v) = Y ael ) Lbel (v) SimRank(a,b) o ‘
v [T@)[-[T )] otherwise

Latent Feature-based Metrics

In many link prediction problems, while the feature vectors representing data objects are high-
dimensional, the number of latent features actually eftective for predicting links is assumed to
be relatively small. Therefore, the accuracy of link prediction can be improved by identifying
and working in a low-dimensional latent feature space. In supervised linear dimension-reduction
methods, a linear projection W from the original D-dimensional feature space to a d(< D)-
dimensional latent feature space is learned from training data consisting of data objects known to
have or not to have links between them. The learning process secks the linear projection W that
makes the distance in the mapped space,

['Wx — Wy, (2.10)

as small as possible, where x and y are two nodes known to have a link between them. After the
learning process is completed, two data objects with an unknown link status are mapped to the
latent space by using W. If the mapped images of the two data objects are sufhiciently close to
each other, they are considered to have a link between them.

Assume that we have N training data objects, X1, ..., Xy, and that each data object x; is
represented in a D dimensional feature vector [115]. One can use locality preserving projections
to find the optimal linear projection matrix W* by solving the following optimization problem:

W — argn%iVnZAi,-ani - Wy, 3. (2.11)
L]

where | - [|2 is the Euclidean norm (2-norm), and A = {4;;} is the adjacency matrix defined by

(2.12)

A — 1 if x; and X have a link
Y 0 otherwise.

Challenge for Link Prediction as Classification

'The main challenge in similarity metric-based supervised link prediction is extreme class skew-
ness. The number of possible links is quadratic in the number of vertices in a social network,
however the number of actual links (the edges in the graph) added to the graph is only a tiny




20 2. SOCIAL TIE ANALYSIS

fraction of this number. This results in large class skewness, causing training and inference to
become difficult tasks [64].

'The problem of class skewness in supervised learning is well known in machine learning.
'The poor performance of a learning algorithm in this case results from both the variance in the
models estimates and the imbalance in the class distribution. Even if a low proportion of negative
instances have the predictor value similar to the positive instances, the model will end up with a
large raw number of false positives.

To cope with class skew, existing research suggests several different approaches. These
methods include the altering of the training sample by up-sampling or down-sampling, alter-
ing the learning method by making the process active or cost-sensitive, and also more generally
by treating the classifier score with different thresholds. In general, learning from imbalanced
datasets is a very important research consideration and Weiss [161] has a good discussion of var-
ious techniques to solve this.

2.2.2 MATRIX FACTORIZATION

We briefly introduce two series of matrix factorization based methods, which are to predict undi-
rected and directed links, respectively.

Predicting Undirected Links using Spectral Graph Transformations
Approaching the problem of link prediction algebraically, we can consider a graph adjacency
matrix A, and look for a function F(A) returning a matrix of the same size whose entries can
be used for prediction. Kunegis et al.’s approach consists of computing a matrix decomposition
A = UDVT and considering functions of the form F(A) = UF(D)VT, where F(D) applies a
function on reals to each element of the graph spectrum D separately [86]. The authors show that
a certain number of common links and edge weight prediction algorithms can be mapped to this
form. As a result, the method provides a mechanism for estimating any parameters of such link
prediction algorithms. Analogously, they also consider a network’s Laplacian matrix as the basis
for link prediction.

Let A € {0, 1}"*" be the adjacency matrix of a simple, undirected, unweighted, and con-
nected graph on n nodes, and F(A) a function that maps A to a matrix of the same dimension.

'The following subsections describe link prediction functions F(A) that result in matrices
of the same dimension as A and whose entries can be used for link prediction. Most of these
methods result in a positive-semidefinite matrix, and can be qualified as graph kernels. The letter
o will be used to denote parameters of these functions.

Functions of the Adjacency Matrix. Let D € R™*” be the diagonal degree matrix with
D;; = Zj A;j. Then A = D-1/2AD"'/2 is the normalized adjacency matrix. Transformations of
the adjacency matrices A and A give rise to the exponential and von Neumann graph kernels:

FEXP(A) = exp(aA) (213)
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Fexp(A) = exp(aA) (2.14)
Fyeu(A) = (I —aA)™! (2.15)
Fep(A) = 1 —a )7, (2.16)

where a < 1is a positive parameter. The constraint o < 1 is required by the von Neumann kernels.

Laplacian Kernels. L = D-A is the combinatorial Laplacian of the graph, and £ =
I-A =D12LD"2 is the normalized Laplacian. The Laplacian matrices are singular and
positive-semidefinite. Their Moore-Penrose pseudoinverse is called the commute time or resis-
tance distance kernel. The combinatorial Laplacian matrix is also known as the Kirchhoff matrix,
due to its connection to electrical resistance networks:

Feou(L) =L* (2.17)

Feou(L) = L. (2.18)

By regularization, the regularized Laplacian kernels are:
Feour(L) = (I + L) ™! (2.19)

FCOMR(ﬁ) = (I + Olﬁ)_l. (220)

As a special case, the non-normalized regularized Laplacian kernel is called the random
forest kernel for o = 1. The normalized regularized Laplacian is equivalent to the normalized
von Neumann kernel by noting that (1 + «£)-1 = (1 + «)(I-a.A)-1.

The heat diffusion kernel is defined as

Fyear(L) = exp(—aL) (2.21)

FHEAT(/-:) = CXp(—O(ﬁ). (222)

'The normalized heat diffusion kernel is equivalent to the normalized exponential kernel:
exp(-aL) = e exp(a.A).
Rank Reduction. Using the eigenvalue decomposition A = UA U7, a rank-k approxima-
tion of A, L, A, and L is given by a truncation leaving only k eigenvalues and eigenvectors in A
and U:
Fay(A) = Ugy AUy (2.23)

For A and A, the biggest eigenvalues are used while the smallest eigenvalues are used for
the Laplacian matrices. F(x)(A) can be used for prediction itself, or serve as the basis for any of
the graph kernels. In practice, only rank-reduced versions of graph kernels can be computed for
large networks.

Path Counting. One can exploit the fact that powers A” of the adjacency matrix of an
unweighted graph contain the number of paths of length n connecting all node pairs. On the
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basis that nodes connected by many paths should be considered nearer to each other than nodes
connected by few paths, a weighted mean of powers of A can be computed as a link prediction
function

d
Fp(A) =) oAl (2.24)
i=0

'The result is a matrix polynomial of degree d. The coeflicients «; should be decreasing to
reflect the assumption that links are more likely to arise between nodes that are connected by
short paths than nodes connected by long paths. Thus, such a function takes both path lengths
and path counts into account.

The exponential and von Neumann kernels can be expressed as infinite series of matrix
powers:

exp(—aA) = O,‘—'Al (2.25)
ico !

I—aA)™ =) oA (2.26)
i=0

Generalization. All these link prediction methods can be written as F = F(X), where X
is one of {A, A, L, L} and F is either a matrix polynomial, matrix (pseudo) inversion, the matrix
exponential or a function derived piecewise linearly from one of these. Such functions F have the
property that for a symmetric matrix A = UAUT, they can be written as F(A) = UF(A)UT,
where F(A) applies the corresponding function on reals to each eigenvalue separately. In other
words, these link prediction methods result in prediction matrices that are simultaneously diag-
onalizable with the known adjacency matrix. Such functions are called spectral transformations
and can be written as F € S.

Given a graph G, the target is to find a spectral transformation F that performs well at link
prediction for this particular graph. To that end, the edge set of G is devided into a training set
and a test set, and then the purpose is to look for an F that maps the training set to the test set
with minimal error.

Formally, let A and B be the adjacency matrices of the training and test set, respectively. A
is the source matrix and B is the target matrix. The solution to the following optimization problem
gives the optimal spectral transformation for the task of predicting the edges in the test set.

Problem2.1 Let A and B be two adjacency matrices over the same vertex set. A spectral trans-
formation that maps A and B with minimal error is given by the solution to

min [F(A)=B|r st FeS (2.27)

where || - || f denotes the Frobenius norm.
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Table 2.2: Summary of network datasets used in the experiments [86]

Name  #Vertices  #Edges Weights k Description
DBLP 12,563 49,779 {1} 126 Citation graph
Hep-th 27,766 352,807 {1} 54 Citation graph

Advogato 7,385 57,627  {0.6,0.8,1.0} 192 Trust network
Slashdot 71,523 488,440 {1,+1} 24 Friend/foe network

Epinions 131,828 841,372 {1,+1} 14 Trust/distrust network
WWW 325,729 1,497,135 {1} 49 Hyperlink graph
WT10G 1,601,787 8,063,026 {13 49 Hyperlink graph

Problem 2.1 can be solved by computing the eigenvalue decomposition A = UAUT and
using the fact that the Frobenius norm is invariant under multiplication by an orthogonal matrix

|F(A)—B|r = [UF(A)UT —B|r = |F(A) —U'BU| f. (2.28)

'The Frobenius norm in (2.28) can be decomposed into the sum of squares of off-diagonal
entries of F(A) — UTBU, which is independent of F, and into the sum of squares of its diagonal
entries. This leads to the following least-squares problem equivalent to Problem 2.1.

Problem2.2 IfUAUT is the eigenvalue decomposition of A, then the solution to Problem 2.1
is given by F(A);; = f(A;;), where f(x) is the solution to the following minimization problem.

min ,Z(f(A”) ~UlBU,)% (2:29)

'This problem is a one-dimensional least-squares curve fitting problem of size n. Since each
function F(A) corresponds to a function f(x), one can choose a link prediction function F and
learn its parameters by inspecting the corresponding curve fitting problem.

Results. The inspected network datasets are summarized in Table 2.2. DBLP? is a citation graph.
Hep-th is the citation graph of Arxiv’s high energy physics/theory section. Advogato is a trust
network with three levels of trust. Slashdot is a social network where users tag each other as
friends and foes. Epinions is an opinion site where users can agree or disagree with each other.
WWW and WT10G are hyperlink network datasets extracted from a subset of the World Wide
Web.

As a measure of performance for the link prediction methods, the Pearson correlation coef-
ficient between the predicted and known ratings in the test set is computed. The correlation rep-
resents a trade-oft between the root mean squared error to minimize and more dataset-dependent
measures such as precision and recall, which cannot be applied to all datasets. The results of the
evaluation are shown in Table 2.3.

*http://dblp.uni-trier.de/
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2.3 INFERRING SOCIAL TIES

'The objective of inferring social ties is to effectively infer the type of social relationships between
two users. More precisely, we first define the output of our problem, namely relationship semantics.

Specifically, given users’ behavior history and interactions between users, can we estimate
how likely they are to be family members or colleagues? One challenge is how to design a unified
model so that it can be easily applied to different domains (or different networks)? There exist a
few related studies. For example, Diehl et al. [38] tried to identify the relationships by learning a
ranking function. Wang et al. [155] proposed an unsupervised algorithm for mining the advisor-
advisee relationships from the publication network. However, Dieh et al. [38] only considers the
communication archive, while Wang et al. [155] is a domain-specific unsupervised algorithm.
Both algorithms are not easy to extend to other domains.

Another challenge is that online social networks are becoming more and more complex
and dynamic. Even the best performance achieved by the state-of-the-art algorithms is still under
90%. The result is unsatisfactory and invariably contains a number of errors. A promising solution
is to design an interactive interface to allow users to provide feedbacks on the inferring results.
However, we should be aware that the interactive process might be tedious, error-prone, and time-
consuming. For example, for inferring advisor-advisee relationships from the co-author network,
an author may have hundreds of co-authors.’ The user may soon become tired, if she/he is asked to
carefully go through all her/his relationships to validate the inferred results. Ideally, an algorithm
should be able to actively select only a few potentially wrong relationships to query the user,
instead of passively waiting for user feedbacks. The problem is referred to as actively learning to
infer social ties.

To illustrate the problem, Figure 2.2 gives an example of actively inferred ties in a mobile
communication network. The left figure gives the input of our problem: a mobile social network,
which consists of users, calls made and messages sent between users, and users’ attribute infor-
mation such as location. The objective is to classify the type of social relationships in the network.
'The middle figure shows the result of the proposed PLP-FGM model, a semi-supervised learning
model. The blue solid lines stand for friend relationship between users and the green dash lines
indicate colleagues. The probability associated with each relationship represents how confident
the learning model is in the inferred type of the relationship. Further, an active learning algo-
rithm selects a uncertain relationship (associated with a question mark) to query the user. Once
the user gives the answer, the learning model propagates the correction in the social network and
turther corrects other relationships.

Therefore, the fundamental problem is how to design a flexible model for effectively and
efficiently learning to infer social ties in different networks. This problem is non-trivial and poses
a set of unique challenges. First, what are the underlying factors that form a specific type of social
relationship? Second, the input social network is partially labeled. We may have some labeled
relationships, but most of the relationships are unknown. To learn a high-quality predictive model,

3An example can be found on http://arnetminer.org/person/jiawei-han-745329.html
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Figure 2.2: An example of learning to infer social ties in a mobile communication network. The left
figure is the input of our problem and the middle figure shows the output (the inferred relationships)
of the problem. The relationship associated with the question mark indicates a relationship selected by
an active learning algorithm to query the user. The right figure is the improved result with the user’s
feedback (via active learning).

we should not only consider the knowledge provided by the labeled relationships, but also leverage
the unlabeled network information. Third, how does one make optimal use of user interaction?
'The selection should consider both the uncertainty and the network structure information. Finally,
real social networks are getting bigger with thousands, even millions, of nodes. It is important to
develop a method that can scale well to real large networks.

In the following, we formally formulate the problem of inferring a social relationship in
large networks, and propose a partially labeled pairwise factor graph model (PLP-FGM). To
make optimal use of user interactions, two strategies—an influence maximization-based strat-
egy and a belief maximization-based strategy—were devised to actively select potentially wrong
but most useful relationships to query the user. We further extend the model by incorporating
social theories into the semi-supervised learning framework. In this way, the model is able to
support transferring supervised information from a source network to help infer social ties in a
heterogeneous target network.
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2.3.1 PROBLEM FORMULATION

The input is still a social network G = (V, E). The output of the problem here are relationship
semantics.

Definition 2.3  Relationship semantics: Relationship semantics is a triple (e;;, rij, pi;), where
e;j € E isasocial relationship; r;; € )V is a label associated with the relationship; ) is the set of all
the labels; p;; is the probability (confidence) obtained by an algorithm for inferring relationship

type.

Social relationships might be undirected in some networks (e.g., the friendship discovered
from the mobile communication network) or directed in other networks (e.g., the advisor-advisee
relationship in the publication network). To be consistent, we define all social relationships as
directed relationships. In addition, relationships may be static (e.g., the family-member relation-
ship) or dynamic over time (e.g., colleague relationship). In this book, we focus on static relation-
ships, and leave the dynamic case to our future work.

To infer relationship semantics, we could consider different factors such as user-specific
information, link-specific information, and global constraints (cf. Table 2.6 for examples). For
example, to discover advisor-advisee relationships from a publication network, we can consider
how many papers were co-authored by two authors; how many papers in total an author has pub-
lished; and when the first paper was published by each author. Besides, there may exist some
labeled relationships. Formally, we can define the input of our problem, a partially labeled net-
work.

Definition 2.4  Partially labeled network: A partially labeled network is an augmented social
network denoted as G = (V, EL, EV, RL, W), where EL is a set of labeled relationships and
EU is a set of unlabeled relationships with EX U EV = E; RE is a set of labels corresponding
to the relationships in £Z; W is an attribute matrix associated with users in V where each row
corresponds to a user, each column an attribute, and an element w;; the value of the j”* attribute
of user v;.

Based on the above concepts, we can define the problem of inferring social relationships.
Given a partially labeled network, the goal is to detect the types (labels) of all unknown relation-
ships in the network. More precisely, we have the following.

Problem 2.5  Social relationship mining. Given a partially labeled network G =
(V,EL, EY,RL W), the objective is to learn a predictive function

f:G=V,EE EY, RE,W) > R.
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Another important question is how we can learn the mapping function f effectively. In
many situations, labeled data is limited and expensive. The problem is, can we design a strategy
to actively learn the model with minimal labeling cost? Formally, we have the following.

Problem 2.6  Active relationship mining. Given a partially labeled network G =
(V,EL,EV RLW), and a labeling budget b (number of user interactions). Our objec-
tive is to select a subset of unknown relationships 4 C EY within the constraint of b to label, so
that the performance of predictive function f can be maximally improved.

Therefore, the problem is how to find a function f that can leverage both the labeled
relationships and the unlabeled relationships to infer the unknown relationships.

2.3.2 UNSUPERVISED LEARNING TO INFER SOCIAL TIES

Acquiring sufficient labeled relationships is always expensive. Let us begin with the unsupervised
learning method for inferring the type of social relationships without labeled data. Such a method
is usually task-oriented. For example, Wang et al. [155] proposed a two-stage framework, referred
to as TPFG, for inferring advisor-advisee relationships in the co-author network. The main idea is
to leverage a time-constrained probabilistic factor graph model to decompose the joint probability
of the unknown advisor of every author. The time-related information associated to the hidden
social role is captured via factor functions, which form the basic components of the factor graph
model. By maximizing the joint probability of the factor graph one can infer the relationship and
compute a ranking score for each relationship on the candidate graph.

More specifically, at the first stage of the framework, common sense is defined as recogniz-
ing interesting semantic relationships. Here the authors try to make a few general assumptions
based on common knowledge about advisor-advisee relationships.

¢ At each time ¢ during the publication history of an author x, x is either being advised or
not being advised. Once x starts to advise another author, it will not be advised again.

* Another assumption indicates that, for a given pair of advisor and advisee, the advisor always
has a longer publication history than the advisee.

Based on the two assumptions, the framework processes the task in the following two
stages.

Stage 1: Preprocessing. 'The purpose of preprocessing is to generate the candidate graph H' and
reduce the search space while keeping the real advisor not excluded from the candidate pool in
most cases. First, one needs to generate according to the co-author information a homogeneous
author network G’ by processing the papers in the network one by one. For each paper p;, we can
construct an edge between every pair of its authors.

'Then a filtering process is performed to remove unlikely relations of advisor-advisee. For
each edge e;; on G', a; and a; has collaboration. To decide whether a; is a;’s potential advi-

sor, the following conditions are checked. First, the second assumption is checked. Only if g;
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started to publish earlier than a;, is the possibility considered. Second, some heuristic rules are
applied, which are based on the prior intuitive knowledge about advisor-advisee relations. For
more detailed definitions of those rules, please refer to Wang et al. [155].

Stage 2: The factor graph model. From the candidate graph H’ we know the potential advisors of
each author and the likelihood based on local information. By modeling the network as a whole,
we can incorporate both structural information and temporal constraint and better analyze the
relationship among individual links.

By learning the factor graph model, we can find a configuration of the latent variables
for each node in the candidate graph H’ that maximize the objective function. For learning the
model, one can consider the sum-product and the junction tree algorithms [155].

Results. To evaluate the unsupervised method, we tried to collect an academic citation database
(ArnetMiner [148]*), and the labeled advisor-advisee relationships from several online resources,
such as the Mathematics Genealogy project and Al Genealogy project. The database consists of
654,628 authors and 1,076,946 publications from 1970-2008. By applying the proposed TPFG
model to the publication dataset, we could achieve a performance of 81-85% (in terms of F1-
Measure).

2.3.3 SUPERVISED LEARNING TO INFER SOCIAL TIES

We now introduce how to leverage supervised learning for inferring social ties. Basically, we have
three basic intuitions. First, the user-specific or link-specific attributes will contain implicit infor-
mation about the relationships. For example, two users who make a number of calls in working
hours might be colleagues, while two users who frequently contact with each other in the evening
are more likely to be family members or intimate friends. Second, relationships among different
users may have a correlation. For example, in the mobile network, if user v; makes a call to user
v; immediately after calling user vg, then user v; may have a similar relationship (family member
or colleague) with user v; and user vg. Third, we also need to consider some global constraints
such as common knowledge or user-specific constraints.

Based on the intuitions above, we propose a Partially-Labeled Pairwise Factor Graph
Model (PLP-FGM). This allows us to take all of the factors mentioned above into account to
better infer the social relationships. Typically, there are two ways to model the social tie inferring
problem. The first way is to model each user as a node and for each node to estimate the probability
distribution of different relationships. The resultant graphical model thus consists of N variable
nodes. Each node contains a d x |)/| matrix to represent the probability distributions of different
relationships between the user and her/his neighbors, where d is the number of neighbors of the
node. This model is intuitive, but it suffers from some limitations. For example, it is difficult to
model the correlations between two relationships, and its computational complexity is high. An
alternative way is to model each relationship as a node in the graphical model and the relationship

*http://aminer.org
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relationships

Figure 2.3: Graphical representation of the PLP-FGM model

mining task becomes how to predict the semantic label for each relationship node in the model.
'This model contains M nodes (2M when the input social network is undirected). This model is
able to incorporate different correlations between relationships such as the above intuitions.

We propose a Partially-Labeled Pairwise Factor Graph Model (PLP-FGM). Figure 2.3
shows the graphical representation of the PLP-FGM. Each relationship (v;,, vi,) or e;,;, in the
partially labeled network G is mapped to a relationship node r; in PLP-FGM. We denote the
set of relationship nodes as ¥ = {y1, y2. ..., ym}. The relationships in G are partially labeled,
thus all nodes in PLP-FGM can be divided into two subsets ¥~ and Y'Y, corresponding to the
labeled and unlabeled relationships, respectively. For each relationship node y; = (vj,, vi,. Fi;i5),
we combine the attributes {W;, , Wi, } into a relationship attribute vector X; .

Now we explain the PLP-FGM in detail. The relationships in the input are modeled by
relationship nodes in PLP-FGM. Corresponding to the three intuitions, we define the following
three factors.

o Attribute factor: f(y;,X;) represents the posterior probability of the relationship y; given
the attribute vector X;.

* Correlation factor: g(yi, G(y;)) denotes the correlation between the relationships, where
G (i) is the set of correlated relationships to y;.

* Constraint factor: h(y;, H(y;)) reflects the constraints between relationships, where H(y;)
is the set of relationships constrained on y;.

Given a partially labeled network G = (V, E L EY,RL, W), we can define the joint dis-
tribution over Y as



2.3. INFERRING SOCIALTIES 31
p(Y1G) = [ | f i x0)g (i Gri)h(yi, H(yi)). (2.30)

The three factors can be instantiated in different ways. In this book, we use exponential-
linear functions. In particular, we define the attribute factor as

fix;i) = ZLA exp{AT ®(y;i,x:)}, (2.31)

where A is a weighting vector and @ is a vector of feature functions. Similarly, we define the
correlation factor and constraint factor as

1
g G = ——expl Y gy} (2.32)
* y;€G(y)
1
h(yi Ho) = ——ept 3, BTh(w )}, (233)
b yj€H (i)

where g and h can be defined as a vector of indicator functions. This feature definition was of-
ten used in a graphical models such as Markov Random Fields [63] or Conditional Random
Fields [87].

Model Learning Learning PLP-FGM is to estimate a parameter configuration § = (A, e, B),
so that the log-likelihood of observation information (labeled relationships) are maximized. For
presentation simplicity, we concatenate all factor functions for a relationship node y; as s(y;) =
(®(y;, x;)T, Zyj g(vi,y)T, Zy, h(y;,y;)T)T. The joint probability defined in (Eq. (2.30)) can

be rewritten as

P(Y|G) = %UeXp{eTS(yi)} =~ expl” Yson) = Zexplo”s) (239
where Z = Z; Z,Zpg is a normalization factor (also-called partition function), S is the aggrega-
tion of factor functions over all relationship nodes, i.e., S = ) ; s(y;).

One challenge for learning the PLP-FGM model is that the input data is partially labeled.
To calculate the partition function Z, one needs to sum up the likelihood of possible states for
all nodes including unlabeled nodes. To deal with this, we use the labeled data to infer unknown
labels. Here, Y |Y £ denotes a labeling configuration Y inferred from the known labels. Thus, we
can define the following log-likelihood objective function O(0):
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Input: learning rate 7
Output: learned parameters 6

Initialize 6;

repeat

Calculate E,/ (y|yz,g)S using LBP;

Calculate E,, (y|6)S using LBP ;

Calculate the gradient of 6 according to Eq. (2.36):

Vo =Epyriv2,6)S ~ Eppr16)S
Update parameter 6 with the learning rate n:

enew = Oold -n- VO

until Convergence;

Algorithm 1: Learning PLP-FGM.

0O = logp(YL|G) = log Z %exp{OTS}

Y|YL
= log Z exp{f7S} —log Z
Y|YL
= log Z exp{OTS}—logZexp{eTS}. (2.35)
Y|YL Y

To solve the objective function, we consider a gradient decent method (or a Newton-
Raphson method). Specifically, we first calculate the gradient for each parameter 6:

00(0) d <10g Yyiyr exp8TS —log >y exp GTS>
20

00
ZY|YL exp 0TS -S B Yy expOTS -S

Yyjyrexp0’S >y exp6”S
Epoiyz.6)S —Eppric)S- (2.36)

Another challenge here is that the graphical structure in PLP-FGM can be arbitrary and
may contain cycles, which makes it intractable to directly calculate the expectation E,, (y|6)s. A
number of approximate algorithms have been proposed, such as Loopy Belief Propagation (LBP)
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[111]. In this book, we utilize Loopy Belief Propagation. Specifically, we approximate marginal
probabilities p(y;|0) and p(yi, y;|0) using LBP. With the marginal probabilities, the gradient
can be obtained by summing over all relationship nodes. It is worth noting that we need to perform
the LBP process twice in each iteration, one time for estimating the marginal probability p(y|G)
and the other for p(y|Y £, G). Finally with the gradient, we update each parameter with a learning
rate 1. The learning algorithm is summarized in Algorithm 1.

Inferring Unknown Social Ties We now turn to describing how to infer the type of unknown
social relationships. Based on learned parameters 8, we can predict the label of each relationship

by finding a label configuration which maximizes the joint probability (Eq. (2.30)), i.e.,

Y* = argmaxy |y p(Y|G). (2.37)

Again, we utilize the Loopy Belief Propagation (LBP) to compute the marginal probability
of each relationship node p(y;|Y L, G) and then predict the type of a relationship as the label with
the largest marginal probability. The marginal probability is taken as the prediction confidence.

Time Complexity Analysis We use v1, v, v3 to denote the number of attribute factors, corre-
lation factors, and constraint factors in our PLP-FGM, respectively. In each round of LBP, the
time cost of propagation is O(v; - dim(®) + v - dim(g) + v3 - dim(h)), where dim(-) is the di-
mension of a vector. We execute the learning algorithm for n iterations, and in each round we
execute LBP for nygp iterations. Thus, we can estimate the time complexity as O((v; - dim(®) +
vy - dim(g) + v3 - dim(h)) x 1 X nzgp).

Distributed Learning
As real social networks may contain millions of users and relationships, it is important for the
learning algorithm to scale well with large networks. To address this issue, we develop a dis-
tributed learning method based on MPI (Message Passing Interface). The learning algorithm can
be viewed as two steps: (1) compute the gradient for each parameter via loopy belief propagation;
and (2) optimize all parameters with the gradient descents. The most expensive part is the step of
calculating the gradient. Therefore, we develop a distributed algorithm to speed up the process.
We adopt a master-slave architecture, i.e., one master node is responsible for optimizing
parameters, and the other slave nodes are responsible for calculating gradients. At the beginning
of the algorithm, the graphical model of PLP-FGM is partitioned into P roughly equal parts,
where P is the number of slave processors. This process is accomplished by graph segmentation
software METIS [73]. The subgraphs are then distributed over slave nodes. Note that in our
implementation, the edges (factors) between different subgraphs are eliminated, which results in
an approximate solution. In each iteration, the master node sends the newest parameters  to all
slaves. Slave nodes then start to perform Loopy Belief Propagation on the corresponding subgraph
to calculate the marginal probabilities, then further compute the parameter gradient and send
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Table 2.4: Data transferred in distributed learning algorithm

Phase From To Data Description
Initialization Master | Slave % i-th subgraph
Iteration Beginning | Master | Slave ¢ | Current parameters 0
Iteration Ending | Slave i | Master | Gradient ini-th subgraph

Table 2.5: Statistics of three data sets

Data set I Users

Unlabeled Relationships Labeled Relationships

Publication || 1,036,990 1,984,164 6,096
Email 151 3,424 148
Mobile 107 5,122 314

it back to the master. Finally, the master node collects and sums up all gradients obtained from
different subgraphs, and updates parameters by the gradient descent method. The data transferred

between the master and slave nodes are summarized in Table 2.4.

Evaluation

The proposed relationship mining approach is general and can be applied to many different sce-
narios. In this section, we present experiments on three different genres of data sets to evaluate
the effectiveness and efliciency of our proposed approach. All data sets and codes are publicly

available.”

Data Sets and Factor Definitions. We evaluate the proposed methods on three different data

sets: Publication, Email, and Mobile. Statistics of the data sets are listed in Table 2.5.

* Publication. In the publication data set, we try to infer the advisor-advisee relationship from
the co-author network. The data set is provided by [155]. Specifically, we have collected
1,632,442 publications from ArnetMiner [148] (from 1936-2010) with 1,036,990 authors
involved. The ground truth is obtained in three ways: (1) manually crawled from researcher’s
homepage; (2) extracted from Mathematics Genealogy project;® and (3) extracted from Al
Genealogy project.” In total, we have collected 2,164 advisor-advisee pairs as positive cases,
and another 3,932 pairs of colleagues as negative cases. The mining results for advisor-

advisee relationships are also available in the online system Arnetminer.org.

5http ://arnetminer.org/socialtie/

*http://www.genealogy.math.ndsu.nodak.edu

"http://aigp.eecs.umich.edu
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* Email. In the email data set, we aim to infer the manager-subordinate relationship from the
email communication network. The data set consists of 136,329 emails between 151 Enron
employees. The ground truth of manager-subordinate relationships is provided by [38].

* Mobile. In the mobile data set, we try to infer the friendship in mobile calling network.
The data set is from Eagle et al. in [44]. It consists of call logs, bluetooth scanning logs,
and location logs collected by a software installed in mobile phones of 107 users during a
10-month period. In the data set, users provide labels for their friendships. In total, 314
pairs of users are labeled as friends.

In the Publication data set, relationships are established between authors v; and v; if they
co-authored at least one paper. For each pair of co-authors (v;, v ), our goal is to identify whether
v; is the advisor of author v;. In this data set, we consider two types of correlations: (1) Co-adwisee.
The assumption is based on the fact that one could have only a limited number of advisors in
her/his research career. Based on this, we define a correlation factor #; between nodes r;; and
rij. (2) Co-advisor. Another observation is that if v; is the advisor of v; (i.e., r;j = 1), then v;
is very likely to be the advisor of some other student vx who is similar to v;. We define another
factor function &, between nodes r;; and rig.

In the Email data set, we try to discover the “manager-subordinate” relationship. A rela-
tionship (v;,vj) is established when two employees have at least one email communication. In
total, there are 3,572 relationships among which 148 are labeled as manager-subordinate rela-
tionships. We try to identify the relationship types from the email traffic network. For example,
if most of an employee’s emails were sent to the same person, then the recipient is very likely to
be her manager. A correlation named co-recipient is defined, that is, if a user v; sent more than
¥ emails of which recipients including both v; and vi (¢ is a threshold and is set as 10 in our
experiment), then the relationship r;; and r;; are very likely to be the same. Therefore, a cor-
relation factor is added between the two relationships. Two constraints named co-manager and
co-subordinate are also introduced in an analogous way as that for the publication data.

In the Mobile data set, we try to identify whether two users have a friendship if there were
at least one voice call or one text message sent from one to the other. Two kinds of correlations
are considered. (1) Co-Jocation. If more than three users arrived at the same location roughly the
same time, we establish correlations between all the relationships in this groups. (2) Related-call.
When v; makes a call to both v and v; from the same location, or makes a call to vy immediately
after the call with vj, we add a related-call correlation factor between r;; and r;.

In addition, we also consider some other factors in the three data sets. A detailed description
of the factor definition for each data set is given in Table 2.6. Specifically, in the Publication
data set, we define five categories of attribute factors: Paper count, Paper ratio, Co-author ratio,
Conference coverage, and First-paper-year-dift. The definitions of the attributes are summarized
in Table 2.6. In the Email data set, traffic-based features are extracted. For a relationship, we
compute the number of emails for different communication types. In the Mobile data set, the
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Table 2.6: Attributes used in the experiments. In the Publication data set, we use P; and P; to denote
the set of papers published by author v; and v;, respectively. For a given relationship (v;,v;), five
categories of attributes are extracted. In the Email data set, for relationship (v, v;), number of emails
for different communication types are computed. In the Mobile data set, the attributes are from the

voice call/message/proximity logs

Data set I Factor Description
Paper count |Pi|, | P
Paper ratio |P;|/| P
Publication Coauthorratio |P; N P;|/|Pi|, |P; N P;|/| Pl
Conference coverage | The proportion of the conferences
which both v; and v; attended among
conferences v; attended.
First-paper-year-diff | 'The difference in year of the earliest
publication of v; and v;.
Sender Recipients Include
vi vj
Email Traffics v; V5
v; vy, and not v;
v; v, and not v;
U}, v; and not v,
Vg, v; and not v;
(U (% and Vj
#voice calls 'The total number of voice call logs be-
tween two users.
#messages Number of messages between two
. users.
Mobile Night-call ratio 'The proportionof calls at night (8pm to
8am).
Call duration 'The total duration time of calls between
two users.
#proximity 'The total number of proximity logs be-
tween two users.
In-role proximity ratio | The proportion of proximity logs in
“working place” and in working hours
(8am to 8pm).
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attributes we extracted are #voice calls, #messages, Night-call ratio, Call duration, #proximity,
and In-role proximity ratio.

Evaluation Measures. To quantitatively evaluate the proposed method, we consider two as-
pects: performance and scalability. For the relationship mining performance, we consider two-
fold cross-validation (i.e., half training and half testing) and evaluate the approaches in terms of
accuracy, precision, recall, and F1-score. For scalability, we examine the execution time of the
model learning. We compare our approach with the following methods for inferring relationship
types:

SVM: It uses the relationship attribute vector x; to train a classification model and pre-
dict the relationships by employing the classification model. We use the SVM-light package to
implement SVM.

TPFG: It is an unsupervised method proposed in Wang et al. [155] for mining advisor-
advisee relationships in publication network. This method is domain-specific and thus we only
compare it with the Publication data set.

PLP-FGM-S: The proposed PLP-FGM is based on the partially labeled network. An al-
ternative strategy is to train the model (parameters) with the labeled nodes only. We use this
method to evaluate the necessity of the partial learning.

All the codes are implemented in C++, and all experiments are conducted on a server run-
ning Windows Server 2008 with Intel Xeon CPU E7520 1.87 GHz (16 cores) and 128 GB
memory. The distributed learning algorithm is implemented on MPI (Message Passing Inter-
face).

Table2.7: Performance of relationship mining with different methods on three data sets: Publication,

Email, and Mobile (%)
Data set I Method ~ Accuracy Precision Recall Fl-score

SVM 76.6 72.5 54.9 62.1

Publication TPFG 81.2 82.8 89.4 86.0
PLP-FGM-§| 84.1 77.1 78.4 77.7

PLP-FGM 92.7 91.4 87.7 89.5

Email SVM 82.6 79.1 88.6 83.6
PLP-FGM-S  85.6 85.8 85.6 85.7

PLP-FGM 88.0 88.6 87.2 87.9

Mobile SVM 80.0 92.7 64.9 76.4
PLP-FGM-S  80.9 88.1 71.3 78.8

PLP-FGM 83.1 89.4 75.2 81.6

Accuracy Performance. Table 2.7 lists the accuracy performance of inferring the type of social

relationships by the different methods.
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Performance Comparison. Our method consistently outperforms other comparative
methods on all the three data sets. In the Publication data set, PLP-FGM achieves a +27% (in
terms of F1-score) improvement compared with SVM, and outperforms TPFG by 3.5% (F1-
score) and 11.5% in terms of accuracy. We observe that TPFG achieves the best recall among all
the four methods. This is because TPFG tends to predict more positive cases (i.e., inferring more
advisor-advisee relationships in the co-author network), thus hurting the precision. As a result,
TPFG underperforms our method by 8.6% in terms of precision. In Email and Mobile data set,
PLP-FGM outperforms SVM by +4% and +5%, respectively.

Unlabeled Data Offers Improvement. From the result, it is clearly shown that by utiliz-
ing the unlabeled data, our model indeed obtains a significant improvement. Without using the
unlabeled data, our model (PLP-FGM-S) results in a large performance reduction (—11.8% in
terms of F'1-score) on the publication data set. On the other two data sets, we also observe a clear
performance reduction.

Table 2.8: Factor contribution analysis on three data sets (%)

Data set Factors used ~ Accuracy Precision Recall F1-score
Attributes 77.1 71.1 59.8 64.9
Publication + Co-advisor 83.5 80.9 69.8 | 75.0 (+10.1%)
+ Co-advisee 83.1 79.7 70.2 | 74.7 (+9.8%)
All 92.7 91.4 87.7 89.5(+24.6%)
Attributes 80.1 79.5 81.2 80.3
+ Co-recipient 80.8 81.5 79.7 | 80.6 (+0.3%)
Email + Co-manager 83.1 82.8 83.5 | 83.2 (+2.9%)
+ Co-subordinate|  85.0 84.4 85.7 | 85.0 (+4.7%)
All 88.0 88.6 87.2 | 87.9 (+7.6%)
Attributes 81.8 88.6 73.3 80.2
Mobile + Co-location 82.2 89.2 73.3 80.4 (+0.2%)
+ Related-call 81.8 88.6 73.3 | 80.2 (+0.0%)
All 83.1 89.4 75.2 81.6 (+1.4%)

Factor Contribution Analysis. We perform an analysis to evaluate the contribution of dif-
ferent factors defined in our model. We first remove all the correlation/constraint factors and only
keep the attribute factor, and then add each of the factors into the model and evaluate the per-
formance improvement by each factor. Table 2.8 shows the result of factor analysis. We see that
almost all the factors are useful for inferring the social relationships, but the contribution is very
different. For example, for inferring the manager-subordinate relationship, the co-subordinate
factor is the most useful factor which achieves a 4.7% improvement by F1-score, and the co-
manager factor achieves a 2.9% improvement, while the co-recipient factor only results in a 0.3%

improvement. By combining all the factors together, we can further obtain a 2.9% improvement.
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An extreme phenomenon appears on the Mobile data set. With each of the two factors (co-

location and related-call), we cannot obtain a clear improvement (0.2% and 0.0% by F1). How-

ever, when combining the two factors and the attribute factor together, we can achieve a 1.4%
improvement, 7 times higher than that obtained by the separated case. This is because our model
not only considers different factors, but also considers the correlation between them.

Scalability Performance. We conduct a series of experiments to evaluate the scalability perfor-
mance of our distributed learning algorithm on the Publication data set. Figure 2.4 shows the
running time and speedup of the distributed algorithm with different number of computer nodes
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(2,3,4,8,12 cores) used. The speedup curve is close to the perfect line at the beginning. Although
the speedup inevitably decreases when the number of cores increases, it can achieve ~ 8x speedup
with 12 cores. It is noticeable that the speedup curve is beyond the perfect line when using 4 cores,
it is not strange since our distributed strategy is approximated. In our distributed implementa-
tion, graphs are partitioned into subgraphs, and the factors across different parts are discarded.
Thus, the graph processed in distributed version contains less edges, making the computational
cost less than the amount in the original algorithm. The effect of subgraph partition is illustrated
in Figure 2.5. By using good graph partition algorithm such as METIS, the performance only
decreases slightly (1.4% in accuracy and 1.6% in F1-score). A theoretical study of the approximate
ratio for the distributed learning algorithm would be an interesting issue and is also one of our
ongoing work.

Summary

In this section, we study the problem of inferring the type of social ties in large networks. We pro-
pose a partially labeled pairwise factor graph model (PLP-FGM) to learn to infer the relationship
semantics. In PLP-FGM, relationships in social network are modeled as nodes, the attributes,
correlations, and global constraints are modeled as factors. An efficient algorithm is proposed to
learn model parameters and predict unknown relationships. Experimental results on three differ-
ent types of data sets validate the effectiveness of the proposed model. To further scale up to large
networks, a distributed learning algorithm is developed. Experiments demonstrate good parallel
efficiency of the distributed learning algorithm.

2.3.4 ACTIVELY LEARNING TO INFER SOCIAL TIES

Another important question is how we can learn the mapping function f effectively. In many
situations, labeled data is limited and expensive. The problem is, can we design a strategy to
actively learn the model with minimal labeling cost? Formally, we have the following.

Problem 2.7  Active social tie inference. Given a partially labeled network G =
(V,EL,EV, RE, W), and a labeling budget b (number of user interactions), our objective
is to select a subset of unknown relationships 4 C EY within the constraint of b to label, so that
the performance of predictive function f can be maximally improved.

Our formulation of inferring social relationships is very different from existing works on
relation mining [23], which focuses on detecting the relationships from the content information,
while we focus on mining relationship semantics in social networks. Diehl et al. [38] and Wang et
al. [155] investigated the problem of relationship identification. However, they studied the prob-
lem in specific domains (Email network or Publication network). Backstrom et al. [6] proposed
an algorithm based on supervised random walks for link prediction. Crandall et al. [32] incorpo-
rated geographic coincidences to infer social ties. Difterent from these works which aim at link

prediction, our goal is to infer the types of relationships. There are also works on inferring the
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types of relationships. Hopcroft et al. [70] explored the problem of reciprocal relationship predic-
tion and Tang et al. [142] developed a framework for classifying the type of social relationships
by learning across heterogeneous networks. Yang et al. [168] studied the retweeting behavior.
Leskovec et al. [92] focused on the prediction of edge signs (positive or negative). However, they
do not consider how to make optimal use of user interaction.

Formally, for actively selecting helpful relationships to query the user, we define a quality
function Q(A), which measures the expected improvement of the prediction performance by
labeling relationships in set A. The problem can be then defined as an optimization problem of

Q(A),ie.,

A* = arg max Q(A),|A|=b,b > 0.
AcyUY

To quantify Q(A4), we could consider how a selected node can influence the others. For
example, correction of a centered relationship may trigger a spread of the correction, thus helping
infer correlated relationships.

Based on the above intuitions, we develop an Influence-Maximization Selection (IMS)
model and a Belief-Maximization Selection (BMS) model for actively inferring the types of so-
cial relationships. The IMS model selects the most influential nodes, by leveraging the network
structure and the uncertainty obtained from PLP-FGM. The BMS model further incorporates
the active selection process into the learning process of PLP-FGM.

Baseline Methods

'The quality function Q(A4) can be defined in different forms. Without any constraints, optimizing
the quality function Q(A) needs to enumerate all possible subsets A C Y'Y, which is obviously
NP-hard. We first review two baseline greedy algorithms.

Maximum Uncertainty (MU). A most common selection strategy for active learning is to select
the most uncertain relationships. The uncertainty of an unlabeled relationship y; is measured by
the entropy H(yi) = —)_,ey P(yi = ¥)log p(yi = y). Based on this intuition, we can define
the quality function as

Omu(A) = H(A) (2.38)

where H(A) = ZinA H(y;).

Information Density (ID). A drawback of the Maximum Uncertainty strategy is its tendency to
choose outliers. Thus, we employ another strategy, Information Density, proposed in Settles and
Craven [129]. The idea is to choose the most representative nodes in Y Y, which are supposed to
be the most informative ones. Based on this intuition, we measure the informativeness of a node
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by its cosine similarity to all other unlabeled nodes in the sense of the attributes attached to a
node. Formally, we define the quality function as

1

Qrp(A) =Y H(yi) X l7o; > sim(x;.x;)] (2.39)
i€eA jeyt
where sim(x;,X;) = m Note that we again employ the entropy of a relationship node

H(y;) to leverage the “base” informativeness.

Proposed Methods for Actively Learning PLP-FGM
We propose two new algorithms, i.e., Influence-Maximization Selection model (IMS) and Belief-

Maximization Selection model (BMS), for actively learning the presented PLP-FGM model.

Influence-Maximization Selection (IMS). All the strategies mentioned above do not consider
the network structure information. As relationship nodes in PLP-FGM are correlated, the most
influential nodes are more likely to help improve the overall performance of the model. Existing
work has studied several influence propagation models, including the Linear Threshold Model
(LTM) in Kempe et al. [79]. The LTM model sets a threshold value ¢; for each node, and weights
bi,; for its edges, satistying > ;cp() bi,j < 1. Ineach time stamp,if Y ; cnpoiy nacrivarea( ) Divi = €i
then the node i will be activated. We develop a variation of the LI'M by incorporating a score
for each node reflecting the strength of the influence spreading in our model. The propagation
process is described as follows.

* 'The graph is the same as the PLP-FGM model. In addition, we call a relationship node
as “activated” when its label y; is determined. The initial activated set of nodes is ¥ £. We
assign a threshold &; = >, o, |p(yi = ¥|G, Y L)y — L for each node. Thus, a node with
higher uncertainty will be easier to be activated.

1
R

* When a node i is activated, it spreads its gained score increment (g; — &;) to its neigh-
bor nodes j € NB(i) with a weight b; ;, i.e., g < g + bi,j(gi — &i). The gained score
increment reflects the improvement of confidence brought by user labeling, therefore the
influence by labeling an uncertain relationship will be greater than labeling a more certain
relationship. To simplify the problem, we set weight b; ; = 1/|NB(j)|.

* If a node is labeled by the user, we set it as activated and assign its gained score as 1. The
gained score for other nodes is set to 0 at the beginning. Once an inactivated node k gains
a score which exceeds the threshold, i.e., gx > &;, it will become activated and spread its
gained score similarly. An activated node only spreads its gained score once and remains its
status.

We define the quality function Qys(A) as the total number of activated nodes after the
propagation process. Finding the set A that maximizes the quality function Quys(A) is NP-hard.
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Similar to [79], in this chapter, we use a greedy strategy to approximate the solution. Note that
unlike the LTM, we do not guarantee a lower bound of error for the greedy optimization method.

Belief-Maximization Selection (BMS). To quantify the influence of one node on the others, we
employ the belief of each node obtained by Loopy Belief Propagation in our model. We define
a heuristic by removing the effect of attributes from the belief score, denoted by B(y;|G, Y L).
More precisely,

B(yi|G.Y") = exp{0Ts(yi) — AT @(yi. x;)}.

By normalizing the belief of one relationship node, we obtain the be/ief marginal probability.

1
ps(3i|G, YE) = Z—BB()’ilG, Yh),

where Z is the normalization factor. It estimates the marginal probability distribution of a rela-
tionship node where the information of its attribute vector is absent.

A basic intuition is, the belief of a relationship node is monotonically increasing with respect
to the number of relationship nodes of the same type, i.e., B(y; = y|G, YL) is monotonically
increasing with respect to the number of relationships with label y.* Without loss of generality,
we first consider the binary relationship mining problem, i.e., there are only two possible labels of
relationships () = {0, 1}). In the binary setting, we further consider the active selection for each
type separately. This is because when mixing the different types of relationships together, it cannot
be guaranteed to have a closed-form solution. Thus, when users provide only positive feedback,
our objective is to find a set of positive nodes. Accordingly, we define the quality function of the
positive-oriented BMS strategy as:

Opus+(A) = > pp(yi =1|G. Y U 4), (2.40)

. U
yZGY(l)

where YJ) = {yilyi € YU AB(yi = 11G,Y*) = B(yi = 0|G, Y1)}
Symmetrically, if the users provide only negative feedback, we can adopt a negative-oriented
BMS strategy, with the following quality function:

L
Qpus—(A) = Y ps(yi =0|G, Y U A). (2.41)
YiGY(l({)
SWe present a sufficient condition for this assumption. If for all ¥’ € ¥, ¥’ # y, we can have @’ exp{g(y,y) +

BTh(y,y)} > exp{aTg(y, ¥)+BTh(y,y")}, then B(y; = y|G,Y L) is monotonically increasing with respect to the
number of y-labeled relationships in ¥’ L,
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Input: G, b
Output: a set of selected relationships A4

Train PLP-FGM and get the parameter configuration 0;

AT A7 <« 0

for b/2 times do

Use Loopy Belief Propagation (LBP) to obtain the probability distribution for
each relationship;

Find Ymaxt = argmaxyieYUp(yi = 1]G, YL)(QBM5+ (A+ Uyi)— QBM5+ (A+));
Move y,, .+ from YV to AT;

YL« yLuAat

Use Loopy Belief Propagation (LBP) to obtain the probability distribution for
each relationship;

Find yma— = argmax,, cyuv p(yi =0|G,YL)(Qpus— (A~ U y;) — Opus—(A7));
Move Ypax— from YV to A7;

YE—vylu4as;

end

Algorithm 2: Belief-maximization selection.

'The optimization of both quality functions Q s+ (A4) and Qguys—(A) is NP-hard. How-
ever, as both quality functions are submodular (theoretical analysis is given in Section 2.3.4), a
solution with an approximation ratio of (1 — 1/e) can be obtained using a greedy algorithm: at
each time, it selects the relationship which is expected to provide the maximum marginal increase
of the quality function. Notice that we treat the examining relationship node y; as if it is positive-
labeled when optimizing Q)<+ (A), or negative-labeled for Qpgys—(A), since the active learning
algorithm is label-unaware in the selection stage. In order to leverage the risk that a selected re-
lationship is not labeled as expected, we employ a weighting factor p(y;|G, Y %) to reflect how
likely the relationship would be labeled as positive (negative).

To prevent making an imbalance selection, we intuitively use Q.+ to choose b/2 nodes
(where b is the number of relationships we expect to query the user each time), and then use
Qpus— for the rest. Algorithm 2 formally describes the selection process. This selection strategy
is denoted by BMS. Note that BMS combines both BMS+ and BMS-. Thus, it cannot guarantee

a lower error bound of the approximation.

Theoretical Analysis

We give a theoretical analysis of proposed active learning models. The approximation ratio of
the IMS model is given in Kempe et al. [79]. Here, we focus on the proof of approximation
guarantees of the BMS model. The proof is based on the submodular property, which indicates
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that the marginal gain from adding an element to a set S is at least as high as the marginal gain
from adding the same element to a superset of S. The following is a formal definition of the
submodular set function.

Definition 2.8 (Submodular) A set function F defined on set S is called submodular, if for all
ACBC Sands ¢ B, itsatisfies F(AU {s}) — F(A) > F(B U {s}) — F(B).

Given a submodular function F, which is also monotone and non-negative, it is an NP-
hard problem to find a k-element subset S to optimize F. But a greedy algorithm can result in
an approximation ratio of (1 — 1/e). It constructs the subset by selecting elements one at a time,
each time choosing an element that provides the largest marginal increase in the function value.
'Thus, we have the following.

Theorem 2.9 Fora non-negative, monotone submodular function F, let S be the k-element subset
decided by the following algorithm. for k times, each time choose an element which gives the maximum
marginal increase of F and move it to S. Let S* denotes the optimal solution. Then we have F(S) >
(1—DF(S™).

Before we prove the submodularity of the quality function Q ¢+, we first prove the mono-
tonicity of function pg(y; = 1|S).

Lemma2.10 Forally; € YU,funcz‘ian pe(yi = 1|8S) is monotonic with respect to S.

Suppose x is another unlabeled relationship. We have

B(yi = 1S U{x})
B(y: = %IS U{x}) + B(yi = 0|S U {x})

pe(yi = 1ISU{x}) =

BOI=0SUED
I+ Bor=tisutn

— B(Qi=0|SU{x})
Let k] = W, then

pe(yi =15 Uix}) =

14+ kg '
Similarly, let k, = gg;—z?lg;, then
; = 1|8) = .
pa(yi |S) 1+ ky

According to the assumption in 2.3.4, it is obvious that k1 < k. Obviously,
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pe(yi = 1S U{x}) > ps(yi = 1]S).

Now we prove the submodularity of the quality function Q¢+ defined by Equation (2.40).

Theorem 2.11  The quality function Q g o+ (S) satisfies the submodular property, when S C Y(Lll).

Proof. 'The first step is to prove that function F(S) = p(y; = 1|G, YL U S) is submodular with
respect to S. Suppose A C B C YY, and there is another unlabeled relationship x ¢ B.
Similarly, we define k1, k2, k3, k4 below:

po = BUi=0IG, YFU AU {x) _ B(yi =0/G,YL U 4)

T B =1G.YLUAUL}) 7T By =1|G. YL U A)
b BOi=0GYEUBULY) _ Bi=0G.YEUB)
3= 4 =

- B(yi =1|G.YLUBU{x})’ " B(y; = 1|G.YLU B)’

Since A C B C Y(llj), we have k1, ko, k3, ks < 1. In addition,’ since our factor functions

are defined as exponential-linear functions, we can have k1 /k, = k3/ k4. We define o and B as
follows:

Then we can obtain the following inequality:

8(4,x) = pp(yi =1G. Y UAU{x}) — ps(yi = 1|G,YE U A)
1 1
T 14k 1tk
_ (1 —a)k;
- (1 +ak2)(1 + kz)
8§(B,x) = pp(yi =1G. YL UBU{x})— ps(yi =1|G.Y* UB)
1—(1)](4

(1 4+ aky)(1 + kyq) 5
. (1 + a)Bky + B + afk;
= A Lt 1t a2k’
8(4,x)

If there is no factor function between x and y;, the conclusion is obvious; otherwise, B(y;|G,YL U S U
{x}/B(;i|G, YL US) is only relevant to the factor function between x and y; since relationships in S remain their labels,
and the conclusion can be derived accordingly.
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Then we give the proof of the submodularity of quality function Q p,,c+. Suppose A C B C
Y'Y, and there is another unlabeled relationship y, ¢ B.

A(A,x) = QBMs+(A ) {yx}) - QBMs+(A)
Y s =1GYPUAU) - Y ps(yi =11G, YR U 4)
yieY(Clj) yiEY(Llj)

= Y Byl + 1 - ps(is = 11G, YR U A)
inY(Lll)\(AU{J’x})

=z > [B(B.y)l +1— ps(yx = 1/G.Y" U B)
yi €Y{)\(BU{yx})
= A(B,x).

Therefore, we have proved that Qp, ¢+ is submodular. The submodularity of Q gys— can be
proved in a similar way. According to Theorem 2.9, it guarantees a lower bound of the greedy

algorithm employed for the BMS model. O

Evaluation

We still use the data sets used in Section 2.3.3 to evaluate the different active learning algorithms.
More specifically, in each data set, we first randomly select 10 relationships as the initial labeled
set Y L. And then we iteratively perform the active selection algorithm, each time selecting b = 10
relationships to query. After each round of selection, we learn the PLP-FGM model and evaluate
the prediction performance. We implement the experiment for ten times on each data set and use
the mean of F1-score for evaluation.

Comparison Methods. We consider the following baseline methods."

Random: It randomly selects b nodes in YU at each time.

Maximum Uncertainty (MU): It chooses the most b uncertain nodes among unlabeled re-
lationships Y'V.

Information Density (ID): It chooses b nodes with the maximum average similarity to all
other nodes in Y'Y, proposed in Settles and Craven [129].

Effect of Active Learning. We plot the learning curves on each data set in Figure 2.6, and list the
average F1-score by all selection strategies in Table 2.9. The results clearly demonstrate the effec-
tiveness of the active selection strategies. In the Publication data set, the overall F1-score of the
IMS strategy with 100 samples labeled outperforms the Random algorithm by +7.4%. In Email

1%We did not consider the co-adwvisee correlation in the model when dealing with the Publication data set and the co-subordinate
correlation for the Email data set, since they conflict with the assumption of monotonic belief in Section 2.3.4.
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and Mobile data set, the BMS strategy achieves the best performance, with an improvement of

Performance Comparison. In the publication data set, both the proposed BMS and IMS strategy
significantly perform better than all the baseline methods (paired 7-tests with 95% significance).
BMS also significantly outperforms Random and ID strategy in Mobile data set, while its per-
tormance is close to MU. The performance of IMS is shown better than ID in Mobile data set,
but is close to other baseline methods. In Email data set, BMS significantly outperforms Ran-
dom, while the performance of other methods seems close to each other. Generally, the proposed
BMS strategy performs more consistently, and obtains better results in two of the three data sets.
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Table 2.9: Average F1-score by all selection strategies (%). The results were obtained by randomly
selecting 10 relationships as the initial labeled set ¥ ©, and then iteratively perform the active selection
algorithms, each time with b = 10 relationships to query

Dataset | Random MU ID BMS IMS
Publication | 60.6 | 63.7 | 64.8 | 66.4 | 66.8
Email 856 [86.2[873] 87.6 [ 863
Mobile 792 | 80.0 [ 743 | 80.4 | 79.9

'The performance of IMS strategy is the best in Publication data set, but seems close to baseline
methods in the other two data sets.

Network Information Helps. According to factor contribution analysis mentioned before, co-
advisor factor in Publication data set contributes the most. This explains why the proposed meth-
ods achieve better performance than the alternative baseline methods in Publication data set. The
average F1-score of BMS and IMS reaches 65% with less than 30 labeled samples, while ID uses
more than 40, and MU uses more than 60. In Email and Mobile data set, BMS still takes advan-
tage of the network information, but the improvement shrinks due to the considerable decrease
of factor contribution.

In-Depth Analysis of BMS. There are also some variations of BMS and we conduct a comparison
between them. BMS+ selects all b nodes optimizing Q o+ (A4), while BMS- employs Q gys—(A).
Figure 2.7 shows the average F1-score of the different versions. In Publication and Email data
set, the difference between BMS and BMS+ is minor, while the performance of BMS- drops.
It might be resulted from difterent criteria of these three strategies. BMS+ tends to obtain true-
positive samples, whereas BMS- is more likely to acquire true-negative samples. F'1-score excludes
the impact of true-negative samples, and therefore undermines the performance of BMS-. The
gap disappears in Mobile data set, probably due to the weak contribution of its correlation and
constraint factors.

Summary

In this section, we explain how to utilize active learning to help infer social ties. We propose two
active learning strategies: Influence-Maximization Selection and Belief-Maximization Selection,
both aiming to capture the inter-relationship influence. Experimental results show that BMS and
IMS often achieve significant better performance than baseline methods.

2.3.5 INFERRING SOCIAL TIES ACROSS HETEROGENEOUS NETWORKS

In the previous sections, we introduced methodologies to infer particular types of relationships in
different specific social networks. Now we discuss how to generalize the problem to infer social
ties across multiple heterogeneous networks.
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Figure 2.7: Performance comparison between variations of BMS.

In traditional methods, sufficient labeled relationships are usually necessary to learn a good
predictive model for inferring social ties. However, the availabilities of labeled relationships in
different networks are very unbalanced. In some networks, such as Slashdot, it might be easy to
collect the labeled relationships (e.g., trust/distrust relationships between users), while in most
other networks, it may be difficult (or even infeasible) to obtain the labeled information. A chal-
lenging question is: can we leverage the labeled relationships from one network to infer the type
of relationships in another totally different network?

Problem Formulation. Figure 2.8 gives an example of inferring social ties across a product-
reviewer network and a mobile communication network. In Figure 2.8, the left sub-figure is the
input to our problem: a reviewer network, which consists of reviewers and relationships between
reviewers, and a mobile network, which consists of mobile users and their communication rela-
tionships (via calling or texting message). The right sub-figure shows the output of our problem:
the inferred social ties in the two networks. In the reviewer network, we infer the trust/distrust
relationships and in the communication network, we identify friendships, colleagues, and fami-
lies. The middle of Figure 2.8 is the component of knowledge transfer for inferring social ties in
different networks. This is the key objective of this work. The fundamental challenge is how to
bridge the available knowledge from different networks to help infer the different types of social
relationships.

Formally, let G = (V, E L EY,X) denote a partially labeled social network, where E Lisa
set of labeled relationships and EV is a set of unlabeled relationships with EL U EV = E; X is
an |E| x d attribute matrix associated with edges in E with each row corresponding to an edge,
each column an attribute, and an element x;; denoting the value of the j*” attribute of edge e;.
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Figure 2.8: Example of inferring social ties across two heterogeneous networks: a product-reviewer
network and a mobile communication network.

The label of edge e; is denoted as y; € ), where ) is the possible space of the labels (e.g., family,
colleague, classmate).

Given this, the input to our problem consists of two partially labeled networks G (source
network) and G (target network) with | EL| > | EL| (with an extreme case of | EX| = 0). Please
note that the two networks might be totally different (with different sets of vertexes, i.e., Vs N
Vr = @, and different attributes defined on edges).

In real social networks, the relationship could be undirected (e.g., friendships in a mobile
network) or directed (e.g., manager-subordinate relationships in an enterprise email network). To
keep things consistent, we will concentrate on the undirected network. In addition, the label of
a relationship may be static (e.g., the family-member relationship) or change over time (e.g., the
manager-subordinate relationship). In this work, we focus on static relationships.

Given a source network Gg with abundantly labeled relationships and a target network
G with a limited number of labeled relationships, the goal is to learn a predictive function f :
(Gr|Gs) — Yr for inferring the type of relationships in the target network by leveraging the
supervised information (labeled relationships) from the source network.
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Without loss of generality, we assume that for each possible type y; of relationship e;, the
predictive function will output a probability p(y;|e;); thus our task can be viewed as obtaining a
triple (e;, yi, p(yilei)) to characterize each link e; in the social network.

Data Sets. To study this problem, we try to find a number of different types of networks to
investigate the problem of inferring social ties across heterogeneous networks. In this study, we
consider five different types of networks: Epinions, Slashdot, Mobile, Coauthor, and Enron. Ta-
ble 2.5 lists statistics of the five networks. All data sets and codes used in this work are publicly
available.""

Epinions is a network of product reviewers. Each user on the site can post a review on any
product and other users would rate the review with trust or distrust. In this data, we created a net-
work of reviewers connected with trust and distrust relationships. The data set consists of 131,828
nodes (users) and 841,372 edges, of which about 85.0% are trust links. 80,668 users received at
least one trust or distrust edge. Our goal on this data set is to infer the trust relationships between
users.

Slashdot is a network of friends. Slashdot is a site for sharing technology related news.
In 2002, Slashdot introduced the Slashdot Zoo which allows users to tag each other as “friends”
(like) or “foes” (dislike). The data set is comprised of 77,357 users and 516,575 edges of which
76.7% are “friend” relationships. Our goal on this data set is to infer the “friend” relationships
between users.

Mobile is a network of mobile users. The data set is from Eagle et al. [44]. It consists of the
logs of calls, blue-tooth scanning data and cell tower IDs of 107 users during about 10 months.
If two users communicated (by making a call and sending a text message) with each other or
co-occurred in the same place, we create an edge between them. In total, the data contains 5,436
edges. Our goal is to infer whether two users have a friend relationship. For evaluation, all users
are required to complete an online survey, in which 157 pairs of users are labeled as friends.

Coauthor is a network of authors. The data set, crawled from ArnetMiner.org [148], is
comprised of 815,946 authors and 2,792,833 co-author relationships. In this data set, we attempt
to infer advisor-advisee relationships between co-authors. For evaluation, we created a smaller
ground truth data in the following ways: (1) collecting the advisor-advisee information from the
Mathematics Genealogy project;'” and the Al Genealogy project’® (2) manually crawling the
advisor-advisee information from researchers’ homepages. Finally, we have created a data set with
1,534 co-author relationships, of which 514 are advisor-advisee relationships. The data set was
used in Wang et al. [155].

Enron is an email communication network. It consists of 136,329 emails between 151
Enron employees. Two types of relationships, i.e., manager-subordinate and colleague, were an-
notated between these employees. The data set was provided by Diehl et al. [38]. Our goal on

"http://arnetminer.org/socialtieacross/
Phttp://www.genealogy.math.ndsu.nodak.edu
3http://aigp.eecs.umich.edu
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this data set is to infer manager-subordinate relationships between users. There are in total 3,572
edges, of which 133 are manager-subordinate relationships.

Please note that for the first three data sets (i.e., Epinions, Slashdot, and Mobile), our goal
is to infer undirected relationships (friendships or trustful relationships), while for the other two
data sets (i.e., Coauthor and Enron), our goal is to infer directed relationships (the source end
has a higher social status than the target end, e.g., advisor-advisee relationships and manager-
subordinate relationships).

Table 2.10: Statistics of five data sets
Relationship ~ Dataset | #Nodes  #Edges

Trust Epinions || 131,828 | 841,372
Friendship Slashdot 77,357 516,575
Friendship Mobile 107 5,436

Advisor-advisee | Coauthor || 815,946 | 2,792,833
Manager- Enron 151 3,572
subordinate

Observations

As a first step, we engage in some high-level investigation of how different factors influence the
formation of different social ties in different networks. Generally, if we consider inferring partic-
ular social ties in a specific network (e.g., mining advisor-advisee relationships from the Coauthor
network), we can define domain-specific features and learn a predictive model based on labeled
training data. The problem becomes very different, when handling multiple heterogeneous net-
works, as the defined features in different networks may be significantly different. To solve this
problem, we connect our problem to several basic social psychological theories and focus our
analysis on the network based correlations via the following statistics.

1. Social balance [45]. How is the social balance property satisfied and correlated in different
networks?

2. Structural hole [21]. Would structural holes have a similar behavior pattern in different net-
works?

3. Social status [34, 60, 93]. How do different networks satisfy the properties of social status?

4. “Two-step flow” [§9]. How do different networks follow the “two-step flow” of information
propagation?

Social Balance. Social balance theory suggests that people in a social network tend to form into
a balanced network structure. Figure 2.9 shows the probabilities of balanced triads of the three
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Figure 2.9: Social balance. Probabilities of balanced triads in different networks based on communication
links and friendships (or trustful relationships). Based on communication links, different networks have very
different balance probabilities (e.g., the balance probability in the mobile network is nearly seven times higher than
that of the slashdot network). While based on friendships the three networks have relatively similar probabilities.

undirected networks (Epinions, Slashdot, and Mobile). In each network, we compare the prob-
ability of balanced triads based on communication links and that based on friendships (or trust
relationships). For example, in the Mobile network, the communication links include making
a call or sending a message between users. We find it interesting that different networks have
very different balance probabilities based on the communication links, e.g., the balance probabil-
ity in the mobile network is nearly seven times higher than that of the slashdot network, while
based on friendships (or trustful relationships) the three networks have relatively similar balance
probabilities (with a maximum of +28% difference).

Structural Hole. A person is said to span a s¢ructural hole in a social network if he or she is linked
to people in parts of the network that are otherwise not well connected to one another [21].
Arguments based on structural holes suggest that there is an informational advantage to having
friends in a network who do not know each other. Our idea here is to test if a structural hole tends
to have the same type of relationship with the other users. We first employ a simple algorithm to
identify structural hole users in a network. Following the informal description of structural holes
[21], for each node, we count the number of pairs of neighbors who are not directly connected. All
users are ranked based on the number of pairs and the top 1% users'* with the highest numbers
are viewed as structural holes in the network. Figure 2.10 shows the probabilities that two users
(A and B) have the same type of relationship with another user (say C), conditioned on whether

This is based on the observation that less than 1% of the Tiwitter users produce 50% of its content [165].
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Figure 2.10: Structural hole. Probabilities that two connected (or disconnected) users (A and B) have the
same type of relationship with user C, conditioned on whether user C spans a structural hole or not. It is clear
that (1) users are more likely (averagely +70% higher than chance) to have the same type of relationship with C if
C spans a structural hole; and (2) disconnected users are more likely than connected users to have the same type

of relationship with a user who spans a structural hole (except the mobile network).

user C spans a structural hole or not. We have two interesting observations: (1) users are more
likely (on average +70% higher than chance) to have the same type of relationship with C if C
spans a structural hole; and (2) disconnected users are more likely than connected users to have
the same type of relationship with a user classified as spanning a structural hole. One exception
is the mobile network, where most mobile users in the data set are university students and thus
friends frequently communicate with each other.

Social Status. Social status theory [34, 60, 93] is based on the directed relationship network.
We conducted an analysis on the Coauthor and Enron networks, where we aim to find directed
relationships (advisor-advisee and manager-subordinate). We found nearly 99% of triads in the
two networks satisfy the social status theory, which was also validated in Leskovec et al. [93]. We
investigate more by looking at the distribution of different forms of triads in the two networks.
Specifically, there are in total 16 different forms of triads [93]. We select five most frequent forms
of triads in the two networks. For easy understanding, given a triad (A4, B, C), we use 1 to denote
the advisor-advisee relationship and 0 colleague relationship, and three consecutive numbers 011
to denote A and B are colleagues, B is C’s advisor and A is C’s advisor. It is striking that although
the two networks (Coauthor and Enron) are totally different, they share a similar distribution on
the five frequent forms of triads (as plotted in Figure 2.11).
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Figure 2.11: Social status. Distribution of five most frequent formations of triads with social status. Given
a triad (A4, B, C), let us use 1 to denote the advisor-advisee relationship and 0 colleague relationship. Thus, the

number 011 to denote A and B are colleagues, B is C’s advisor and A is C’s advisor.

Opinion Leader. The two-step flow theory [89] suggests that ideas (innovations) usually flow first
to opinion leaders, and then from them to a wider population. Our basic idea here is to examine
whether “opinion leaders” are more likely to have a higher social status (manager or advisor) than
ordinary users. To do this, we first categorize users into two groups (opinion leaders and ordinary
users) by PageRank.” With PageRank, according to the network structure, we select as opinion
leaders the top 1% users who have the highest PageRank scores and the rest as ordinary users.
Then, we examine the probabilities that two users (A and B) have a directed social relationship
(from higher social-status user to lower social-status user) such as advisor-advisee relationship
or manager-subordinate relationship. Figure 2.12 shows some interesting discoveries. First, in
both of the Enron and Coauthor networks, opinion leaders (detected by PageRank) are more
likely (+71%-+84%) to have a higher social status than ordinary users. Second, and also more
interestingly, in Enron, it is likely that ordinary users have a higher social status than opinion
leaders. Its average likelihood is much larger (30 times) than that in the Coauthor network. The
reason might be in the enterprise email network (Enron), some managers may be inactive, and
most management-related communications were done by their assistants.

Summary. According to the statistics above, we have the following intuitions.

1. Probabilities of balanced triads based on communication links are very different in different
networks, while the balance probabilities based on friendships (or trustful relationships) are
similar with each other.

*PageRank is an algorithm to estimate the importance of each node in a network [116].
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Figure 2.12: Opinion leader. OL - Opinion leader; OU - Ordinary user. Probability that two types of users
have a directed relationship (from higher social status to lower status, i.e., manager-subordinate relationship in
Enron and advisor-advisee relationship in Coauthor). It is clear that opinion leaders (detected by PageRank) are

more likely to have a higher social status than ordinary users.

2. Users are more likely (+25%—+152% higher than chance) to have the same type of rela-
tionship with a user who spans a structural hole.

3. Most triads (99%) satisfy properties of the social status theory. For the five most frequent
formations of triads, the Coauthor and the Enron networks share a similar distribution.

4. Opinion leaders are more likely (+71%—+84% higher than chance) to have a higher social
status than ordinary users.

Model Framework

We propose a transfer-based factor graph (TranFG) model for learning and predicting the type
of social relationships across networks. We first describe the model in the context of a single
network, and then explain how to transfer the supervised information provided by one network
to another network.

Learning over Single Network. Given a network G = (V, EL, EU X)), each relationship (edge)
e; is associated with an attribute vector x; and a label y; indicates the type of the relationship.
Let X = {x;} and Y = {y;}. Then we have the following formulation:

P(X,G|Y)P(Y)

P X.G) (2.42)

P(Y|X,G) =
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Here, G denotes all forms of network information. This probabilistic formulation indicates
that labels of edges depend on not only local attributes associated with each edge, but also the
structure of the network. According to Bayes’ rule, we have

P(X,G|Y)P(Y)

P(Y|X,G) = P X.G)

o P(X|Y) - P(Y|G) (2.43)

where P(Y|G) represents the probability of labels given the structure of the network and P (X|Y)
denotes the probability of generating attributes X associated to all edges given their labels Y. We
assume that the generative probability of attributes given the label of each edge is conditionally
independent, thus we have

P(Y|X.G) x P(Y|G) [ | P(xilyi) (2.44)

1

where P(X;|y;) is the probability of generating attributes x; given the label y;. Now, the problem
is how to instantiate the probability P (Y |G) and P(x;|y;). In principle, they can be instantiated
in different ways, for example by the Bayesian theory or Markov random fields. In this book,
we choose the latter. Based on Markov random fields, for any node v;, the conditional prop-
erty holds: P(y;|G\vi) = P(y;|NB(i)), where NB(i) are neighborhood of y; in the graph G.
'The Hammersley-Clifford theorem [63] tells us that the probability of a Markov random field is
equivalent to a Gibbs distribution which is factorized into positive function defined on cliques
{Y.} that cover all the nodes and edges of G. Thus, the two probabilities in Eq. (2.44) can be
rewritten as:

1 d
P(xily) = Z—lexp{Za,-g,-(x,-,-,yi)} (2.45)
j=1
PIVIG) = ey Y et} (2.46)
c k

where Z; and Z, are normalization factors. Equation (2.45) indicates that we define a feature
function g; (x;;, y;) for each attribute x;; associated with edge e; and «; is the weight of the j*#
attribute. It can be defined as either a binary function or a real-valued function. For example, for
inferring advisor-advisee relationships from the publication network, we can define a real-valued
feature function as the difference of years when authors v; and vj, respectively, published his first
paper. In Eq. (2.46), we define a set of correlation feature functions {/x(Y,)}x over each clique
Y, in the network. Here uy is the weight of the k*# correlation feature function. The simplest
clique is an edge, thus a feature function A (y;, y;) can be defined as the correlation between two
edges (e;, €}), if the two edges share a common end node. We also consider triads as cliques in the
TranFG model, in that several social theories we discussed in Section 2.3.5 are based on triads.
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If we are given a single network G with labeled information Y, learning the predictive
model is to estimate a parameter configuration § = ({&}, {it}) to maximize the log-likelihood
objective function O(0) = logPy(Y |X, G), i.e.,

0* = arg max O(6). (2.47)

Learning across Heterogeneous Networks. We now turn to discuss how to learn the predic-
tive model with two heterogeneous networks (a source network G and a target network Gr).
Straightforwardly, we can define two separate objective functions for the two networks. The chal-
lenge is then how to bridge the two networks, so that we can transfer the labeled information from
the source network to the target network. As the source and target networks may be from arbitrary
domains, it is difficult to define correlations between them based on prior knowledge.

To this end, we propose a transfer-based factor graph (TranFG) model. Our idea is based
on the fact that the social theories we discussed in Section 2.3.5 are general over all networks.
Intuitively, we can leverage the correlation to the extent to which different networks satisfy each
of the social theories to transfer the knowledge across networks. In particular, for social balance,
we define triad-based features to denote the proportion of different balanced triangles in a net-
work; for structural hole, we define edge correlation based features, i.e., correlation between two
relationships e; and e;; for social status, we define features over triads to, respectively, represent
the probabilities of the seven most frequent formations of triads; for opinion leaders, we define
features over each edge.

Finally, by incorporating the social theories into our predictive model, we define the fol-
lowing log-likelihood objective function over the source and the target networks:

O(a., B, ) = Os (o, ) + O (B, 1)
Vsl d Vrl d’

=Y > g v+ Y. Y Bigi v
i=1j=1 i=1j=1 (2.48)
) (YD S+ Y vy,

k ceGg ceGr
—logZ

where d and d’ are numbers of attributes in the source network and the target network, re-
spectively. In this objective function, the first term and the second term, respectively, define the
likelihood over the source network and the target network; while the third term defines the like-
lihood over common features defined in the two networks. The common feature functions are
defined according to the social theories. Such a definition implies that attributes of the two net-
works can be entirely different as they are optimized with difterent parameters {o} and {8}, while
the information transferred from the source network to the target network is the importance of

common features that are defined according to the social theories. Finally, we define four (real-
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Input: a source network Gg, a target network G, and the learning rate 7
Output: estimated parameters 6 = ({a}, {8}, {})

Initialize § < 0;

Perform statistics according to social theories;

Construct social theories based features /iy (Y¢);

repeat

Step 1: Perform LBP to calculate marginal distribution of unknown variables in the source
network P(y;|x;,Ggs);

Step 2: Perform LBP to calculate marginal distribution of unknown variables in the target
network P(yi|x;,Gr);

Step 3: Perform LBP to calculate the marginal distribution of clique ¢, i.e.,

PUelX¢ . X{ . Gs, Gr);

Step 4: Calculate the gradient of jx according to Eq. (2.49) (for o; and f; with a similar

formula);

Step 5: Update parameter 6 with the learning rate n:

0(0)

onew = oold +n- T

until Convergence;

Algorithm 3: Learning algorithm for TranFG.

valued) balance based features, seven (real-valued) status based features, four (binary) features for
opinion leader, and six (real-valued) correlation features for structural hole. More details about
feature function are given in the Appendix.

Model Learning and Inferring. 'The last issue is to learn the TranFG model and to infer the
type of unknown relationships in the target network. Learning the TranFG model is to estimate
a parameter configuration 8 = ({a}, {#}, {1}) to maximize the log-likelihood objective function
O(a, B, ). We use a gradient decent method (or a Newton-Raphson method) to solve the ob-
jective function. We use p as the example to explain how we learn the parameters. Specifically,
we first write the gradient of each p; with regard to the objective function:

0O _ gy (v r
=E[hi (YY) + he (Y,))] (2.49)

—Ep,, (YelXs Xr.Gs.6r (Y + he (Y],

where E[h; (YS) + hi(Y.])] is the expectation of factor function hy (Y.S) + hy (Y.T) given the
data distribution (i.e., the average value of the factor function /g (Y,) over all triads in the source
and the target networks); the second term Ep,, (v, |xs,X7.Gs.G7)[-] is the expectation under the
distribution Py, (Y¢|Xs.Xr,Gs,Gr) given by the estimated model. Similar gradients can be
derived for parameters ; and f;.
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As the graphical structure can be arbitrary and may contain cycles, we use loopy belief
propagation (LBP) [111] to approximate the gradients. It is worth noting that in order to leverage
the unlabeled relationships, we need to perform the LBP process twice in each iteration, one
time for estimating the marginal distribution of unknown variables y; =? and the other time for
marginal distribution over all cliques. Finally, with the gradient we update each parameter with a
learning rate 7. The learning algorithm is summarized in Algorithm 3. We see that in the learning
process, the algorithm uses an additional loopy belief propagation to infer the label of unknown
relationships. After learning, all unknown relationships are assigned with labels that maximize
the marginal probabilities.

Evaluation

'The proposed framework is very general and can be applied to many different networks. For ex-
periments, we consider five different types of networks: Epinions, Slashdot, Mobile, Coauthor,
and Enron. On the first three networks (Epinions, Slashdot, and Mobile), our goal is to infer
undirected relationships (e.g., friendships), while on the other two networks (Coauthor and En-
ron), the goal is to infer directed relationships (e.g., advisor-advisee relationships).

Evaluation Measures. To quantitatively evaluate the performance of inferring the type of social
relationships, we conducted experiments with different pairs of (source and target) networks, and
evaluated the proposed approaches in terms of Precision, Recall, and F1-Measure. We compare
the following methods for inferring the type of social relationships.

SVM: Similar to the logistic regression model used in Leskovec et al. [92], SVM uses
attributes associated with each edge as features to train a classification model and then employs
the classification model to predict edges’ labels in the test data set. For SVM, we employ SVM-
light.

CREF: It trains a conditional random field [87] with attributes associated with each edge
and correlations between edges.

PFG: The method is also based on CREF, but it employs the unlabeled data to help learn
the predictive model. The method is proposed in Tang et al. [150].

TranFG: The proposed approach, which leverages the label information from the source
network to help infer the type of relationship in the target network.

We also compare with the method TPFG proposed in Wang et al. [155] for mining advisor-
advisee relationships in the publication network. This method is domain-specific and thus we only
compare with it on the Coauthor network.

In all experiments, we use the same feature definitions for all methods. On the Coauthor
network, we do not consider some domain-specific correlation features.'® All codes were imple-
mented in C++, and all experiments were performed on a PC running Windows 7 with Intel
(R) Core (TM) 2 CPU 6600 (2.4 GHz) and 4 GB memory. It took about 1-30 min to train the
TranFG model over different data sets (e.g., 30 min for learning over the Epinions and the Slash-

**We conducted experiments, but found that those features will lead to overfitting.
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dot networks). For incorporating social balance and social status into the TranFG model, we need

count all triads in the source and the target networks. We design an efficient linear algorithm!,
which takes 1-5 min to enumerate all triads for the five networks.

Table 2.11: Performance comparison of different methods for inferring friendships (or trustful rela-
tionships). (S) indicates the source network and (T) the target network. For the target network, we use 40% of
the labeled data in training and the rest for test

Data Set Method Prec. Rec. F1-score
SVM 0.7157 09733  0.8249

Epinions (S) to
CRF 0.8919 0.6710  0.7658

Slashdot (T)
(40%) PFG 0.9300 0.6436  0.7607
’ TranFG | 0.9414 09446  0.9430
SVM 0.9132 0.9925 0.9512

Slashdot (S) to

. CRF 0.8923 0.9911 0.9393

Epinions (T)
PFG 0.9954 09787  0.9870

(40%)

TranFG | 0.9954 0.9787  0.9870
SVM | 0.8983 0.5955  0.7162
CRF 0.9455 0.5417  0.6887

Epinions (S) to

Mobile (T)
PFG 1.0000 0.5924  0.7440
(40%)
TranFG | 0.8239 0.8344  0.8291
SVM 0.8983 0.5955 0.7162
Slashdot (S) to
. CRF 0.9455 0.5417  0.6887
Mobile (T)
PFG 1.0000 0.5924  0.7440
(40%)

TranFG | 0.7258 0.8599  0.7872

Inferring Accuracy Analysis. We compare the performance of the four methods for inferring
friendships (or trustful relationships) on four pairs of networks: Epinions (S) to Slashdot (T),
Slashdot (S) to Epinions (T), Epinions (S) to Mobile (T), and Slashdot (S) to Mobile (T)."”
In all experiments, we use 40% of the labeled data in the target network for training and the
rest for test. For transfer, we consider the labeled information in the source network. Table 2.11
lists the performance of the different methods on the four test cases. Our approach shows better
performance than the three alternative methods. We conducted sign tests for each result, which
shows that all the improvements of our approach TranF'G over the three methods are statistically
significant (p < 0.01).

Table 2.12 shows the performance of the four methods for inferring directed relationships
(the source end has a higher social status than the target end) on two pairs of networks: Coauthor

"We did try to use Mobile as the source network and Slashdot/Epinions as the target network. However, as the size of Mobile
is much smaller than the other two networks, the performance was considerably worse.
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Table 2.12:  Performance comparison of different methods for inferring directed relationships (the
source end has a higher social status than the target end). (S) indicates the source network and (T) the
target network. For the target network, we use 40% of labeled data in training and the rest for test

Data Set Method Prec. Rec.  Fl-score
SVM 0.9524 0.5556  0.7018
CRF 0.9565 0.5366  0.6875
PFG 0.9730 0.6545  0.7826

TranFG | 0.9556 0.7818  0.8600
SVM 0.6910 0.3727 0.4842

Enron (S) to CRF 1.0000 0.3043  0.4666

Coauthor (T) PFG 0.9916 04591 0.6277

(40%) TPFG | 0.5936 0.7611 0.6669

TranFG | 0.9793 0.5525  0.7065

Coauthor (S) to
Enron (T)
(40%)

(S) to Enron (T) and Enron (S) to Coauthor (T). We use the same experimental setting as that for
inferring friendships on the four pairs of networks, i.e., taking 40% of the labeled data in the target
network for training and the rest for test, while for transfer, analogously, we consider the labeled
information from the source network. We see that by leveraging the supervised information from
the source network, our method clearly improves the performance (about 15% by F1-score on
Enron and 10% on Coauthor).

'The method PFG can be viewed as a non-transferable counterpart of our method, which
does not consider the labeled information from the source network. From both Table 2.11 and
Table 2.12, we can see that with the transferred information, our method can clearly improve
the relationship categorization performance. Another phenomenon is that PFG has a better per-
formance than the other two methods (SVM and CRF) in most cases. PFG could leverage the
unlabeled information in the target network, thus enhances the inferring performance. The only
exception is the case of Epinions (S) to Slashdot (T), where it seems that users in Slashdot have a
relatively consistent pattern, thus a classification based method (SVM) with only general features
(e.g., in-degree, out-degree, and number of common neighbors) can achieve very high perfor-
mance.

Factor Contribution Analysis. We now analyze how different social theories (social balance,
social status, structural hole, and two-step flow (opinion leader)) can help infer social ties. For
inferring friendships, we consider social balance-(SB) and structural hole-(SH) based transfer
and for inferring directed friendships, we consider social status-(SS) and opinion leader-(OL)
based transfer. Here we examine the contribution of the different factors defined in our TranFG
model. Figure 2.13 shows the average F1-Measure score over the different networks, obtained by
the TranFG model for inferring friendships and directed relationships. In particular, TranFG-SB
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Figure 2.13: Factor contribution analysis. TranFG-SH denotes our TranFG model by ignoring the struc-
tural hole-based transfer. TranFG-SB stands for ignoring the structural balance-based transfer. TranFG-OL
stands for ignoring the opinion leader-based transfer and TranFG-SS stands for ignoring social status-based

transfer.

represents TranF'G without social balance based features and TranFG-All denotes that we remove
all the transfer features. It can be clearly observed that the performance drops when ignoring
each of the factors. We can also see that for inferring friendships the social balance is a bit more
useful than structural hole, and for inferring directed relationships the social status factor is more
important than the factor of opinion leader. The analysis also confirms that our method works
well (further improvement is obtained) when combining different social theories.

Social Balance and Structural Hole Based Transfer. We present an in-depth analysis on how
the social balance and structural hole based transfer can help by varying the percent of labeled
training data in the target network. We see that in all cases except Slashdot-to-Epinions, clear
improvements can be obtained by using the social balance- and structural hole-based transfer,
when the labeled data in the target network is limited (< 50%). Indeed, in some cases such as
Epinions-to-Slashdot, with merely 10% of the labeled relationships in Slashdot, our method can
obtain a good performance (88% by F1-score). Without transfer, the best performance is only
70% (obtained by SVM). We also find that structural balance-based transfer is more helpful than
structural hole-based transfer for inferring friendships in most cases with various percents of
labeled relationships. This result is consistent with what we obtained in the factor contribution
analysis.

A different phenomenon is found in the case of Slashdot-to-Epinions, where all methods
can obtain a F1-score of 94% with only 10% of the labeled data. The knowledge transfer seems
not helpful. By a careful investigation, we found simply with those features (cf. Appendix for
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Figure 2.14: Performance of inferring friendships with and without the balance-based transfer by
varying the percent of labeled data in the target network.

details) defined on the edges, we could achieve a high performance (about 90%). The structure
information indeed helps, but the gained improvement is limited.

Social Status and Opinion Leader Based Transfer. Figure 2.15 shows an analysis for inferring
directed relationships on the two cases (Enron-to-Coauthor and Coauthor-to-Enron). Here, we
focus on testing how social status and opinion leader based transfer can help infer the type of
relationships by varying the percent of labeled relationships in the target network. In both cases
(Coauthor-to-Enron and Enron-to-Coauthor), the TranF'G model achieves consistent improve-
ments. For example, when there is only 10% of labeled advisor-advisee relationships in the Coau-
thor network, without considering the status and opinion leader based transfer, the F1-score is
only 24%. By leveraging the status and opinion leader-based transfer from the email network
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Figure 2.15: Performance of inferring directed relationship with and without the status-based trans-
fer by varying the percent of labeled data in the target network.

(Enron), the score is doubled (47%). Moreover, we find that the social status-based transfer is
more helpful than the opinion leader-based transfer with various percents of the labeled data.

Qualitative Case Study. Now we present a case study to demonstrate the effectiveness of the
proposed model. Figure 2.16 shows an example generated from our experiments. It represents a
portion of the Coauthor network. Black edges and arrows, respectively, denote labeled colleague
relationships and advisor-advisee relationships in the training data. Colored arrows and edges
indicate advisor-advisee and colleagues relationships detected by three methods: SVM, PFG,
and TranFG, with red color indicating mistake ones. The numbers associated with each author,
respectively, denote the number of papers and the score of h-index.

We investigate more by looking at a specific example. SVM mistakenly classifies three
advisor-advisee relationships and two colleague relationships. SVM trains a local classification
model without considering the network information. PFG considers the network information
as well as the unlabeled data, thus obtains a better result. Our proposed TranFG model further
corrects two mistakes (“Fait-Leonardi” and “Ausiello-Laura”) by leveraging properties of social
status and opinion leader. For example, the results obtained by PFG among “Azar,” “Amos,” and
“Leonardi” form a triad of (“011”). Although it satisfies the property of social status, the probabil-
ity of such triad is much lower (0.4% vs. 24.6%) than the form (“100”). However, the limitation
of the training data leads PFG to result in a bias mistake (5.8% vs. 12.6%). TranF'G smoothes the
results by transferring knowledge from the source (Enron) network.

Summary
In this section, we study the problem of inferring social ties across heterogeneous networks. We
precisely define the problem and propose a transfer-based factor graph (TranFG) model. The
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Figure 2.16: Case study. Illustration of inferring advisor-advisee relationships on the Coauthor network.
Directed edges indicate advisor relationships, and undirected ones indicate co-author relationships. Black edges

indicate labeled data. Red colored edges indicate wrong predictions.
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model incorporates social theories into a semi-supervised learning framework, which is used to
transfer supervised information from the source network to help infer social ties in the target
network. We evaluate the proposed model on five different genres of networks. We show that the
proposed model can significantly improve the performance for inferring social ties across different
networks comparing with several alternative methods. Our study also reveals several interesting
phenomena.

2.4 CONCLUSIONS

In this chapter, we give a comprehensive introduction to the study of social tie analysis. We present
the state-of-the-art algorithms for predicting missing links and describe methodologies for infer-
ring social ties including unsupervised learning-based method, supervised learning-based method,
active learning-based method, and transfer learning-based method.
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CHAPTER 3

Social Influence Analysis

Social influence occurs when one’s opinions, emotions, or behaviors are aftected by others, in-
tentionally or unintentionally [78]. Social influence is a prevalent, complex, and subtle force that
governs the dynamics of all social networks.

3.1 OVERVIEW

Social influence has been a widely accepted phenomenon in social networks for decades. Many
applications have been built based around the implicit notation of social influence between peo-
ple. For example, more and more people make decisions based on their interactions from social
networks. People often pick what restaurants to go to based on recommendations and reviews
from Yelp. As the use of social networks grows in all domains, such behaviors of social influence
become more and more prevalent. More and more people make decisions and changes influenced
by their social networks. With the exponential growth of online social network services such as
Facebook and Twitter, social influence can for the first time be measured over a large population.

Deutsch and Gerard [37] categorized social influence into informative social influence and
normative social influence from the perspective of psychological needs. The former is an influence
to accept (or disagree with) information from others and the latter is an influence to conform to
the expectations of others. With the power of influence, a company can market a new product
by first convincing a small number of influential users to adopt the product and then triggering
a cascade of further adoptions through the effect of “word of mouth” in the social network. In
an academic network, with the influence between research collaborators, novel ideas or innova-
tions can quickly spread and lead to the blooming of new academic directions. Christakis and
Fowler [49] created the theory of Three-Degree-of-Influence, which posits that “everything we
do or say tends to ripple through our network, having an impact even on our three degree of
friends (friends’ friends’ friends).”

Recently, social influence analysis has attracted considerable research interest. Roughly
speaking, existing works can be grouped into three categories. The first category of research fo-
cused on qualitatively validating the existence of influence [2, 9, 18, 31]. For example, Bond et al.
[18] used a randomized controlled trial to verify the social influence on political voting behaviors
by delivering political mobilization messages to 61 million Facebook users during the 2010 US
congressional elections. They found that the messages directly influence political self-expression
and real-world voting behavior of millions of people. Bakshy et al. [9] also conducted two very
large field experiments on Facebook to test the effect of social influence on consumer responses to
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Figure 3.1: Influence maximization for viral marketing.

advertising. They also found significant influence exists for users’ advertising behaviors, and the
the greatest influence occurs with strong ties. The second category of research on social influence
is to measure the influential strength between users. Tang et al. [143] first studied the problem of
topic-level social influence analysis and presented a Tvpical Affinity Propagation (TAP) approach
to quantify the social influence between users from different angles. Goyal et al. [55] proposed a
method to learn the influence probability by considering the correlation between users” actions.
Liu et al. [99] extended the influence learning to heterogeneous social networks and further stud-
ied the influence propagation and aggregation mechanisms. The third category of social influence
research is social influence model. Two popular social influence models are /inear threshold model
and independent cascaded model [42,79,121]. In both models, the objective is to find a small subset
of users (seed users) to adopt a behavior (e.g., adopt a product), and the goal is to trigger a large
cascade of further adoptions through the influence diffusion model. The problem is referred to as
influence maximization. Richardson [121] and Kempe et al. [79] formally defined the problem of
influence maximization. Chen et al. [27] presented an efficient algorithm to solve the problem.
Goyal et al. [54] leveraged real propagation traces to derive more accurate influence maximization
models.

Figure 3.1 shows an example of using social influence for viral marketing. A mobile phone
company wants to advertise their new mobile phone in the social network. Their strategy is to find
a small number of influential (seed) users in a social network to freely use the new product. The
objective is that the adoption of the small number of influential users can trigger their friends and
further continue to trigger their friends’ friends to also use the mobile phone. The real number
associated with each arrow indicates the influence of the source user on the target user. From the
example, we see that there are several challenges for finding the optimal subset of seed users. The
first one is how to obtain (or quantify) the influence between users and the second one is how to
design an algorithm to select the seed users.

In addition, the effect of the social influence from different angles (topics) may be different.
For example, in the research community, such influences are well known. Most researchers are
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influenced by others in terms of collaboration and citations. An expert in “data mining” would
have a strong influence on his collaborators, while on some other topic, such as “computer graph-
ics,” he may be mainly influenced by his collaborators. Thus, the key question is how to effectively
and efliciently quantify the influence among users on different topics.

In this chapter, we will focus on introducing methodologies for quantifying the topic-level
influential strength between users for large social networks, and then introduce its application to
social action prediction.

3.2 MINING TOPIC-LEVEL SOCIAL INFLUENCE ANALYSIS

The goal of social influence analysis is to derive the topic-level social influences based on the
input network and topic distribution on each node. First we introduce some terminology, and
then define the social influence analysis problem.

Topic Distribution. In social networks, a user usually has interests on multiple topics. For-
mally, each node v € V is associated with a vector 6, € RT of T-dimensional topic distribution
(3°, 6yz = 1). Each element 6, is the probability(importance) of the node on topic z.

Topic-Based Social Influences. Social influence from node s to ¢ denoted as ji; is a nu-
merical weight associated with the edge e,;. In most cases, the social influence score is asymmetric,
i.e., st # Wys. Furthermore, the social influence from node s to ¢ will vary on different topics.

'Thus, based on the above concepts, we can define the tasks of topic-based social influence
analysis. Given a social network G = (V, E) and a topic distribution for each node, the goal is to
find the topic-level influence scores on each edge.

Problem 3.1 Given (1) a network G = (V, E), where V is the set of nodes (users, entities) and
E is the set of directed/undirected edges, and (2) T-dimensional topic distribution 6, € RT for
all node v in V, how does one find the topic-level influence network G, = (V;, E) for all topics
1 <z < T? Here V; is a subset of nodes that are related to topic z and E; is the set of pair-wise
weighted influence relations over V, each edge is the form of a triplet (vg, vs, uZ;) (or shortly
(est, 1Z,)), where the edge is from node vy to node v, with the weight uZ,.

The input to our social influence analysis includes: (1) networks and (2) topic distribution
on all nodes. The first input is the network backbone obtained by any social network, such as
online social networks like Facebook and Twitter. The second input is the topic distribution for
all nodes. In general, the topic information can be obtained in many different ways. For example,
in a social network, one can use the predefined categories as the topic information, or use user-
assigned tags as the topic information. In addition, we can use statistical topic modeling [14, 69]
to automatically extract topics from the social networking data. In this definition, to make it
general, we do not consider users’ actions. We will extend the problem formulation in the next
section.

'The social influence analysis problem poses a unique set of challenges.
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First, how does one leverage both node-specific topic distribution and network structure to
quantify social influence? In another words, a user’s influence on others not only depends on their
own topic distribution, but also relies on what kinds of social relationships they have with others.
'The goal is to design a unified approach to utilize both the local attributes (topic distribution) and
the global structure (network information) for social influence analysis.

Second, how does one scale the proposed analysis to a real large social network? For ex-
ample, the academic community of Computer Science has more than 1 million researchers and
more than 10 million coauthor relations; Facebook has more than 50 millions users and hundreds
of millions of different social ties. How to efficiently identify the topic-based influential strength
for each social tie is really a challenging problem.

Solution. To address the above challenges, we propose Topical Affinity Propagation (TAP) to
model the topic-level social influence on large networks. In particular, given a social network
G = (V, E) and a topic model on the nodes V, TAP computes topic-level social influence graphs
G; = (V3. E;) for all topic 1 < z < T. The key features of TAP are the following:

* TAP provides topical influence graphs that quantitatively measure the influence on a fine-
grain level;

* the influence graphs from TAP can be used to support other applications such as finding
representative nodes or constructing the influential subgraphs; and

* an efficient distributed learning algorithm is developed for TAP based on the Map-Reduce

framework in order to scale to real large networks.

3.2.1 TOPICAL AFFINITY PROPAGATION

Based on the input network and topic distribution on the nodes, we formalize the social influence
problem in a topical factor graph model and propose a topical affinity propagation on the factor
graph to automatically identify the topic-specific social influence. Our main idea is to leverage an
affinity propagation at the topic-level for social influence identification. The approach is based on
the theory of factor graph [84], in which the observation data are cohesive on both local attributes
and relationships. In our setting, the node corresponds to the observation data in the factor graph
and the social relationship corresponds to edge between the observed nodes and the observation
data in the graph. Finally, we propose two different propagation rules: one based on message
passing on graphical models, the other a parallel update rule that is suitable for Map-Reduce
framework.

Topical Factor Graph (TFG) model. Now we first explain the proposed TFG model. The TFG
model has the following components: a set of observed variables {v; }/_ | and a set of hidden vec-
tors {y; }V_, which corresponds to the N nodes in the input network. Notations are summarized

in Table 3.1.
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Figure 3.2: Graphical representation of the topical factor graph model. {v1, ..., v4} are observable
nodes in the social network; {y,.....y,} are hidden vectors defined on all nodes, with each element
representing which node has the highest probability to influence the corresponding node; g(.) repre-
sents a feature function defined on a node, f(.) represents a feature function defined on an edge; and
h(.) represents a global feature function defined for each node, i.e., k € {1,...,N}.

The hidden vectory; € {1,..., N }T models the topic-level influences from other nodes to
node v;. Each element y7, taking the value from the set {1, ..., N}, represents the node that has
the highest probability to influence node v; on topic z.

For example, Figure 3.2 shows a simple example of an TFG. The observed data consists of
four nodes {vi, ..., v4}, which have corresponding hidden vectors Y = {y,,...,y,}. The edges
between the hidden nodes indicate the four social relationships in the original network (aka the
edges of the input network).

There are three kinds of feature functions:

* Node feature function g(v;,y;, z) is a feature function defined on node v; specific to topic
Z5
* Edge feature function f(y,.y;,z) is a feature function defined on the edge of the input

network specific to topic z; and

* Global feature function /(y,, ...,yy . k, z) is a feature function defined on all nodes of the
input network w.r.t. topic z.

Basically, node feature function g describes local information on nodes, edge feature func-
tion f describes dependencies between nodes via the edge on the graph model, and global feature
function captures constraints defined on the network.
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Table 3.1: Notations

SYMBOL DESCRIPTION

N number of nodes in the social network
M number of edges in the social network
T number of topics
v
E

the set of nodes in the social network
the set of edges

v; a single node
; node-v;’s representative on topic z
Vi the hidden vector of representatives for all topics on node v;
07 the probability for topic z to be generated by the node v;
€st an edge connecting node vs and node v,
w the similarity weight of the edge es; w.r.t. topic z
5 the social influence of node v on node v; w.r.t. topic z

In this book, we define the node feature function g as:

wizyz

i z :

ZjENB(i)(wiZj ‘*’wai) Vi 75 , (31)
J ENB() Wi yi=i

2 jensi) Wi tws) i

g(vi’yl'7z) =

where NB(i) represents the indices of the neighboring nodes of node v;; wf; = 67 a;; reflects the
topical similarity or interaction strength between v; and vj, with 67 denoting the importance of
node-; to topic z, and «;; denoting the weight of the edge e;;. o;; can be defined by different
ways. For example, in a coauthor network, «;; can be defined as the number of papers coauthored
by v; and v;. The above definition of the node feature function has the following intuition: if node
v; has a high similarity/weight with node vy, , then vy, may have a high influence on node v;; or
if node v; is trusted by other users, i.e., other users take him as an high influential node on them,
then it must also “trust” himself highly (taking himself as a most influential user on him).

As for the edge feature function, we define a binary feature function, i.e., f(y;. y;.2) =1
if and only if there is an edge e;; between node v; and node v;, otherwise 0. We also define a
global edge feature function 4 on all nodes, i.e.:

0 ify; =kandy? # k foralli #k

hypooyy ks =1 (3.2)

otherwise.

Intuitively, i1(-) constrains the model to bias towards the “true” representative nodes. More
specially, a representative node on topic z must be the representative of itself on topic z, i.e.,
yi = k. And it must be a representative of at least another node v;, i.e., 3y7 = k,i # k.
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Next, a factor graph model is constructed based on this formulation. Typically, we hope that
amodel can best fit (reconstruct) the observation data, which is usually represented by maximizing
the likelihood of the observation. Thus we can define the objective likelihood function as:

1 N T
Pw.Y)=— [T11701 - yn-k.2)

k=1z=1
N T T
nl_[g(vi’)’i’z) 1_[ l_[f(Yk’YI’Z)’ (33)
i=1z=1 ekleE z=1
where v = [vy,...,vy] and Y = [y,,...,yy] corresponds to all observed and hidden variables,

respectively; g and f are the node and edge feature functions; 4 is the global feature function; Z
is a normalizing factor.

'The factor graph in Figure 3.2 describes this factorization. Each black box corresponds to
a term in the factorization, and it is connected to the variables on which the term depends.

Based on this formulation, the task of social influence is cast as identifying which node has
the highest probability to influence another node on a specific topic along with the edge. That is,
to maximize the likelihood function P (v,Y). One parameter configuration is shown in Figure 3.2.
On topic 1, both node vy and node v3 are strongly influenced by node v,, while node v, is mainly
influenced by node v4. On topic 2, the situation is different. Almost all nodes are influenced by
node vy, where node vy is indirectly influenced by node v; via the node vs.

Basic TAP learning algorithm. To train the TFG model, we can take Equation (3.3) as the ob-
jective function to find the parameter configuration that maximizes the objective function. While
it is intractable to find the exact solution to Equation (3.3), approximate inference algorithms
such as sum-product algorithm [84], can be used to infer the variables y.

In sum-product algorithm, messages are passed between nodes and functions. Message
passing is initiated at the leaves. Each node v; remains idle until messages have arrived on all but
one of the edges incident on the node v;. Once these messages have arrived, node v; is able to
compute a message to be sent onto the one remaining edge to its neighbor. After sending out
a message, node v; returns to the idle state, waiting for a “return message” to arrive from the
edge. Once this message has arrived, the node is able to compute and send messages to each of
neighborhood nodes. This process runs iteratively until convergence.

However, traditional sum-product algorithm cannot be directly applied for multiple topics.
We first consider a basic extension of the sum-product algorithm: topical sum-product. The al-
gorithm iteratively updates a vector of messages m between variable nodes and factor (i.e., feature
function) nodes. Hence, two update rules can be defined, respectively, for a topic-specific message
sent from variable node to factor node and for a topic-specific message sent from factor node to
variable node:
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my-)f(y,Z) = 1_[ n/lf/_)y(y’z) 1_[ 1_[ mf/_)y(y’zl)(fz/z)
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where

s f' ~ y\f represents f’is a neighbor node of variable y on the factor graph except factor
I
* Y is a subset of hidden variables that feature function f is defined on; for example, a feature

f(¥i,yj) is defined on edge e;;, then we have Y = {y;, y;}; ~ {y} represents all variables
in Y except y;

* the sum ), actually corresponds to a marginal function for y on topic z; and

* coeflicient 7 represents the correlation between topics, which can be defined in many dif-
ferent ways. In this book, for simplicity, we assume that topics are independent. That is,
7,7 = l whenz = 2’ and 7,7 = O when z # z’. In the following, we will propose two new
learning algorithms, which are also based this independent assumption.

New TAP learning algorithm. However, the sum-product algorithm requires that each node
need wait for all(-but-one) message to arrive, thus the algorithm can only run in a sequential
mode. This results in a high complexity of O(N* x T) in each iteration. To deal with this prob-
lem, we propose an affinity propagation algorithm, which converts the message passing rules into
equivalent update rules passing message directly between nodes rather than on the factor graph.
'The algorithm is summarized in Algorithm 1. In the algorithm, we first use logarithm to trans-
form sum-product into max-sum, and introduce two sets of variables {r/; T_, and {aj; T_| for
each edge e;;. The new update rules for the variables are as follows:

= b= max b +aid (3.5)
z _ . z
aj = kgvgfj)mm{rkjvo} (3.6)
a;; = min(max{r};,0}, —min {rj;, 0}
- i 2'70 ’GNB ] k) 3.7
(e  min{r,. 0).1 < NB()) (57)
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where NB(j) denotes the neighboring nodes of node j, rj; is the influence message sent from

node i to node j and af; is the influence message sent from node ; to node 7, initiated by 0, and
b; is the logarithm of the normalized feature function

gi.y;. 2)lyz=;

b7 = log )
Y ZkeNB(i)U{i}g(vi,yi,Z)lyl,z=k

(3.8)

'The introduced variables r and a have the following nice explanation. Message a;; reflects,
from the perspective of node vj, how likely node v; thinks he/she influences on node v; with
respect to topic z, while message 7, reflects, from the perspective of node v;, how likely node v;
agrees that node v; influence on him/her with respect to topic z. Finally, we can define the social
influence score based on the two variables r and a using a sigmoid function:

1

Ppnp AL (3.9)

s =
The score %, actually reflects the maximum of P(v,Y, z) for y7 = s, thus the maximiza-

tion of P(v,Y,z) can be obtained by
(3.10)

Z = ar max
i SENB(1)Ut}

st

Finally, according to the obtained influence scores {17, } and the topic distribution {6, }, we
can easily generate the topic-level social influence graphs. Specifically, for each topic z, we first
filter out irrelevant nodes, i.e., nodes that have a lower probability than a predefined threshold.
An alternative way is to keep only a fixed number (e.g., 1,000) of nodes for each topic-based social
influence graph. (This filtering process can be also taken as a preprocessing step of our approach,
which is the way we conducted our experiments.) Then, for a pair of nodes (vs, v;) that has an
edge in the original network G, we create two directed edges between the two nodes and assign
the social influence scores uZ, and u?, respectively. Finally, we obtain a directed social influence
graph G for the topic z.

The new algorithm reduces the complexity of each iteration from O(N* x T) in the sum-
product algorithm to O(M x T'). More importantly, the new update rules can be easily paral-
lelized.

Distributed TAP learning algorithm. As a social network may contain millions of users and
hundreds of millions of social ties between users, it is impractical to learn a TFG from such a
huge data using a single machine. To address this challenge, we deploy the learning task on a
distributed system under the map-reduce programming model [36].

Map-Reduce is a programming model for distributed processing of large data sets. In the
map stage, each machine (called a process node) receives a subset of data as input and produces a
set of intermediate key/value pairs. In the reduce stage, each process node merges all intermediate
values associated with the same intermediate key and outputs the final computation results. Users
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Input: G = (V, E) and topic distributions {6, }yev
Output: topic-level social influence graphs {G, = (V;, E;)}T_,

Calculate the node feature function g(v;.y;, 2);
Calculate b} according to Equation (3.8);
Initialize all {r/;} < 0;
repeat
foreach edge-ropic pair (e;j, z) do

‘ Update ri; according to Equation (3.5);
end
foreach node-topic pair (v, z) do

‘ Update a3, according to Equation (3.6);
end
foreach edge-ropic pair (e, z) do

‘ Update af; according to Equation (3.7);

end

until convergence;
foreach node v; do
foreach neighboring node s € NB(t) U {t} do
| Compute uZ, according to Equation (3.9);
end
end

Generate G, = (V;, E;) for every topic z according to {uZ,};

Algorithm 4: The new TAP learning algorithm.

specify a map function that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with the same inter-
mediate key.

In our affinity propagation process, we first partition the large social network graph into
subgraphs and distribute each subgraph to a process node. In each subgraph, there are two kinds
of nodes: internal nodes and marginal nodes. Internal nodes are those all of whose neighbors are
inside the very subgraph; marginal nodes have neighbors in other subgraphs. For every subgraph
G, all internal nodes and edges between them construct the closed graph G. The marginal nodes
can be viewed as “the supporting information” for updating the rules. For easy explanation, we
consider the distributed learning algorithm on a single topic and thus the map stage and the
reduce stage can be defined as follows.

In the map stage, each process node scans the closed graph G of the assigned subgraph G.
Note that every edge e;; has two values a}; and r;;. Thus, the map function is defined as for every
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key/value pair e;; /a;;, it issues an intermediate key/value pair e;+/(b;; + a;j); and for key/value
pair e;; /rij, it issues an intermediate key/value pair e /r;;.

In the reduce stage, each process node collects all values associated with an intermediate
key e;« to generate new r;, according to Equation (3.5), and all intermediate values associated
with the same key e ; to generate new a4 ; according to Equations (3.6) and (3.7). Thus, the one
time map-reduce process corresponds to one iteration in our affinity propagation algorithm.
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Figure 3.3: Graphical representation of the dynamic factor graph.

3.2.2 DYNAMIC SOCIAL INFLUENCE ANALYSIS

We further extend the social influence analysis to the dynamic setting, where the network struc-
ture and the users’ topic distribution may change over time. In general, the input of dynamic
social influence analysis is a serial of time-dependent social networks {G’} = {(V’, E*)}, where
V! is a set of nodes (users, entities) appearing within the time window ¢ and E’ is the set of
directed/undirected edges. Each edge e} L €E ! is associated with a weight/similarity w! » which
can be defined in different ways, depending on the specific application.

We still use the factor graph model to learn the influence strength between users. The
technical issue we need to address is how to incorporate the time information. Given T time-
specific social networks {G’} = {(V*, E")}T_, DFG models the networks as a sequence of time-
dependent factor graphs. At each time window, the factor graph has a similar structure with the
PFG model. In addition, each factor graph also depends on the factor graph of the previous
time window. Thus, the sequence of time-dependent factor graphs forms a Markov chain. Factor
functions are defined between the variables of two consecutive time-dependent factor graphs.
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A forward-backward message passing process is defined to capture the dependencies between
networks of two time windows. Figure 3.3 shows the graphical representation of the DFG model.

To formally define the DFG model, we add a superscript ¢ to the variables (v, yi, Ajjk,
and ;) in PFG. Within the factor graph of each time window, the factor functions (node factor
function and edge factor function) are defined similarly to the PFG model. Between two con-
secutive time-dependent factor graphs, we define a bridge factor function between y! and y!*!.
In this way, the influence /,L;-l- (or P(y! = j)) of user v; on v; not only is determined by their
local and network structure information at time ¢, but also depends on their historic influence.

Specifically, the bridge factor function as:

t+1

1 ST yi =y
h(y; yith = 1-¢ £
T __ 1=qg t t+1 >
seoscorn Vi 7 Y
where g € [0, 1] is a weight, indicating the probability of one user’s influence on another preserves

(3.11)

with time changing. The weight g captures the time dependencies for the dynamic social influence
analysis. It can be learned in a similar way as Algorithm 2.
Now the joint probability becomes

POyi,....yN vt oN) =
Hugevt g(y,-t, Uf) He[jeEf f(yf, y}) Hugev h(yfﬂ, yf)~ (3.12)
We generalize TAP learning algorithm to solve the learning problem for the DFG model.

By introducing two new variables @ and B, respectively, representing the forward and backward
messages passed between two time-windows, we can obtain the following update rules:

1

A = = > futkbly [ Al (3.13)
I 1eSC() SENB()\{j}
Y hk ket > k! k)BLS]
k’eSC@) k”7eSC(@i)
1 _

G = > hlbe'b [T Ay (3.14)
I 1eSC(i) SENB(i)
1

B = ¢ 2. h@opo [T A (3.15)
L 1eSC() SENB(i)
1eSC(j) i€NB(J)

'Thus, the probabilistic influence can be calculated by

I ,_
My = e Bt e [T e (3.17)
J iENB(J)
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where a,’Jl is the message from the previous time window and ,B;JI is the message from the

next time window. Above is the solution when influence scores in all time windows are calculated

together. Given that the influence is evolving forward with time, which means {/xgj} should be

generated without information about { V“éjﬂ I8
only allowing forward message o and discarding . Then it turns out we can compute the influence

we can constraint the message passing process by

time by time, with a forward version of TAP.

Both the forward-backward and forward version of the TAP algorithm inherit the nice
property of “local” update, which makes the algorithm easy to be parallelized. We implement the
distributed learning under the map-reduce platform. Details are omitted due to space limitation.

3.2.3 MODELAPPLICATION

The social influence graphs by TAP can help with many applications. Here we illustrate two
applications: expert finding and influence maximization.

Expert finding. Here we present three methods for expert finding: (1) PageRank+Language
Model (PR); (2) PageRank with global Influence (PRI); and (3) PageRank with topic-based
influence (TPRI).

Baseline: PR. One baseline method is to combine the language model and PageRank
[141]. Language model is to estimate the relevance of a candidate with the query and PageR-
ank is to estimate the authority of the candidate. There are different combination methods. The
simplest combination method is to multiply or sum the PageRank ranking score and the language
model relevance score.

Proposed 1: PRI. In PRI, we replace the transition probability in PageRank with the in-

fluence score. Thus we have

ol = B+ (=F) Y o). (3.18)

v/ —>v
In traditional PageRank algorithm, p(v|v’) is simply the value of one divides the number
of outlinks of node v’. Here, we consider the influence score. Specifically, we define

V4
Zz /’LU’U
Z .
:v’—)vj Zz ,LLv/vj

p|v) = >,

Proposed 2: TPRI. In the second extension, we introduce, for each node v, a vector of
ranking scores r[v, z], each of which is specific to topic z. Random walk is performed along with
the co-author relationship between authors within the same topic. Thus, the topic-based ranking
score is defined as:

r[v,z1=ﬂ|17|p(2k|v)+<1—ﬂ> S .z lply'. ). (3.19)

v v —v
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where p(z|v) is the probability of topic z generated by node v and it is obtained from the topic
model; p(v|v’, z) represents the probability of node v influencing node v on topic z; we define
it as

z
Hyry

—_—rr (3.20)
Zvj:v’—wj /’Lv’vj

pv' 2) =

Influence maximization. Given a social network with the learned social influence on each social
relationship, i.e., G’ = (V, E, Q), the objective is to find a small subset of nodes (seed nodes) from
the network that could maximize the spread of influence. The problem of influence maximization
has been proven to be a NP-hard problem [79]. A greedy approximation algorithm can guarantees
that the influence spread is no worse than (1 — 1/e) of the optimal influence spread. One major
problem of the greedy algorithm is its low efficiency. Chen et al. [26, 27] developed new heuristics
to accelerate the greedy algorithm. The social influence learned by the proposed TAP algorithm
can provide the input to the greedy algorithm.

3.2.4 EXPERIMENTAL RESULTS

In this section, we present various experiments to evaluate the efficiency and effectiveness of the
proposed approach. All data sets, codes, and tools to visualize the generated influence graphs are
publicly available at http://arnetminer.org/lab-datasets/soinf/.

Experimental setup. We perform our experiments on three real-world data sets: two homoge-
neous networks and one heterogeneous network. The homogeneous networks are academic co-
author network (Coauthor, for short) and paper citation network (Citation, for short). Both are
extracted from academic search system Arnetminer." The co-author data set consists of 640,134
authors and 1,554,643 co-author relations, while the citation data set contains 2,329,760 papers
and 12,710,347 citations between these papers. Topic distributions of authors and papers are
discovered using a statistical topic modeling approach, Author-Conference-Topic (ACT) model
[148]. The ACT approach automatically extracts 200 topics and assigns an author-specific topic
distribution to each author and a paper-specific topic distribution to each paper.

The other heterogeneous network is a film-director-actor-writer network (shortly Film),
which is crawled from Wikipedia under the category of “English-language films.”” In total, there
are 18,518 films, 7,211 directors, 10,128 actors, and 9,784 writers. There are 142,426 relationships
between the heterogeneous nodes in the dataset. The relationship types include: film-director,
film-actor, film-writer, and other relationships between actors, directors, and writers. The first
three types of relationships are extracted from the “infobox” on the films’ Wiki pages. All the
other types of people relationships are created as follows: if one people (including actors, direc-
tors, and writers) appears on another people’s page, then a directed relationship is created between

'http://arnetminer.org
*http://en.wikipedia.org/wiki/Category:English-language_films
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them. Topic distributions of the heterogeneous network is initialized using the category informa-
tion defined on the Wikipedia page. More specifically, we take ten categories with the highest
occurring times as the topics. The ten categories are: “American film actors,” “American televi-
sion actors,” “Black and white films,” “Drama films,” “Comedy films,” “British films,” “American
film directors,” “Independent films,” “American screenwriters,” and “American stage actors.” As
for the topic distribution of each node in the film network, we first calculate how likely a node
v;belong to a category (topic) z, i.e., p(vi|z), according to ﬁ, where |V;| is the number of nodes
in the category (topic) z. Thus, for each node, we will obtain a set { p(v;|z)}I_, of likelihood for
each node. Then we calculate the topic distribution {p(z|v;)}1_, according to the Bayesian rule
p(z|vi) o< p(z) p(vi|z), where p(z) is the probability of the category (topic).

Evaluation measures. For quantitatively evaluate our method, we consider two performance
metrics:

+ CPU time. It is the execution elapsed time of the computation. This determines how effi-
cient our method is.

* Application improvement. We apply the identified topic-based social influence to help
expert finding, an important application in social network. This will demonstrate how the
quantitative measurement of the social influence can benefit the other social networking
application.

'The basic learning algorithm is implemented using MATLAB 2007b and all experiments
with it are performed on a Server running Windows 2003 with two Dual-Core Intel Xeon pro-
cessors (3.0 GHz) and 8 GB memory. The distributed learning algorithm is implemented under
the Map-Reduce programming model using the Hadoop platform.> We perform the distributed
train on 6 computer nodes (24 CPU cores) with AMD processors (2.3 GHz) and 48 GB memory
in total. We set the maximum number of iterations as 100 and the threshold for the change of r
and a to le — 3. The algorithm can quickly converge after 7-10 iterations in most of the times.
In all experiments, for generating each of the topic-based social influence graphs, we only keep

1,000 nodes that have the highest probabilities p(v|z).

Scalability performance. We evaluate the efficiency of our approach on the three data sets. We
also compare our approach with the sum-product algorithm.

Table 3.2 lists the CPU time required on the three data sets with the following observations.

Sum-Product vs. TAP. The new TAP approach is much faster than the traditional sum-
product algorithm, which even cannot complete on the citation data set.

Basic vs. Distributed TAP. 'The distributed TAP can typically achieve a significant re-
duction of the CPU time on the large-scale network. For example, on the citation data set, we
obtain a speedup 15X. While on a moderate scaled network (the coauthor data set), the speedup
of the distributed TAP is limited, only 3.6. On a relative smaller network (the film data set),

http://hadoop.apache.org/
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the distributed learning underperforms the basic TAP learning algorithm, which is due to the
communication overhead of the Map-Reduce framework.

Distributed Scalability. We further conduct a scalability experiment with our distributed
TAP. We evaluate the speedup of the distributed learning algorithm on the six computer nodes
using the citation data set with different sizes. It can be seen from Figure 3.4(a) that when the
size of the data set increase to nearly one million edges, the distributed learning starts to show a
good parallel efficiency (speedupX3). This confirms that distributed TAP like many distributed

learning algorithms is good on large-scale data sets.

Table 3.2: Scalability performance of different methods on real data sets. >10 hr means that the
algorithm did not terminate when the algorithm runs more than 10 hours

Methods Citation Coauthor Film
Sum-Product N/A > 10hr | 1.8 hr
Basic TAP Learning > 10hr 369s 57s
Distributed TAP Learning | 39.33m 104s 148s
7 6 T T
2:
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Figure 3.4: Speedup results.

Using our large citation data set, we also perform speedup experiments on a Hadoop plat-
form using 1, 2, 4, 6 computer nodes (since we did not have access to a large number of computer
nodes). The speedup, shown in Figure 3.4(b), show reasonable parallel efficiency, with a > 4x
speedup using 6 computer nodes.

Quantitative case study. Now we conduct quantitatively evaluation of the effectiveness of the
topic-based social influence analysis through case study. Recall the goal of expert finding is to
identify persons with some expertise or experience on a specific topic (query) g. We define the
baseline method as the combination [141] of the language model P(g|v) and PageRank r[v].
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Figure 3.5: Performance of expert finding with different approaches.

We use an academic data set used in Tang et al. [141, 148] for the experiments. Specifically,
the data set contains 14, 134 authors, 10, 716 papers, and 1,434 conferences. Four-grade scores
(3,2, 1, and 0) are manually labeled to represent definite expertise, expertise, marginal expertise,
and no expertise. Using this data, we create a coauthor network. The topic model for each author
is still obtained using the statistical topic modeling approach [148]. With the topic models, we
apply the proposed TAP approach to the coauthor network to identify the topic-based influences.

With the learned topic-based influence scores, we define two extensions to the PageRank
method: PageRank with Influence (PRI) and PageRank with topic-based influence (TPRI). De-
tails of the extension is described in Section 3.2.3. For expert finding, we can further combine
the extended PageRank model with the relevance model, for example the language model by
P(g|v)r[v] or a topic-based relevance model by ), p(¢|z) p(z|v)r[v, z], where r[v] and r[v, z]
are obtained, respectively, from PRI and TPRI; p(q|z), p(z|v) can be obtained from the statis-
tical topic model [141].

We evaluate the performance of different methods in terms of Precision@5 (P@5), P@10,
P@20, R-precision (R-Pre), and mean average precision (MAP) [20, 33]. Figure 3.5 shows the
result of expert finding with different approaches. We see that the topic-based social influences
discovered by the TAP approach can indeed improve the accuracy of expert finding, which con-
firms the effectiveness of the proposed approach for topic-based social influence analysis.

Results of Dynamic Influences Analysis. The dynamic social influence analysis can benefit many
applications. We use the influence maximization problem as two examples to demonstrate. The
influence maximization problem is to find a small subset of nodes (seed nodes) in a social net-
work that could maximize the spread of influence [42, 79, 121]. In most previous work, different
algorithms were evaluated under simple assumptions about pairwise influence. Now the output
of our social influence analysis can be used as the input of the influence maximization problem,
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Figure 3.6: Influence spread by different algorithms. PDF refers to the proposed dynamic influence
analysis approach.

Table 3.3: Discovered seed nodes in influence maximization by the greedy algorithm with differ-
ent influence schemes. Unigue: influence=unique probability (0.01); WC: influence=inverse of in-degree; PFG:
influence = result of our dynamic influence analysis

No. Unique wC PFG

1 Philip S. Yu Philip S. Yu Jiawei Han

2 Jiawei Han Jiawei Han Qiang Yang

3 Christos Faloutsos Wei Wang Christos Faloutsos
4 Qiang Yang Christos Faloutsos Heikki Mannila
5 Heikki Mannila Heikki Mannila Vipin Kumar

6 Wei Wang C. Lee Giles C. Lee Giles

7 Jian Pei Shusaku Tsumoto Saso Dzeroski

8 Vipin Kumar Jian Pei Graham J. Williams
9 Bing Liu Bing Liu Myra Spiliopoulou
10 C. Lee Giles Joost N. Kok Eamonn J. Keogh

Overlap 0.4222 0.2444 0.1778

and we can test whether existing optimization algorithms perform as well as they do under the
naive assumptions.

Figure 3.6 shows the solution found by several state-of-the-art algorithms defining the
spread probability from v; to v, simply as % (referred as WC model), where d; is the in-degree
of v;. Beyond Greedy algorithm, we also test SP1M [80], using a simplified ICM model and
MIA [26], a heuristic algorithm for general ICM model. Baseline algorithms include: (1) random,
randomly picking seeds; (2) PageRank, selecting nodes with top PageRank score; and (3) De-
greeDiscountIC, a heuristic algorithm with good performance in UICM [27]. Greedy algorithm
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provides best results as known. In WC model, SP1M and MIA perfectly match Greedy. De-
greeDiscountIC has nearly matching performance. They all beat the other baselines. WC model
presumes symmetric influence in common with UICM, while PFG does not. When PFG influ-
ence score replaces the weights of WC, as shown in Figure 3.6, SP1M and MIA still approximate
optimum, while DegreeDiscountIC degrades to Degree. Therefore, by applying our influence
results, we find that SP1M and MIA are better approximation than DegreeDiscountIC if the
symmetric assumption of influence does not hold.

Table 3.3 presents the discovered seed nodes by three different schemes to set the cascade
influence scores. For each set of seed nodes, we calculate the density measure in network sci-
ence, dividing the sum of coauthor papers by the number of different pairs between seeds, i.e.,
% = 45 in our case. The larger is the overlap, the more concentrated are the seed nodes in the
network. To maximize the influence spread, it is desirable to minimize the overlap. We see that
our approach clearly outperforms the the other methods. It can be observed that Philip S. Yu
does not appear as a top-10 seed in PFG model due to the large probability of him influenced by
other seeds. In UICM and WC model, influence from neighbors to the node are independent,
while in PFG, the correlation of influence between neighbors is captured.

3.2.5 SUMMARY

In this section, we introduce a novel problem of topic-based social influence analysis. We pro-
pose a Topical Affinity Propagation (TAP) approach to describe the problem using a graphical
probabilistic model. To deal with the efficient problem, we present a new algorithm for training
the TFG model. A distributed learning algorithm has been implemented under the Map-reduce
programming model. Experimental results on three different types of data sets demonstrate that
the proposed approach can effectively discover the topic-based social influences. The distributed
learning algorithm also has a good scalability performance. We apply the proposed approach to
expert finding. Experiments show that the discovered topic-based influences by the proposed
approach can improve the performance of expert finding.

3.3 MINING TOPIC-LEVEL INFLUENCE FROM
HETEROGENEOUS NETWORKS

'The proposed TAP method in Section 3 only considers homogeneous network with single type
of objects, while many real-world networks usually consist of multiple heterogeneous objects. In
addition, the TAP method assumes that a topic distribution is associated with each user, which
is also not the case in real applications.

We propose the problem of topic-level influence mining from heterogeneous social net-
works. The problem can be explained by using the example in Figure 3.7. The input (left figure) is
a heterogeneous network consisting of web documents, users, and links between them. To leverage

both content information of web documents and social network structure, we propose a proba-
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Figure 3.7: Problem illustration of mining topic-level influence in heterogeneous networks and pre-
dicting user behaviors.

bilistic generative model to jointly learn topics and to associate a topic distribution with each user
which indicates his/her interests. Based on the modeling results, we can estimate the influence
strength between friends. We further investigate two kinds of diffusion models for conservative
and non-conservative influence propagations in social networks, which uncover the indirect influ-
ence between non-connected users. The middle figure of Figure 3.7 illustrates the output of topic
discovery and influence propagation. The solid arrow indicates direct influence and the dashed
arrow indicates indirect influence. The right figure illustrates a potential application, user behavior
prediction, based on the learned influence.

In this section, we present a generative probabilistic model to quantify influence between
users in heterogeneous social networks by utilizing both content and link information to mine
direct influence strength in heterogeneous networks. We study two kinds of diffusion models
for conservative and non-conservative influence propagations to learn indirect influence in social
networks. We apply the discovered influence strength to user behavior prediction and validate
how it can help some social applications. We conduct extensive experiments in four different
types of data sets: Twitter,* Digg,” Renren, and Cora,” and test the model performance in both
qualitative and quantitative ways.

Problem Formulation. Let us redefine the input of our problem.

Definition 3.2  [Heterogeneous Social Network] Define a network as G = (V, D, E), where
V is a set of user nodes, D is a set of document nodes, and E denotes a set of edges that includes
social relationships connecting users and links connecting users and documents. For each edge
*http://www.twitter.com, a microblogging system.

http://www.digg. com, a social news sharing and voting website.

http://www.renren. com, one of the largest Facebook-like social networks in China.
"http://www.cs.umass.edu/mccallum/code-data.html, a bibliographic citation network


http://www.twitter.com
http://www.digg.com
http://www.renren.com
http://www.cs.umass.edu/mccallum/code-data.html
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ey = (u,v) € E, if there exists an edge between v and v, ey, = 1; otherwise, ey, = 0. The edges
can be directed or undirected.

Many online social networks are heterogeneous consisting of different types of object nodes.
For example, Twitter is comprised of users and microblogs. Digg consists of users and website
URL addresses. Citation network consists of authors and publication papers. Here, we use “doc-
ument” to represent different types of associated content (e.g., microblog, website, and paper) to
each user. Thus, links in heterogeneous networks would contain friendships between users and
authoring relationships between users and documents (links between documents are not consid-
ered in this chapter). The links can be directed or undirected. For example, in Twitter and citation
networks, the links between users are directed from normal users to their followers. In Digg so-
cial network, the links between users are undirected. Furthermore, we assume that influence can
propagate along social links, thus we have the following definition.

Definition 3.3  [Direct and Indirect Influence] Given two user nodes u, v in a heterogeneous
network G, we denote 8, (u) € {R* U 0} as the influential strength of user u on user v. Further-
more, if e,, = 1, we call §,(u) the direct influence of user u on v; if e, = 0, we call 8, (1) the
indirect influence of user u on v.

Direct influence indicates the influence between two users which are connected while in-
direct influence indicates the influence of two users which are not connected. Please note that
influence is asymmetric, i.e., 6, (1) 7 8, (v). Based on the influence between node pairs, we can
turther define the concept of global influence.

Definition3.4 [Global Influence] Given a heterogeneous network, A (v) € {R™ U 0} is defined
as the global influence of v, which represents the global influential strength of user v in the
network.

'The global influence strength has a close relationship with the (local) direct/indirect influ-
ence. For example, if a user has a strong influence on her/his friends, it is very likely that she/he
has a strong global influence.

3.3.1 THE APPROACH FRAMEWORK

To summarize, we have two important intuitions for learning influence from heterogeneous so-
cial networks: (1) influence between users varies over different topics; and (2) user behaviors are
not only influenced by their friends but also their n-degree friends (e.g., friends’ friends). In-
deed, in real networks users may be interested in different topics, e.g., in the research network an
author may be interested in topics “database” and “data mining.” The influential strength from
one’s coauthors on her/him w.r.t. the two topics might be very different. Actually, this has been
qualitatively verified in sociology [56, 83] and quantitatively studied in Tang et al. [143]. More
precisely, we can give the following descriptions for the intuitions.
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1. Each node v is associated with a vector ¥, € RT of T-dimensional topic distribution
(3", Yu(z) = 1), where ¥, (2) indicates the interest probability of the node (user) on topic

Z.

2. Influence can propagate over social networks, thus the influence §, (1) of user u on v can
be direct (ey, = 1) or indirect (e, = 0).

3. The behavior of a user is either influenced by his/her friends who have the same behavior
or generated depending on his/her interests.

'The last intuition can be better explained by an example on Digg. A user may dig a story
because his friends have digged this story or simply because he is interested in this topic.

From the technique perspective, our objective is to design a method to learn user interests
(the associated topic distribution) and to estimate user influence simultaneously. In this book, we
propose a topic-level influence modeling framework. First, by combining both textual informa-
tion and link information in heterogeneous networks, we present a probabilistic generative model
to learn user interests which are represented as mixtures of topics and direct influence between
users simultaneously. Second, based on direct influence, we study two types of influence propaga-
tion mechanism, which are conservative and non-conservative influence propagations, to derive
indirect influence between users.

Figure 3.8: Probabilistic generative model to estimate direct influence strength.

Influence is interacted with many potential factors, e.g., similarity and correlation [2, 31].
Here we have two general assumptions in order to model the influence strength quantitatively.

Assumption 1 Users with similar interests have a stronger influence on each other.

'This assumption actually corresponds to the influence and selection theory [2]. In real net-
works, the similarity can be calculated based on the content information associated with each
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user. Thus, influence can be represented as to which extent the textual content is “copied” from
the influencing nodes. For example, in the citation network, if the content of document d; is very
similar to that of document d,, we may deem that d; “copies” a lot of ideas from d», thus d; is
influenced by d> a lot.

Assumption 2 Users whose actions frequently correlate have a stronger influence on each other.

The co-occurrence frequency is often used to indicate the correlation strength between
two nodes, which is denoted by the weights of edges in networks. Thus, the influence strength
between two nodes would be enlarged by their frequent co-occurrence. For example, if author
a cites a number of papers of author b, then a should be strongly influenced by b. For another
example on Twitter, if user a replies or re-tweets many microblogs posted by user b, then it is very
likely that b has a strong influence on a.

Based on these considerations, we propose a probabilistic generative model to jointly learn
user interests and direct influence strength between users quantitatively.

Table 3.4: Variable descriptions

Notation Description

x, the influenced/influencing user
w,w' words in the associated document
2,2 topic assignment to each word
d,d document associated with influenced/influencing user
Ay the user list who may influence x
Y the influencing user from A,
S the label denoting either influencing or not
w the number of words in the data set
T the number of topics to be extracted
0 the topic mixture of influencing users
P innovative topic mixture of users
[0) word distribution for each topic
v the influence mixture of users
A the parameter to draw the label s
o the Dirichlet prior for hidden variables

A Probabilistic Generative Model. We propose a probabilistic model to mine topics and influ-
ence strength simultaneously. The model combines the content information and network structure
in heterogeneous networks as shown in Figure 3.8. We assume that the behavior of each influ-
enced user can be generated in two ways, either depending on his/her own interests or influenced
by one of his/her friends. For example, when a user shares a blog on Renren, he/she may like its
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foreach influencing user x’ do
foreach associated document d’ do
foreach wordi € d’ do
Draw a topic Zii,,i ~ multi(Yy) from the topic mixture of user x/d’,i;
Draw a word w;,/’i ~ multi(¢z, ;) from Z;,/’i—speciﬁc word distribution;
end
end
end
foreach influenced user x do
foreach associated documents d do
foreach wordi € d do
Toss a coin s4,; ~ bernoulli(Ax, ;), where
Axgi =P =0]xg;) ~ heta(akm ) which indicates the proportion between
the innovation and influenced probability of x4 ;;
if s4; = 0 then
Draw a influencing user yg ; ~ multi(yx) from the user list Ax;
Draw a topic z4 ; ~ multi(6)) from the topic mixture of y4 ;;
end
if s7; = 1 then
‘ Draw a topic zg4 ; ~ multi(yx) from the topic mixture of x4 ;;
end

Draw a word wg ; ~ multi(¢z, ;) from zg ;-specific word distribution;

end
end

end

Algorithm 5: Probabilistic generative process.

content or follow the action of one of his/her friends who also share it. Thus the proposed model
consists of the following two parts, and the whole generative process are illustrated in Algorithm 5
(Table 3.4 lists the descriptions of variables).

* Userinterest modeling As shown in the middle part of Figure 3.8, each user x is represented
as a multinomial distribution over topics v, which indicates user interests. We assume that
topics of documents are generated based on user interests. Then each word w in documents
is generated from one topic z selected from the distribution. The details of the generative
process are illustrated in the first iteration of Algorithm 5.

* Influence strength mining The right part of Figure 3.8 illustrates influence strength mod-
eling. The parameter s, which is generated from a Bernoulli distribution with parameter
A, is used to control the influence situation. We assume that when s = 1, the behavior is
generated based on his/her own interests, while when s = 0, the behavior of the user is
influenced by one of his/her friends. Then another parameter y is used to indicate the in-

fluence strength from candidate user set A to user x, based on which one influencing user
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y is selected from A,. At last, a topic is generated from the mixture of topics of a user—the
user himself/herself x or one of his/her friends y, based on which the word w is generated.
This part corresponds to the second iteration of Algorithm 5.

In the above generative process, Ay is the candidate influencing user set w.r.t. x, thus Ay
changes with x. Besides, A is determined by real applications, which considers both directed
and undirected links between users. For example, in Twitter network A, denotes the users whom
a blog is re-tweeted from while in citation networks it denotes the authors of cited papers. In
these networks, the links between users are directed. In some other networks, such as Renren and
Digg, Ax denotes the friends of user x who also share or dig the same story, and the links are

undirected. Thus, the proposed model is able to handle both types of cases.
Model Learning via Gibbs Sampling. We employ Gibbs sampling to estimate the model. Gibbs

sampling is an algorithm to approximate the joint distribution of multiple variables by drawing a
sequence of samples, which iteratively updates each latent variable under the condition of fixing
remaining variables. We list the update equations for each variable as below and the details of
derivation can refer to the appendix. In all the update equations, N(x) is the function which
stores the number of samples during Gibbs sampling. For example, Ny ; (x, z, 1) represents the
number of samples of topics z which are supposed to be generated from user x when s = 1:

p(s,- = O|§_,-,x,~,zi, ) X

Ny 21 Qis2i)+ Ny 2.5 0,20 ,0) g Nos (i 0)+eng, (3.21)
Ny (i)+Ny s(3i,0)+T-ap Ny (xj) ey )+, ’
p(si = 15—, xi, zi,.) &
Ny z,s(xi,zi, 1)+ay NX’S(xi’1)+a)L‘Y1 (3 22)

NasOGi D+Tay NG tong, foag,
p(ily—i,si =0,d;,xi,zi, Ax,.) X

Nx.y.s(xi,yi,0)+ay . Nx’,z’(Yi,Zi)+Ny,z,s(Yi,Zi,0)+0!9 (3 23)
Nx.s(x;,0)+|Ax[-ay Ny (¥i)+Ny s(3i,0)+T-aq :
p(zilz—i,si = 0, w;,.) X
Ny 21 (is2)+ Ny 2. s 020,049 Nw.z (Wi.2)+ Ny o (W] z)) +eg (3.24)
Nx/(y,‘)+Ny,s(y,~,O)+T-a9 Nz(z;)+ N (z;))+W-ayp .
p(zilz—i,si = 1w, ) «
NX,Z,S(xisZisl)'i‘aw . Nw.Z(wisZi)J’_Nw/,z/(wl{szl/')_i_a(b (3 25)
Nx s, D)+T-ay Nz (z;)+No(z;))+W-ag :

Through the Gibbs sampling process, we obtain the sampled coin s;, influencing user y;,
and topic z; for each word. Then the influence strength can be estimated by Equation (3.26),
which are averaged over the sampling chain after convergence. K denotes the length of the sam-
pling chain:
1 & N, ys(x,y,O)i + oy
P (3.26)

Sx(y) = =% ' '
x(¥) = () K & Ny s(x,00 + 4] o,

=1
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'The equation is consistent to our assumptions in a statistical way. Take citation networks
for example. If author x cites more papers of author y and “copies” more content from y,
Nx,y,s(x,y,0) will be larger, and thus the influence from y to x will be stronger. Besides, it is
easy to get that Z‘yAlel 8x(¥) = 1, i.e., the sum of influence on user x from all the users obtained
in the model equals to 1. And the model does not consider the influence between the nodes which
are not connected, i.e., 8,(y) = 0 when x and y are not connected.

Furthermore, we can estimate the topic-level influence strength. Suppose 8 - (y) repre-
sents the influence strength from user y to user x on the topic z, which satisfy that §x(y) =
S 8¢.2(»). Thus, the topic-level influence can be estimated by Equation (3.27).

K

1 nyZS(x7y7270)i+%'aV
) == E e . . 3.27
x,z()’) K Nx,s(x,0)1+|A|'Oly ( )

i=1

3.3.2 INFLUENCE PROPAGATION AND AGGREGATION

'The above probabilistic model only discovers direct influence, but does not consider indirect influ-
ence. In reality, like information or virus, influence also propagates over networks, which produces
different types of indirect influence. Take Figure 3.9(a) for example. If al influences a2 and a2
influences a3, then al will influence a3 potentially, i.e., two-degree of influence. Figure 3.9(b)
demonstrates the influence enhancement: if a1 influences a3 and a4 while a3 and a4 also have an
influence on a2, then the influence from al to a2 should be enhanced. We further study atomic
and iterative influence propagation over social networks in this section, via which indirect influ-
ence can be obtained from direct influence and global influence strength can be estimated.

@
@+ @ -0 /49
~ _v _»

(a) (b)

Figure 3.9: Influence propagation.

Atomic Influence Propagation. Asshown in Figure 3.9, we observe there are two basic processes
for influence propagation.

* Concatenation The indirect influence from al to a3 in Figure 3.9(a) can be modeled as a
concatenate result of the direct influence from al to a2 and the direct influence from a2 to
a3.
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* Aggregation The enhancement of the influence from al to a2 in Figure 3.9(b) can be
defined as an aggregate result of the direct influence among the neighborhood of al and
a?.

Therefore, the atomic influence propagation is defined as:

Sy(m) = G(Yw € Nb(v) : 8§, (w) o 8y, (1)), (3.28)

where Nb(v) is the set of neighbors of node v, o is the concatenation function, and < is the
aggregation function.

In real processes, multiplication operation or minimum value is often used as concatena-
tion function while addition operation or maximum value is used as the aggregation function. In
particular, if we employ multiplication and addition operations to replace the concatenation and
aggregation function in Equation (3.28), respectively, then the atomic influence propagation can
be instantiated as:

)= ) Su(w)-Suw). (3.29)

weNb(v)

Suppose A, represents the vector of the influence strength from all the nodes in the net-
work on node v, i.e., Ay = (8y(u1),8y(U2), ..., 8y (un)). And we use superscript to denote the
propagation step, i.e., A? denotes the initial influence strength and A! denotes the influence
strength after the atomic propagation. Then the atomic influence propagation can be represented
as the matrix multiplication.

Ay =AM (3.30)
where M is the transition matrix and M = (Ay,; Ay,;...1 Ay,), i.e., each element in the transi-

tion matrix M (v, u) = 8, (u).

Iterative Influence Propagation. In reality, the indirect influence along longer paths, e.g., three-
degree or four-degree influence, also have effect on the nodes in a network. In other words, in-
fluence can propagate iteratively to collect the contribute of influence on longer paths. Thus, the
atomic influence propagation should be performed iteratively to propagate direct influence over
the entire network. Thus, the influence strength on k-length paths can be calculated by k steps
of atomic propagations.

If the atomic propagation is defined as Equation (3.30), the influence strength vector after
k-step atomic propagation can be calculated by the matrix powering operation.

k k— k
AY = Ao = A ME (3.31)

where M¥ = M*=1. M. A* denotes the influence strength vector on k-length paths.
Formally, we define the iterative influence propagation as follows:
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* enumerate all paths between each two nodes;
* calculate the influence propagation strength on each path via a concatenation function; and
* combine the influence strength on all the paths via an aggregation function.

Suppose the final influence strength between two nodes after k-step iterative propagation is
denoted as A/ . Based on the above definition, it should collect all the contributes of the influence
strength on paths with the length ranging from 0 to &, i.e.,

ATe = O(Vi €40,1,2,... k}: AD). (3.32)

If addition operation is used as the aggregation function, A/* can be inferred from the
sequences of propagation via a weighted linear combination [60]:

k
Ak = ZﬂiAi’ (3.33)
i=0

B:i denotes the weight for the influence strength on i -length paths, i.e., A’.

Intuitively, the effect of the influence on shorter paths should be larger than the one on
longer paths as the iterative propagation process brings in more outside information. Technically,
Bi should decrease with the increase of iteration step i. Different strategies can be employed to
assign the weights. In the next section, we will study two kinds of strategies, which are conservative
propagation and non-conservative propagation, respectively.

Global Influence Estimation. Global influence is to measure one’s influential ability over the
whole network. For example, some authors are very influential on the topic of “data mining.” In
this section, we propose one way to estimate one node’s global influence over the whole network.

Intuitively, the global influence of one node A (1) should be related to its influence on all the
other nodes in the network. If one node strongly influences many other nodes, its global influence
might be also strong. Therefore, the global influence of a node is defined as an aggregation of its
influence on the other nodes, specifically,

AQ) =Y 8,(u). (3.34)
The influence scores §, (1) include both direct and indirect influences.

3.3.3 CONSERVATIVE AND NON-CONSERVATIVE PROPAGATION

In this section, we describe two types of diffusion process—conservative and non-conservative
diffusion processes—based on which we propose two kinds of methods to propagate influence
over the network and to obtain indirect influence strength.
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First, we formally define a propagation process over a network.

Definition 3.5 [Propagation Process] A propagation process over a network G is defined as
a function {F;(w) : (RT U{OHVl — (RT U {01!V}, where V is the set of nodes in G. w is a
V' -dimensional vector, which represents a weight distribution over the nodes in the network. ¢
denotes propagation step.

Therefore, in a propagation process, each node in a network is first initialized with some
mass, which is denoted as the weight of the node. Then via each step of propagation, some nodes
transfer a part of the weights to their neighbors. Thus, through a -step propagation process, a
|V'|-dimensional non-negative vector is mapped to another |V'|-dimensional non-negative vector.
In particular, when ¢ = 1, the propagation is atomic propagation.

Conservative Propagation

Definition 3.6  [Conservative Propagation] For a propagation process F, if Yw € (RT U
OV |w|l1 = ||F(w)]|1, i.e., it preserves the sum of the entries, we call the propagation process
conservative propagation.

Therefore, conservative propagation simply redistributes the weights among the nodes in
the network and keeps the sum of weights constant. There are many conservative propagation ex-
amples in the real world. Take the circulation of money for example. At each step of propagation,
some nodes transfer a fraction of their money to their neighbors. But the total money in the net-
work does not change. Traffic transportation and energy cycle are also conservative propagations
as the total traffic or energy does not change with the propagation process.

Mathematically, random walk is a canonical example of conservative propagation. In a ran-
dom walk, a particle starts to locate on a node. Then at each step, the particle selects one of the
out-neighbors at random and moves to that node. A weight vector is used to represent the prob-
ability with which the particle can be found on each node. Thus, the sum of the weights equals
to one. And after iterative propagations, the probabilities of finding the particle on the nodes
change, but the sum remains to be one all the time.

PageRank is a classical random walk model, which is represented as:

prw)=(1—=p)-wo+p-pr(w)-M, (3.35)

M is a transition matrix, in which the element M(a, b) denotes the transfer probability from
node a to b. B is a damping factor which is used to ensure the stationary probability distribution
of the propagation. 1 — f is the restart probability, which gives the probability distribution when
the random walk transition restarts. wy is the initial weight distribution, which is usually set to be
uniform vector. Personalized PageRank [71] extends the model by setting wg to be a non-uniform
starting vector.
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Conservative Influence Propagation. We model the conservative influence propagation as a per-
sonalized PageRank in a network as Equation (3.36):

At =1=8)-A"+B-A=1. M. (3.36)

The propagation probability matrix M can be set in various ways. If we use direct influence
strength to define the propagation probability, i.e., M(v,u) = §%(u), then Y, M(v,u) = 1. Itis
easy to prove that the sum of influence strength from all the nodes on one node v remains to be
one after influence propagation, i.e., ||A1{’ [l1 = 1. Thus, Equation (3.36) defines a conservative
influence propagation.

This conservative influence propagation provides a strategy for the combination process in
the iterative propagation. From Equation (3.36), it is easy to get that

t—1
Ai=(1=p)-A% > (B M)+ A% B - M. (3.37)
i=0

As the influence vector on z-length path is A’ = A% - M,

t—1
At =(1=B)-) (B -A)+p A (3.38)
i=0
Thus, the conservative influence propagation defined in Equation (3.36) assigns different weights
to the influences on different-length paths.
B is a damping factor, i.e., 0 < B < 1. Thus, when ¢ increases, B’ decreases, which makes
the effect of influence on longer paths smaller.

Non-conservative Propagation.

Definition3.7 [Non-conservative Propagation] For a propagation process F, if 3w € (RT U
OOV lw|ly # || F(w)||1, we call the propagation process non-conservative propagation.

Compared with conservative propagation, non-conservative propagation does not keep the
sum of weights constant. There are also many non-conservative propagation examples in the real
world. Take the spread of a virus for example. Suppose a virus is propagating over the social net-
work. When one infected node infects its neighbors, it is still infected. Thus, the total number of
infected nodes is increased with time. Therefore, the spread of virus is a kind of non-conservative
process. Besides, information diffusion and oral advertising are also non-conservative propaga-
tions as the number of nodes which accept the information or advertisement increases with prop-
agation step.

Alpha-Centrality, which was introduced by Bonacich [16, 17], can be used to model non-
conservative propagation. The Alpha-Centrality vector ¢(w) is defined as the solution of the fol-
lowing equation:
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c'(w) =wo + B-c"N(w) M, (3.39)

B is a damping factor. The starting vector wy is usually set to be in-degree centrality and M uses
the adjacency matrix.

When B < M_lll (where A; is the largest eigenvalue of M), we can get that ¢(w) = wo -
(I —BM)~!, where I is the identity matrix of size n. Using the identity

DB MY=(I-B-M) -1 (3.40)

t=1
W€ can get

o0
cw) =wo-(I—f-M)™ =wy-Y (B -M"). (3.41)
=0
Besides Alpha-Centrality, Katz score [77], SenderRank [81], and eigenvector centrality
[15] are other examples of non-conservative mathematical metrics.
We model the non-conservative influence propagation process in the form of Alpha-

Centrality as Equation (3.42):

A=A 4 B A1 M. (3.42)

For Alpha-Centrality, M is usually set to be adjacency matrix. Here we also use direct influence
strength to define the transition matrix M, i.e., M(v,u) = 8,(u). It is easy to prove that the sum
of influence strength from all the nodes on node v increases with non-conservative propagation
step, i.e., ||A,{’||1 > 1. Thus, Equation (3.42) defines a non-conservative propagation for local
influence.

'This non-conservative influence propagation provides another strategy for the combination
process in the iterative propagation. From Equation (3.42), we can get

AfIZAO.Z(ﬂi-Mi)ZZ,Bi'Ai. (3.43)
i=0 i=0

Thus, it assigns different weights to the influence strength on different-length paths. How-
ever, the weight assignment strategy is different from conservative propagation referring to Equa-
tion (3.38).

Both conservative and non-conservative influence propagations collect all the contributes
of direct and indirect influence on the propagating paths. And both of them define a weight
assignment strategy to distinguish the effect of influence on different-length paths. The major
difference between these two types of models is that conservative propagation keeps the sum of

influence in the whole network constant while non-conservative propagation does not.
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Intuitively, indirect influence strength on shorter-paths should be more reliable since there
have been fewer propagation steps. The more iteration steps, the more outside information will
be brought. Thus, both conservative and non-conservative propagations utilize a damping factor
B to penalize larger ¢-step propagations. As 0 < B < I, when ¢ increases, 8’ decreases greatly,
which makes the effect of influence on (¢ 4 1)-length paths very small. In another word, we do
not need to iterate influence propagation for many times to obtain the final indirect influence,
i.e., t can be set as a small number. Besides, when 8 = 0, both conservative and non-conservative
propagations only utilize direct influence and ignore the effect of indirect influence.

3.3.4 USER BEHAVIOR PREDICTION

'The learned influence strength can be used to help with many applications. Here we illustrate
one application on user behavior prediction, i.e., how the learned influence can help improve the
performance of user behavior prediction.

We evaluate our approach for user behavior prediction on Renren, Twitter, and Digg. The
user behavior is defined as one time connection between a user and a document. We here take
Digg as the example for explanation. Intuitively, if more friends of a user dig a story, there is a
larger probability that the user will also dig it. Thus, a vote-based relational neighbor classifier
[102] can be used as a baseline. Then, we use the influence strength obtained from our approach
to distinguish difterent friends’ weights and estimate the probability of users’ digging stories as
follows:

1
dlu) = =——— Su d 3.44
P(d) = o= 5u<v>UENZb(u> )p(dv) (3.44)

where Nb(u) denotes the friends of u.

Besides, the similarity between users can also be used to distinguish different friends’
weights in the above intuitive method for prediction. Thus the prediction probability is estimated
as Equation (3.45) for comparison, where the similarity between users s(v, u) is calculated as the
Euclidean distance of user distributions over topics:

p(dlu) = Y. swapd|v). (3.45)

1
s(v,u
ZU @, )ver(u)
We will test the user behavior prediction performance based on the above three methods in
the following experiments and demonstrate the effect of influence strength obtained from both
conservative and non-conservative influence propagations for social network applications.
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3.3.5 EVALUATION

In this section, we present various experiments to evaluate the efficiency and effectiveness of the
p P y
proposed approach. The data sets and codes are publicly available.®

Experimental Setup

Data Sets. We prepare four different types of heterogeneous networks for our experiments, in-
cluding Renren, Twitter, Digg, and Citation networks. Renren is a very popular FaceBook-style
social website in China, on which users (especially the undergraduate and graduate students) con-
nect with their classmates or friends and share interesting web content. Twitter is a microblog
website, on which users can publish blogs and re-tweet friends’ blogs. Digg is a difterent type
of social website, on which users can submit, dig and comment on stories. Users also have links
to their friends, which indicate their relationship. We collect user relationship and document
content from these websites.

* Renren social network. The data contains 5,000 users and the web content shared by these
users in one month which includes about 10,000 documents and 30,000 words.

* Twitter social network. The dataset includes about millions of microblogs related to about
40,000 users and 50,000 keywords (removing the stop words and the infrequent words).

* Digg social network. The data contains about 1 million stories related to 10,000 users and
30,000 keywords, in which we aim to mine user influence as well.

 Citation network. We crawled the citation data of about 1,000 documents from the In-

» « » «

ternet on several specific topics, e.g., “topic models,” “sentiment analysis,” “association rule

privacy security,” etc. Besides, the public citation data set Cora is also used in our

» «

mining,
experiments.

We apply our model to the above four data sets. The algorithms are implemented in C++
and run on an Intel Core 2 T7200 and a processor with 2 GB DDR2 RAM. The parameters of

the model will be discussed in the following subsections.

Evaluation Aspects. We evaluate our method on the following three aspects.

* Influence strength prediction: As it is more intuitive and easier for people to distinguish the
influence strength in citation networks, we manually label the citation data and then test
the influence prediction performance in it. We compare the results of our approach with
previous work [39] to demonstrate our model’s better performance in terms of influence
prediction.

* Userbehavior prediction: We use the derived influence strength to help predict user behav-
iors and compare the prediction performance with that of baseline as well as the method

®http://arnetminer.org/heterinf
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based on user similarity, as described in Section 3.3.4. The results demonstrate how the
quantitative measurement of the influence can benefit social network applications.

* Topic-level influence case study: We show several case studies to demonstrate concrete
influence weights between users and show how eftectively our method can identify topic-
level influence. In particular, we study the global influence of authors in citation networks
to demonstrate semantic meaning of topic-level influence. And we compare the results with
that of previous work [143] which can also be used to mine topic-level influence to demon-
strate the better performance of our approach.

Results

Influence Strength Prediction. In Dietz et al. [39], researchers evaluated the document influence
prediction performance in a manually labeled data set. We use the same data from the authors and
also test the influence prediction performance of our model in it. However, the data set, which
only contains 22 citing documents and 132 documents in all, is so small that the results could be
ad-hoc sometimes. Therefore, besides using this data, we also manually label document influence
strength in a larger data set with about 1,000 documents. We classify the influence strength into
three levels: 1, 2, 3. Similar to Dietz et al. [39], we use the quality measure, averaged AUC (Area
Under the ROC Curve) values for the decision boundaries “1 vs. 2, 3” and “1, 2 vs. 3” for each
citing document, to evaluate the prediction performance.

Figure 3.10 shows the comparative results in these two data sets, where Datal is the small
data set obtained from Dietz et al. [39] while Data2 is our larger labeled data set. M1 and M2
are used to denote our model and the model of Dietz et al. [39], respectively. And we use the real
and dash lines to distinguish the results of these two models in the figure. We calculate all the
AUC values with the number of topics changing from 10 to 50. Thus, this figure demonstrates
that in the small data set our model can achieve as good prediction performance as the work of
Dietz et al. [39] while in the larger data set, our prediction performance is better than theirs.

Furthermore, we compare the influence prediction performance before and after influence
propagation in our labeled data set. The results prove that the influence prediction performance is
enhanced after influence propagation (AUC values are enhanced from 0.69 to 0.76). Moreover,
the influence prediction performance is robust to the parameters ¢ and f. In particular, when ¢
changes, the performance changes little, which is consistent to the observation in Figure 2.8. It
means that influence does propagate over the network, but the eftect of propagation is reduced
with propagation step.

User Behavior Prediction. We employ our model to discover the concrete influence strength
between the 5,000 users in Renren social networks. Then we apply the learned influence strength
to user behavior prediction, as described in Section 3.3.4. In particular, the parameters which are
the damping factor B and iteration step ¢ for both conservative and non-conservative influence
propagations are varied to test the effect of influence propagation process. About 36,000 tuples
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Figure 3.10: Influence prediction performance comparison.

Table 3.5: Conservative and non-conservative influence propagation effect on user behavior predic-

tion
od fluence propag
e D
p D D D D D D
= 0.168 | 0.168 | 0.168 | 0.168 | 0.172 | 0.168
average 0101 | 0.160 t=51]0.168 | 0.168 | 0.170 | 0.170 | 0.180 | 0.175

t=10| 0.168 | 0.168 | 0.170 | 0.170 | 0.180 | 0.178
t=11|0.044 | 0.045 | 0.041 | 0.044 | 0.039 | 0.042
variance 0011 | 0.048 it = 0.044 | 0.045 | 0.042 | 0.043 | 0.041 | 0.041

t =10| 0.044 | 0.045 | 0.043 | 0.042 | 0.041 | 0.041

in Renren data set are used as testing samples. Each tuple represents that a user shares a web
document, whose probability is estimated as Equation (3.44).

'The average and variance values of the predicted probabilities for all the samples are calcu-
lated and shown in Table 3.5, where DI denotes direct influence, CIP and NCIP denote conserva-
tive and non-conservative influence propagations, respectively. The results demonstrate that using
influence, especially the propagated influence, can greatly improve the predicted probabilities. But
the parameters ¢ and 8 as well as the propagation mechanism do not affect the probabilities a lot.

Then given a threshold, we calculate the prediction precision, which means how many test-
ing samples’ probabilities are larger than the threshold. Figure 3.11 shows four curves of predic-
tion precision changing with the threshold in Renren data set, which indicate the performance of
baseline, using direct influence without influence propagation, conservative, and non-conservative
influence propagations with parameter g = 0.8, ¢ = 5, respectively. The results demonstrate that
influence-based behavior prediction approach outperforms the baseline. Thus, it proves that the
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Figure 3.11: User behavior prediction precision on Renren network.
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Figure 3.12: User behavior prediction precision on Digg network.

influence obtained from our model benefits the user behavior prediction greatly. Moreover, both
conservative and non-conservative influence propagations improve the prediction precision and
almost achieve the same performance.

Besides, we apply our model to the application of user behavior predication in Twitter and
Digg social networks. In this experiment, we employ non-conservative influence propagation
with =5, 8 = 0.8 to obtain indirect influence. We randomly select about 3,000 tuples from
Digg and Twitter data sets as testing samples and estimate their probabilities. Table 3.6 shows
the average and variance values of the predicted probabilities for all the samples. The prediction
precision curves for these two data sets are shown in Figures 3.12 and 3.13, respectively. The results
demonstrate that influence-based behavior prediction approach outperforms the baseline and the
similarity-based method. In particular, it shows that influence propagation process enhances the
user behavior prediction performance in Digg social network but it takes little effect in Twitter
social network. Furthermore, comparing these two figures, we can get that the effect of influence
in Digg social network is larger than that in Twitter social network. The conclusion is consistent
to the observation in Figure 2.8.
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Figure 3.13: User behavior prediction precision on Twitter network.

Table 3.6: Behavior prediction probability

Digg Social Network

method baseline  similarity D)

average
variance 0.006 0.008 0.075 | 0.048

Twitter Social Network

method baseline  similarity DI

average
variance 0.078 0.089 0.129 | 0.136

Topic-level Influence Case Studies

Case Study 1: Topic-level influence graph. We apply our model to the citation network which
we crawled from the Internet and set the number of topics to be 10 empirically. Figure 3.14
demonstrates the influence relationship between the papers on the topic “statistical topic mod-
els.” The color bars show the topic distributions of these documents. In order to show the major
influencing nodes clearly, we rank the influencing nodes according to each influenced node based
on the influence strength and only display the top 2 most influencing ones in this figure. Thus, we
can get that the top 2 most influencing documents on document “LDA” are “PLSA” and “vari-
ational inference.” Furthermore, the results demonstrate that there are many documents which
are most influenced by “LDA,” e.g., “the author-topic model,” “correlated topic model,” “dy-
namic topic model,” etc. Besides the influence from “LDA,” strong influences also exist among
these documents, e.g., “author-topic model” influences “author-recipient-model” strongly while
“correlated topic model” influences “dynamic topic model” a lot.
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Document influence case study.

Figure 3.14
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Figure 3.15: Author influence case study.

Figure 3.14 also shows the connections between authors and documents by dash lines. The
influences between these authors are visualized in Figure 3.15. We only draw the lines when the
pointing nodes are the top five most influencing authors on the pointed nodes. The thickness of the
lines indicates the influence strength. From the results, we can get some meaningful conclusions.
For example, Jordan is one of the most influential researchers to Blei. Although “PLSA” strongly
influences “LDA” as Figure 3.14 shows, Hofmann does not have a great influence on Blei. The
reason is that the area of Hofmann varies from the area of Blei (this can be observed from the
topic distributions represented by colored bars) and furthermore Blei only cited few documents
of Hofmann, i.e., correlation value is small. Other interesting results are also obtained, e.g., the
influence of Blei on Lafferty is larger than the influence of Lafferty on Blei. Besides, the self-loop

lines which indicate the self-influence show Jordan and Blei influence themselves greatly.

Table 3.7: Author ranking on “statistical topic models”

Indirect Influence

Direct Influence P ‘=5 Pagerank

TM Cover D Blei D Blei M Jordan

A McCallum A McCallum | A McCallum | D Blei

D Blei TM Cover M Jordan J Lafferty

M Jordan M Jordan TM Cover A McCallum
P Kantor P Kantor P Kantor Z Ghahramani

Case Study 2: Topic-level global influence illustration. Table 3.7 shows an example of author
ranking by estimated global influence on “statistical topic models” (# denotes the number of prop-




108 3. SOCIAL INFLUENCE ANALYSIS

agation steps). The results are very meaningful. If one node has a high reputation over the whole
network, it can be treated as a key node which is very influential over the whole network. In an-
other word, authority of one node can also be used to represent its global influence from some
point of view. Therefore, we can employ PageRank [65, 116] over topic-level networks to esti-
mate the nodes’ global influence on one topic. The author ranking based on the authority from
PageRank is also illustrated. We calculate the correlation coefficients between the global influ-
ence values estimated in the two ways, which ranges from 0.8-0.9 when the number of topics
and iteration change. It proves that estimating global influence based on our framework can get
highly-correlated results with PageRank authority. Thus, to some extent, it demonstrates that the
influence discovered by our model is consistent to the global characteristics of the whole network
structure.

Table 3.8: Influence aggregation values on topics

Maximal value | 2.525 | 2.333 | 3.877 | 3.607
Minimal value | 0.0005 | 0.001 | 0.0006 | 0.0009
Average value 0.078 | 0.091 | 0.095 0.087
D DeWitt 1.487 | 0.181 | 1.087 | 3.607
M Stonebraker | 2.525 | 0.632 | 0.481 | 2.851
C Faloutsos 0.357 | 0.242 | 1.571 | 1.187

W Bruce 0.538 | 2.333 | 0.172 | 0.483
R Agrawal 0.518 | 0.189 | 3.877 | 0.600
J Han 0.666 | 0.138 | 2.029 | 0.240

In order to show the influence results in more general areas, we select five categories of
documents in Cora data and set the number of topics to five. Five meaningful topics according to
the five categories: data mining (“DM?”), information retrieval (IR”), natural language processing
(“NLP”), object-oriented database (“OODB”) and database performance (‘DBP”) are obtained.
Figure 3.16 shows several famous authors’ estimated global influence distributions on the five
topics. The results are very telling. For example, W Bruce is most influential on topic “IR,” while R
Agrawal and ] Han are most influential on topic “DM.” It is interesting to find that C Faloustsos
is influential on both topic “DM” and topic “DBP,” which is consistent to the real situation.
Besides the two topics related to database, D DeWitt is also very influential on topic “DM.” The
reason should be that the area “DM” develops from database. Furthermore, Table 3.8 shows the
maximal, minimal, and average values of the estimated global influence in the whole network
w.r.t. each topic, which demonstrates that these authors almost have the largest values in their
domains. Thus, it proves the validity of the way of global influence estimation.

Case Study 3: Topic-level influence comparison. Work [143] also proposed a method to dis-
cover topic-level influence. We compare the author influence results obtained by our model (M 1)
with the results by the model in [143] (M 3). As sometimes it is hard to label the author influence
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Table 3.9: Influencing author ranking w.r.t. several authors

D Blei A McCallum T Griffiths
M1 M3 M1 M3 M1 M3
H Attias D Blei A McCallum | A McCallum | T Hofmann | T Griffiths
D Blei M Stephens D Blei D Kauchak M Steyvers R Kass
M Jordan | J Pritchard | Andrew Ng E Stephen T Griffiths N Chater
K Nigam | P Donnelly T Griffiths R Madsen T Minka D Lawson
T Jaakkola | C Meghini M Jordan C Elkan A McCallum | H Neville
@ OODB BIR (JDM [OJDBP B NLP
5
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3
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Figure 3.16: Estimated global influence distribution on topics.

strength, we only show the top five most influencing authors on some well-known researchers:
Blei, McCallum, and Griffiths obtained by these two models in Table 3.9. The results demonstrate
that our model can get meaningful results but M 3 cannot. For example, our model discovers that
Jordan, Blei, and Hofmann are one of the most influential researchers for Blei, McCallum, and
Griffiths, respectively. But M 3 does not get these results. As M 3 only uses the link information
of author citation, it will lose the information of relationships between authors and documents.
Moreover, the assumption used in Tang et al. [143] which states that the node will be more
influential if it has a great self-influence makes each person most influential on himself.

Similar to our model, M3 can also get the influence distributions on topics by inputting
the nodes’ topic mixtures. But the difference is that the topic information is used as an input
prior instead of an integrated parameter in the method M 3 while our method can obtain topics
simultaneously. Figure 3.17 shows an example of the influence from Jordan to Blei and compares
the topic distributions of influence obtained by our model and M 3, respectively. First, Jordan and
Blei’s distributions on topics are illustrated, which indicate that both of them mainly work on
Topic 3. Then, we can see that the influence obtained by our model has the largest strength on
Topic 3 but the influence distribution from M 3 is flat, from which it is not obvious to tell the
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influence semantic meaning. Thus, it is proved that our model can obtain more meaningful topic
distributions of influence.

‘ E D Blei M Jordan M Influence M1 M Influence_ M3 ‘

- 08
.2
s 0.6
2
£ o
A
0.2 I

Topic

Figure 3.17: Topic distributions of authors and influence.

3.3.6 SUMMARY

In this section, we present an approach for mining topic-level influence in heterogeneous net-
works. The approach primarily consists of two steps, i.e., a probabilistic model to mine direct
influence between nodes and different types of influence propagation methods to mine indirect
and global influence. In the probabilistic model, we combine the textual content and heteroge-
neous link information into a unified generative process. Influence propagation methods further
propagate influence along the links in the entire network. We also demonstrate that the learned
influence can benefit several real prediction applications.

3.4 CONCLUSIONS

In this chapter, we introduce two methodologies for quantifying the topic-level influential
strength between users for large social networks, and potential applications to user behavioral
prediction.
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CHAPTER 4

User Behavior Modeling and

Prediction

We now turn to discuss how to leverage the different social phenomena to model and predict users’
behaviors (social actions). From a broad viewpoint, the concept of user modeling is concerned with
the process of building up a user model to characterize user’s skills, declarative knowledge, and
specific needs to a system [48]. We try to narrow down this concept in this book to modeling how
users’ behaviors (actions) are influenced by various factors such as personal interests, social influ-
ence, and global trends. Quite a few related studies have been conducted, for example, dynamic
social network analysis [59, 82, 95, 125, 128], social influence analysis [2, 31, 42, 79, 121, 143],
and group behavior analysis [5, 62, 130, 144, 149].

4.1 OVERVIEW

In sociology, the notion of social action was first proposed by Weber [159]. According to Weber,
“an Action is ‘social’ if the acting individual takes account of the behavior of others and is thereby
oriented in its course.” We aim to systematically study how social actions evolve in a dynamic
social network and to what extent different factors affect the user actions.

To clearly motivate this work, we conduct the following analysis on three real social net-
works: Twitter," Flickr,” and ArnetMiner.” On Twitter, we define the action as whether a user
discusses the topic “Haiti Earthquake” on his microblogs (tweets). On Flickr, we define the ac-
tion as whether a user adds a photo to his favorite list. On ArnetMiner, the action is defined as
whether a researcher publishes a paper on a specific conference (or journal). The analysis includes
three aspects: (1) social influence; (2) time-dependency of users’ actions; and (3) action correlation
between users. Figure 4.1 shows the effect of social influence. We see that with the percentage of
one’s friends performing an action increasing, the likelihood that the user also performs the action
is increased. For example, when the percentage of one’s friends discussing “Haiti Earthquake” on
their tweets increases, the likelihood that the user posts tweets about “Haiti Earthquake” is also
increased significantly. Figure 4.2 illustrates how a user’s action is dependent on his historic be-
haviors. It can be seen that a strong time-dependency exists for users’ actions. For instance, on
Twitter, users who posted tweets about “Haiti Earthquake” will have a much higher probability,
"http://www.twitter.com, a microblogging system.

*http://www.flickr.com, a photo sharing system.
http://arnetminer.org, an academic search system.
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Figure 4.1: Social influence. The x-axis stands for the percentage of one’s friends who perform an action at

t — 1 and the y-axis represents the likelihood that the user also performs the action at 7.
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Figure 4.2: Time-dependency of users” actions. The x-axis stands for different timestamps. “dependent”
denotes the likelihood that a user performs an action which was previously performed by herself; “average” rep-

resents the likelihood that a user performs the action.

on average, (+20-40%) to post tweets on this topic than those who never discussed this topic on
their blogs. Figure 4.3 shows the correlation between users’ actions at the same timestamp. An
interesting phenomenon is that friends may perform an action at the same time. E.g., on Twit-
ter, two friends have a higher probability (+19.6%) to discuss “Haiti Earthquake” than two users
randomly chosen from the network.

Problem Formulation. Formally, we first give several necessary definitions and then formulate
the problem of social action prediction.
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Figure 4.3: Action correlation. The x-axis stands for different time windows. “friend” denotes the likelihood
that two friends perform an action together; “random” represents the likelihood that two random users perform

the action together.

A static social network can be represented as G = (V, E), where V is the set of |V| = N
users and £ C V x V is the set of directed/undirected links between users. Given this, we can
define the user’s action as follows.

Definition4.1  Action: An action y performed by user v; at time ¢ can be represented as a triple
(¥, vi,t) (or shortly yf). Let Y be the set of actions of all users at time . Further, we denote all
users’ actions as the action history Y = {(y, vi, 1) }i,.

Without loss of generality, we first consider the binary action, that is y! € {0, 1}, where
y! = 1 indicates that user v; performed an action at time ¢, and y! = 0 indicates that the user
did not perform the action. Such an action log can be available from many online systems. For
example, on Twitter, the action y! can be defined as whether user v; posts a tweet (microblog)
about a specific topic (e.g., “Haiti Earthquake”) at time ¢. Further, we assume that each user is
associated with a number of attributes and thus have the following definition.

Definition4.2 Time-varying attribute matrix: Let X’ be an N x d attribute matrix at time ¢
in which every row x; corresponds to a user, each column an attribute, and an element x;; is the

7" attribute value of user v;.

'The attribute matrix describes user-specific characteristics, and can be defined in different
ways. For example, on Twitter, each attribute can be defined as a keyword and the value of an
attribute can be defined as the frequency of a keyword occurring on a user’s posted tweets. Thus,
we can define the input of our problem, a set of attribute augmented networks.

Definition4.3  Attribute augmented network: The attribute augmented network is denoted as
G' = (V' E!, X!, Y"), where V! is the set of users and E? is the set of links between users at time
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t, and X' represents the attribute matrix of all users in the network at time ¢, and Y’ represents
the set of actions of all users at time 7.

Based on the above concepts, we can define the problem of social action prediction. Given
a series of T time-dependent attribute augmented networks, the goal is to learn a model that can
best fit the relationships between the various factors and the user actions. More precisely, we have
the following.

Problem4.4 Social action prediction. Given a series of T time-dependent attribute augmented
networks {G' = (V! E", X', Y")}, where ¢ € {1, , T}, the goal of social action prediction is
to learn a mapping function

f(Gh ..., GT-hvT ET xTyvyT,

Note that in this general formulation, we allow the graph structure to evolve over time and
also arbitrary dependency from the past. To have a tractable problem to work with, we model
the time-dependency by introducing a latent state for each user. More specifically, their actions
are generated by their latent states, which are dependent on their neighbors’ states at time ¢ and
t—1.

Challenges and Solution. Thus, the problem becomes how to effectively and efficiently predict
the dynamic users’ actions. This problem is non-trivial and poses a set of unique challenges. First,
the social network data (e.g., network structure and social actions) are very noisy. Users performing
the same action may not have the same preference towards that action. Likewise, users who did not
perform the action do not mean they have no interests towards the action. Second, user behaviors
are highly time-dependent. For example, the influence of a user on another (strongly) depends
on their historic interactions. Third, users’ actions are usually correlated. In addition, as real social
networks are getting larger with thousands or millions of users. It is important to develop the
model that can scale well to real large data sets.

In this section, we try to systematically investigate the problem of social action predic-
tion [138]. We officially formulate the problem of social action prediction and propose a unified
model: Noise Tolerant Time-varying Factor Graph Model (NTT-FGM). We present an efficient
algorithm for model learning and develop a distributed implementation based on MPI (Message-
Passing Interface) to scale up to real large networks. We conduct experiments on three different
data sets: Twitter, Flickr, and ArnetMiner. Experimental results show that the proposed NTT-
FGM model can achieve a better performance for the action prediction than several alternative
models.

4.2 APPROACH FRAMEWORK FOR SOCIAL ACTION
PREDICTION

To summarize, for modeling and predicting social actions, we have the following intuitions:
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time 2

time 1

Figure 4.4: Graphical representation of the NT'T-FGM model. Each circle stands for a user’s latent
action state Zf at time ¢ in the network, which is used to characterize the intention degree of the user to perform
the action; the latent state is associated with the action yf , avector of attributes x? , and depends on friends’ historic

actions zt:vz and correlates with friends’ actions z£_,,, at time 7; g(.) denotes a factor function to represent the
friends” influence on a user’s action; /; (.) represents a factor defined on user v;’s attributes; and /;; (.) represents

a factor to capture the correlation between users’ actions.

1. users’ actions at time # are influenced by their friends’ historic actions (time < ¢);
. users actions at time ¢ are usua ependent on their previous actions; an

2 Jact t time ¢ lly dependent on their p tions; and
. users actions at a same time ¢ have a (strong) correlation.

3 " act t time ¢ h trong lat

Moreover, the discrete variable y! only models the user’s action at a coarse level, but cannot
describes the intention degree of the user to perform an action. Directly modeling the social ac-
tions ¥ would inevitably introduce noise to the model. Hence, a continuous variable for modeling
the action bias is favorable.

With the intuitions discussed above, we propose a noise tolerant time-varying factor graph
model (NTT-FGM) for social action prediction. Before explaining the model in detail, we first

introduce the definition of latent action state.

Definition 4.5 Latent action state: For each user’s action y!, we define a (continuous) latent
state z! € [0, 1], which corresponds to a combination of the observed action y; and a possible bias,
to describe the actual intention degree of the user to perform the action.

Figure 4.4 shows the graphical structure of the NTT-FGM model. An action of user v; at
time 7, i.e., y! is modeled by using a (continuous) latent action state z}, which is dependent on
friends’ historic actions zt:vf (where ~ v; represents friends of user v; in the network), users’ ac-
tion correlation Zt~v,- , and users’ attributes x. Specifically, in the NTT-FGM model, each discrete
action is mapped into the latent state space and the action bias is modeled using a factor function.
For example, for y/ = 1, a small value of its corresponding z! suggests that a user v; has a low
intention to perform the action, thus a large action bias |y/ — z!|. Next, influence between users is
modeled using the latent states based on the same assumption as in HMM [52] and Kalman Fil-

ters [66]: latent states of users’ actions at time ¢ are conditionally independent of all the previous
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states given the latent states at time ¢ — 1. Finally, actions’ correlation is also modeled in the latent
state space. A Markov random field is defined to model the dependency (correlation) among the
continuous latent states. Different from the traditional Markov random field model (e.g., CRF
[87], HMM [52], Kalman Filters [66]), the NTT-MRF model uses a continuous variable to de-
scribe the latent state, and utilizes a combination of multivariate Gaussian function and Markov
random field to incorporate both time-inter and time-intra dependency between users’ actions.

Now, we explain the proposed NTT-FGM model in detail. Given a series of attribute
augmented networks G = {G' = (V/,E!, X!, Y)}, t € {l,--- , Tand V =VIUVZU...UuVT V| =
N, we can define the joint distribution over the actions Y given G as

T N
pOG) = [T FOLD F 2D f G, %), (4.1)

t=1i=1

where notation ~ v; represents neighbors of v; in the social network. The joint probability has
three types of factor functions, corresponding to the intuitions we have discussed. Specifically,

* action bias factor: f(y/|z}) represents the posterior probability of user v;’s action y; at time
t given the continuous latent state z/;

* influence factor: f(z] |zt:v£) reflects friends’ influence on user v;’s action at time ¢; and

* correlation factor: f(z} |szi ,x}) denotes the correlation between users’ action at time 7.

'The three factors can be instantiated in different ways, reflecting our prior knowledge for
different applications. In this chapter, we will give a general definition for the three factors. For
the action bias factor f(y!|z}), we define it using a Gaussian function:

Oof—2)?

1
N 2mo? Ppi- 202

where o is a variance to control the bias and its value can be learned using an EM-style algorithm

fOilz) = 12 (4.2)

or predefined empirically. Note that if we only consider the binary action, the bias factor can be
also defined based on a Bernoulli distribution.

For influence factor f(zf|2:2,}), we first define an binary N x N matrix M*~! to describe
the social network at time ¢ — 1, where the element m{; " = 1 represents that user v; and v; have
a relationship in the social network (i.e., e;; € E), and mfj_l = 0 indicates there is no relationship
between v; and v;. Given this, we can formally define the influence factor as:

N
_ 1 _ _
fE2D = Z—lexp{z Ajim'T ggi(zh 28} (4.3)
—
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where gj; (2], Z;_l) is a function defined on the latent states of two users z/ and Z]’-_l; Aji (when
m’7! = 1) represents the influence degree of v; on v;. For example, given a higher influence
Aji, the action of user v; is more likely to induce user v; to behave in a similar way. Z; is a
normalization factor. When j =i, we refer to the influence as self-influence, which actually
characterizes the dependency of the user’s action on his own previous state.

The correlation factor can be naturally modeled in a Markov random field. Therefore, by

the fundamental theorem of random fields, we can define the correlation factor as:

N
1
[z, %) = Z—ZCXP{(Zﬁijmﬁjhij(Zf,Z})
j=1
d
+ Zakhk(zf’xfk))}’ (44)
k=1

where h;j(z], ZJ’.) is a feature function to capture the correlation between user v; and v; at time
t; hi(z], x!}) is a feature function defined on user v; and the k-th attribute x;; d is the num-
ber of attributes; B;; and oy are, respectively, weights of the two functions; and Z, is again a
normalization factor.

Finally, by integrating Equations (4.2)-(4.4) into Equation (4.1), we can obtain the follow-
ing joint probability

1 I Y (f —z0)? LE T t=1 .t _t—1
P(Y|G)=§CXP{227202 +ZZZAU’";‘;‘ 8(zi.z;7)
t=1i=1 t=1li=1j=1

T N N T N d
+ D020 D Bymighi ez + 3030 Y e GLxf),

t=1i=1j=1 r=1i=1k=1

(4.5)

where Z = (2n02)¥2122.

Learning NTT-FGM is to estimate a parameter configuration 6 =
({zi}, {ak}, {Bij}. {Aij}) from a given historic action log Y, that maximizes the log-likelihood
objective function O(0) = logpg(Y|G), i.e.,

0* = arg max O(0). (4.6)

4.2.1 MODEL LEARNING

'There are two challenges to solve the objective function. First, as the network structure in the social
network can be arbitrary (may contain cycles), traditional methods such as Junction Tree [163] and
Belief Propagation [170] cannot result in an exact solution. Second, to calculate the normalization
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factor Z, it is necessary to guarantee that the denominator of Equation (4.5), i.e., the exponential
function exp{.}, is integrable. Based on these considerations, we instantiate the factor functions

g(.) and A(.) as follows:

gzl i) = =@ -z7)? (4.7)
hij(zf.z5) = —(zf —z)? (4.8)
hi(zf,xf) = —(2f —xjp) (4.9)

We see that all of the factor functions are defined by quadratic functions. This is because
quadratic equation satisfies the above two requirements: it is integrable and it offers the possibil-
ity to design an exact solution. Moreover, by defining in this way, the influence factor and the
correlation factor can be elegantly explained with the information diffusion theory, by which the
actions of users spread in the social network along the relationships [8, 59].

Finally, the objective function O(#) can be rewritten as

ry (yt —zH)2 N
0(0) = —logZ — {Z Z # + Z Z Z ljim;-i_l(zf _Z}—l)z
t=1i=1 t=1i=1j=1 (4.10)
T N T N d :
NS =P Y Y e - xR
t=li=1j=1 t=li=1k=1
where
T N (f —z1)2 N
z=c [ [ew- 3 3 F 00 - 3OS Y A -
yJz t=1i=1 t=1i=1j=1 (4.11)
T N N T N d :
— Z Z Z ﬂ,-jmgj(zf —zjt)2 — Z Z Z ak(zf —xl?k)z}dzdy
t=1li=1j=1 t=1li=1k=1

NX<XT .
where C = (2w0?) 2 is a constant.

The Learning Algorithm.

'The task of model learning is to estimate the parameters 6 = ({z;}, {ak }, {Bi;}. {Aij}) by solving
the objective function Equation (4.10). For this purpose, we need to first solve the integration
of Z. As y is discrete, we can easily integrate out the first term in the exp{.} function of Equa-
tion (4.11). Furthermore, to guarantee that Z is integrable we must have . > 0, f;; > 0,4;; > 0.
It is still difficult to solve the integration. To deal with this, our basic idea is to transform the ex-
ponential function exp{.} into a multivariate Gaussian distribution, and calculate the integration
as follows:
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Z = Const - |A| 2 exp{bT A™'b — ¢}, (4.12)

where ¢ = Y T_ YN yd_ agx!,; Const is a constant; 4 is a NT X NT block tridiagonal matrix;
and b = X« is a NT-dimension vector and X = {X!: X2 :...: XT}is NT x d matrix by concate-
nating all time-varying attribute matrices together.

Derivation of Z. We now give the details on how we obtain the integration of Z. Equation (4.11)
can be rewritten in the form of a multivariate Gaussian distribution. The standard formation of
the integration of Multivariate Gaussian Distribution is as follows:

m / eXP{—%(U —w) M Yu—p)du=1, (4.13)

where u and p is a m-dimension vector, M is a m X m matrix.
The idea here is to transform the exponential function exp{.} in Equation (4.11) into a
formation of multivariate Gaussian distribution.

exp{.} = exp{—%(z —wIM Yz —p)—c}, (4.14)

where ¢ is a value independent of z. With further derivation, we can arrive

Z = Const - |A| 2 exp{bT A™'b — c} (4.15)

where b = Xa; ¢ = Zthl 21N=1 ZZ:] arx),; Aisa NT x NT block tridiagonal matrix, and | A
is determinant of matrix A. The elements of A is defined as follows (we use i’ to denote i + (¢ —

1) % N for simplicity):

d N N N N

—_ t+1

A o= ax+ Y Bymi, + Y Bimb, + Y AymiT + Y Aymit
k=1 =1 =1 =1 =1

— — _B..mt. — B.:mt
Ajt jr = Aji jo = —Bijmi; — Bjim};

_ S W
Ajt ji—1 = Ajt 1 = —AjimG — Aijmy; .

This construction matches our intuition. A;: ;¢ represents the coefficient of (z!)?, while A;r ;s
represents the correlation factor, and 4, ;-1 describes the influence factor.

The Learning Algorithm and Its Derivation. Given this, we can design an EM-style algorithm
to maximize O(#), as summarized in Algorithm 6:

* E-step: fix z and update all &, B, and A, using a gradient descent method,;

* M-step: fix «, 8, and A to update all z, by solving a linear system.
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More specifically, the algorithm for model learning primarily consists of two steps. To
summarize, in the first step, we fix z and update e, B, A according to their gradients. We need to
guarantee that ag, fij, Aij > 0. Thus, conventional gradient descent cannot be directly applied to
the constrained problem. We employ a technique similar to that in Qin et al. [119]. Specifically
we first maximize O(0) with respect to the log function. As a result, we get:

dlog Z
WWﬁHMZZ@—MZ )
t= lz—l Uk
dlog Z
Viog g, Z—ﬂtj(Z(Zf—z§)2+ aﬂg, ) (4.16)
t=1 1
d dlog Z
Vlog/lij = _Aij(Z m;;l(zlt —Z;-il)2 + T)s
t=1 ij
where
dlog Z 1 9|4 abTA 1, X
=i LD
30lk 2|A| 30lk =i
1 . .
=5 :TI:+XT U —bT A A"
. TN
+HTATIX = 30 Y ¥y
=it
dlogz _ 1 94| , abTa"lh (4.17)
Pij 2|A| 9Bij 3/3ij
1 T\ .T 04 T 1 0A 17
=—A"") — AT ——ATD
2 aﬁi] - 3ﬂ,1
oz _ 1 il o7 A1E
Nij 2|A|8M, oA
0A4 - 9A -
=—-).T LYY ey ks
STy T i

where the notation M : with a colon denotes the long column vector formed by concatenating
the columns of matrix M.
In the second step, we fix e, B, A to update Z, by solving a linear system:

(A+1)Z =7+ Xa. (4.18)

Social Action Prediction. Based on the learned parameters 6, we can predict the users’ future
T+1attime T + 1, we first compute the latent

actions. Specifically, for predicting a user’s action y;
state z T+1 To compute the latent state

T+1, and then use the latent state to infer the action y,
T+1

z; 77, we have the following formula:
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Input: number of iterations / and learning rate n;

Output: learned parameters 6 = ({z; }, {ox }. {Bij }. {14ij });

Initialize z = y;

Initialize «, 8, A;

repeat

E Step: % fix z, learn «, 8, A;

fori =121do
Compute gradient Vigg g . Vieg ;; Vieg A, 5
Update logay =logag + 1 X Vigga,;
Update log Bj = log fij + n X Vieg g, 5
Update log A;; = logAij + 1% Vigg 3,5

end

M Step: % fix «, B, A learn z;

Solve the following linear equation:

A+Dz=y+ Xau

until convergence;

Algorithm 6: Expectation maximization.

d N T_T
ST+ _ D k=1 %kXik + D jq Ajimjz;
i = 7 = .
Zk=1 ag + Zj:l Ajimji
However, the above equation calculates the latent state independently and ignore the cor-

relation between actions. By further considering the action correlation factor, that is to compute
all z together, we can solve the following linear system:

(4.19)

d N
. T+1 T ,,T+1 T
Vi, Zak(zi + —xl-k)—i—ZAj,-mﬁ(zi + —zj)
ji=1

k=1 (4.20)

N N
T+1_ _T+1 T+1_ _T+1
+ ) B T =T+ Y g T = =0
j=1 j=1

Then, we can predict the users’ actions y according to their corresponding latent states z

by:

0 if|z] T -z <= |f T — 7]

Tl = i : (4.21)

i T | 1 otherwise.

where Z1 and Z_ are, respectively, the average state values of the corresponding actions y =1
and y = 0 in the training data, and are computed by:
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= Z:T=1 Zfilzfl(yit = 0)
2%?:1 Z;Vfil I(J’f =0)

o 2imiximznlli=1 (4.23)

+ = T N : .
Yim iz I =1)

(4.22)

where I is the indicator function.

Distributed NTT-FGM Learning. As a social network may contain millions of users and hun-
dreds of millions of social ties between users, it is impractical to learn a NTT-FGM from a
huge data using a single machine. Specifically, there are two major problems in our NTT-FGM
model, namely, memory space and computing time. We use a sparse representation to solve the
first problem. To speed up the computing, we deploy the learning task on a distributed system
based on the MPI (Message Passing Interface).

MPI is a message-passing library interface specification. In the message-passing parallel
programming model, data is moved from the address space of one process to that of another
process through cooperative operations on each process. Based on the message passing scheme,
we employ the master-slave model. That is, master can assign tasks to the slaves (computers), and
combine the results in the master machine.

Specifically, in our learning algorithm, the time-consuming step lies in the calculation of
the gradients, Viega,, Viogp;;» Viega;;» Which requires computing the inverse of the matrix 4.
Note A isa NT x NT matrix, which is too large to be held in memory when deal with a large
data. Thus, we compute each column of A™! respectively by solving the following linear equation

Vi Ax; = b, (4.24)

where x; represents the i column of A~ and b; represents a N T -dimension vector, with the ith
element 1, the other elements 0. Thus in each iteration, the master broadcasts the parameters
to each slave and assigns the tasks to solve Equation (4.24) to the slaves averagely. All the salve
computers calculate A, and send the results back to the master. The master reduces all the dis-
tributed results, and broadcasts the updated parameters to the slaves again for the next iteration.
'The detailed description is in Algorithm 7.

4.3 EVALUATION

'The proposed approach for social action prediction is very general and can be applied to analyze
different kinds of social networks. In this section, we present various experiments to evaluate
the effectiveness and efficiency of the proposed approach. All data sets and codes are publicly
available.*

“http://arnetminer.org/stnt/
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Input: number of iterations / and learning rate n;
Output: learned parameters 6 = ({z; }, {ox }. {Bij }. {14ij });
Initialize z = y;
Initialize «, 8, A;
repeat
Master broadcasts z;
E Step: % fix z, learn «, B. A;
fori =141do
Master broadcasts «, 8, A;
Compute gradient Viog g, - Viog g;; » Viog A, €ach;
Slaves send back the calculation results;
Master reduces the results;
Master Update «, B, A;
end
M Step: % fix o, B, A learn z;
Master Solve the following linear equation:

A+Dz=y+ X

until convergence;

Algorithm 7: Parallel expectation maximization.

4.3.1 EVALUATION METRICS

Data Sets We perform our experiments on three different genres of real-world data sets: Twitter
(a microblogging data set crawled from twitter.com), Flickr (a data set of photo sharing from
flickr.com), and ArnetMiner (a publication data set from arnetminer.org).

* Twitter. The data set is crawled from Twitter by starting from the user “Carel Pedre (carelpe-
dre),” one of Haitian most popular radio DJs, who used Twitter to inform the world about
the earthquake which ravaged his country. We extract all followers (> 11, 704) of “carelpe-
dre” and the users he is following, and continue the process for each extracted Twitter user.
We further crawl all tweets posted by the users as attributes. Finally, a data set used for
action prediction consists of 7,521 users, 304,275 time varying following and followed re-
lationships, and 730,568 tweets (blogs) posted by the users. A larger data set consisting of
millions of users is also publicly available.

* Flickr. The data set is collected by Cha et al. [25], which contains 8,721 users, 485,253
friendships between users, and 2,504,849 favorite photos .

e ArnetMiner. It is collected from ArnetMiner [148] and consists of 640,134 researchers,
1,554,643 coauthor relationship, and 2,329,760 publication papers by the researchers.

Shttp://www.carelpedre.com/
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The action in Twitter is defined as the topic (e.g., “Haiti Earthquake”) discussed by the
user. More specifically, we selected several very relevant keywords, e.g., “Haiti,” “earthquake,” and
“rescue.” If a user posts a tweet containing the topic (keyword), we say that the user performs the
action. We crawled the data from January 12th, when the Haiti Earthquake struck, to January
26th. In the Twitter data, we view one day as a time stamp. For example, if a user calls for a
donation for Haiti, his friends may respond by re-tweeting it or posting a supporting message.

For Flickr, however, the action data is defined as whether or not a user adds a photo to his
favorite list. For example, if a user added a photo to his favorite list, his friends may also add the
photo to their favorites. We extract the historic action log from 11/1/2006 to 3/20/2007 in the
data set, dividing into 14 time stamps, 10 days a stamp.

The action of the ArnetMiner data is defined as whether a researcher publishes a paper
at a specific venue. For example, if a researcher published a paper at KDD, it may influence his
collaborators to publish papers at KDD as well. The data is split into 10 time stamps, 1 for each
year.

On all the three data sets, the attributes X is defined as the contents of tweets, information
of photos, or related publication venues of the researcher. The content of each tweet is preprocessed
by (a) removing stop-words and numbers; (b) removing words that appear less than three times
in the corpus; and (c) lowercasing the obtained words. Then for each user we combine all words
in the remaining words in the tweets posted by the user and create the attribute vector by taking
words as features.

Evaluation Metrics. To evaluate our method, we consider the following three angles.

* Prediction. We evaluate the proposed model in terms of Precision, Recall, and F1-Measure,
and compare with the baseline methods to validate the effectiveness of the proposed model.

* CPU time. It is the execution elapsed time of the model learning. This shows the speedup
of the parallel implementation.

* Case study. We use several case studies as the anecdotal evidence to further demonstrate
the effectiveness of our method.

We compare the following methods for social action prediction.

SVM: Utilizes users’ associated attributes as well as their neighbors’ states to train a classi-
fication model and then employs the classification model to predict users’ actions. For SVM, we
employ SVM-light.®

wvRN: Employs a weighted-vote relational neighbor classifier to train a classification
model by making use of network information. In prediction, the relational classifier estimates
the action state of a user by the weighted mean of his neighbors.

NTT-FGM: Uses the proposed NTT-FGM model to train the action tracking model and

further uses the learned model for prediction.

®http://svmlight.joachims.org/
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Table 4.1: Performance of action prediction with different approaches (%)

Data set Method Recall Precision FI1-Measure

SVM 10.41 16.71 13.85

) wvRN 0.45 7.89 0.86
Twitter

NTT-FGM | 26.40 21.14 23.47

SVM 34.48 45.05 39.06

) wVRN 60.02 48.81 53.84
Flickr

NTT-FGM | 56.18 45.80 50.47

SVM 10.19 21.62 13.85

) wvRN 14.83 16.39 15.57

ArnetMiner
NTT-FGM | 31.14 44.28 36.57

According to our preliminary experiments, the o in the Gaussian distribution does not
significantly influence the performance. Thus, for simplicity, we empirically set o = 1.

All the algorithms are implemented using C++ and all experiments are performed on a
server running Ubuntu 8.10 with a AMD Phenom(tm) 9650 Quad-Core Processor (2.3 GHz)
and 8 GB memory. The distributed learning algorithm is implemented under the MPI parallel
programming model.” We perform the distributed training on 5 computer nodes (20 CPU cores)
with AMD processors (2.3 GHz) and 40 GB memory in total. We set the maximum number of
iterations as 250 and the threshold for the change of o, B, and A to le — 3.

4.3.2 PREDICTION PERFORMANCE

On all the three data sets, we use the historic users’ actions to train the action tracking model and
use the learned model to predict the users’ actions in the last time stamp.

Table 4.1 lists the prediction performance of the different approaches on the three data sets
with the following observations.
Performance comparison Our method NTT-FGM consistently achieves better performance
comparing to the baseline methods. In terms of F1-Measure, NTT-FGM can achieve a +10%
improvement compared with the (SVM). At the same time, NTT-FGM gives robust results,
while the performance of wvRN is very sensitive to the data characteristics, with the highest F1-
Measure on the Flickr data and extremely low value in the Twitter data. This is because on Flickr
the user’s action of adding favorite photos is mainly influenced by her friends’ actions and wvRN
can be viewed as a simple influence model, which makes wvRN mostly predicts “1” on Flickr, but
the Twitter network (about “Haiti earthquake”) in our experiment is relatively sparse, as a result

"http://www.mcs.anl.gov/research/projects/mpich2/
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Figure 4.5: Contribution of different factor functions. NTT-FGM-I stands for our method by ignoring
the influence factor function (A = 0); and NTT-FGM-IC stands for NTT-FGM by ignoring both influence
factor and correlation factor (A = 0, B = 0).

wvRN outputs all “0.” While our approach shows robust and consistent performance on all the
data sets, which is important for the extendability of the methods.

Factor contribution analysis NTT-FGM captures three factors: (1) influence, (2) correlation,
and (3) personal interests/attributes. Next we perform an analysis to evaluate the contribution
of different factors defined in our model. In particular, we remove those factors one by one (first
influence factor function, followed by the correlation factor function), and then train and evaluate
the prediction performance of NTT-FGM. Figure 4.5 shows the F1-Measure score after ignoring
the factor functions. We can observe clear drop on the prediction performance, which indicates
that our method works well by integrating the different factors for action tracking (prediction)
and each defined factor in our method contributes improvement in the performance. Also, we find
that the decrease varies on different data sets. On Twitter there is a very low correlation between
users” actions because users mainly post tweets on Twitter based on their previous experience or
friends’ tweets, and relatively act independently at a same time ¢.

Latent action states The learned latent action states essentially play a role as smoothing. Fig-
ure 4.6 illustrates several examples of the learned latent action states. It can be easily seen that the
learned latent states (denoted as the red curve) is much more smoothing than the original discrete
actions (denoted as the black step line), which indicates that latent action states can model the bias
in binary actions. This is desirable for most prediction/classification tasks and further confirms us

the advantage of the proposed NTT-FGM model.

4.3.3 EFFICIENCY PERFORMANCE

We now evaluate the efliciency of our approach by comparing the distributed learning algorithm
with the basic one on the three data sets.
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Figure 4.6: Example latent action states.

Table 4.2 lists the CPU time required for learning the NTT-FGM model on a single ma-
chine (Basic NTT-FGM) and by the distributed learning algorithm using five computer nodes
(each four cores). The distributed learning algorithm typically achieves a significant reduction
of the CPU time. For example, on ArnetMiner, we obtain a speedup> 17x, and on Flickr, the
distributed learning algorithm results in a speedup> 13x.

Table 4.2: Efficiency performance on the three data sets (five computer nodes, each four cores)

Data Set Basic NTT-FGM Distributed NTT-FGM

Twitter 77.7Thr 7.0hr
Flickr 9.14hr 0.68hr
ArnetMiner 100min 6.2min

We also evaluate the speedup of the distributed learning algorithm using different num-
bers of computer nodes (5, 10, 15, 20 cores) to evaluate the cost of message passing. The speedup,
as shown in Figure 4.7(a), is close to the perfect line in the beginning. Although it decreases in-
evitably as the number of cores increases, it scales very well with > 10x speedup using 15 threads.

We further analyze how the network structure affects the efficiency of the learning algo-
rithm. We generate a synthetic data set for this experiments by varying the density of the network
(log %) It can be seen from Figure 4.7(b) and (c) that as the density (x-axis) increases, both basic
learning and the distributed learning algorithm need more CPU time to train the NTT-FGM
model, but the speedup of the distributed algorithm is consistently high (about 14 — 15x using
20 threads).

4.3.4 QUALITATIVE CASE STUDY

Now we present three case studies to demonstrate the eftectiveness of the proposed model.
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Figure4.7: Speedup results. In graph (a), we evaluate the speedup varied with the number of cores. The x-axis
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in seconds. In graph (c), we evaluate the speedup with different network density. The x-axis is log %, the y-axis

stands for the number of cores, the y-axis represents the speedup( ). In graph (b), we evaluate the

is the speedup.

“Haiti Earthquake” The Haiti Earthquake was a devastating earthquake, leaving the country in
shambles. We use our results to analyze people’s actions related to the catastrophe on Twitter.
Table 4.3 lists several example tweets about the “Haiti Earthquake.” We see that these tweets
are about a call-for-donation by the famous tennis player “Serena Williams (serenajwilliams) .”
'The call-for message was soon retweeted by “actsofFaithblog” and “madameali” on their own mi-
croblogs, and a bit later the Haitian radio host “carelpedre” added a comment on Serena Williams’s
Twitter. These Twitter users are one of the most influential users and their actions on “Haiti Earth-
quake” quickly spread on Twitter with retweets and replies. (Because of this, Carel Pedre received
a special “humanitarian” award at the second annual “Shorty Awards” in New York.) With the
proposed model, we can identify the most influential users, whose actions can induce a large cas-
cade followings, and track the information flows (via social ties with a high influence score or
correlation score). In this way, we can understand how the influence spreads among people.
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Table 4.3:  Action tracking on Twitter for “Haiti Earthquake”

Date/User Tweet
6:03 PM Jan 16th | Tennis pro Roger Federer is joining forces with Rafael Nadal &
by extratv @serenajwilliams to raise money for Haiti. http://su.pr/1IE3MDU

5:23 AM Jan 17th | Hey. Please, check out my foundation website: www.theswf.org
by serenajwilliams | to help those in Haiti!

6:48 AM Jan 17th | RT @SIXTWELVEMAG: RT @serenajwilliams: Hey. Please,
by madameali check out my foundation website: www.theswf.org to help those
in Haiti!

7:34 AM Jan 17th | RT @serenajwilliams: Hey. Please, check out my foundation
by actsofFaithblog | website: www.theswf.org to help those in Haiti!

2:50 PM Jan 17th | @serenajwilliams Through Her 92k Mission has set a goal to con-
by carelpedre tribute donations to the victims in #haiti. Visit www.theswf.org
and donate

Table 4.4: Prediction on who will publish on (or submit to) KDD 2010. The examples are selected
from the top 100 researchers predicted by the NTT-FGM model

Jiawei Han Christos Faloutsos Philip S. Yu
Pedro Domingos Lise Getoor Jon M. Kleinberg
Frequent Hang Li ChengXiang Zhai Wei-Ying Ma
Lise Getoor Jure Leskovec Qiaozhu Mei
Bing Liu Jian Pei Ravi Kumar
Huijia Zhu Dimitrios Kotsakos Zi Yang
Noman Mohammed Caimei Lu Quanquan Gu
Zhili Guo

“Publication at KDD” We can also use the NTT-FGM model to track and predict who will
publish (or submit) papers to KDD 2010. We train the NTT-FGM model using the ArnetMiner
data before 2009 and use the learned model to predict the latent action state of each researcher,
and finally obtain a list of researchers ranked by the latent state. Table 4.4 lists a few representative
examples selected from the top 100 ranked researchers. We see that our approach cannot only find
some famous researchers but also discover some “newcomers” to the KDD community. The first
row lists several well-established researchers who have published a lot on KDD. The second row
shows several “new” researchers who have no paper (or only few papers) published at KDD.

“Correlation between Researchers” Based on the learned NTT-FGM model, we can gen-
erate a correlation/influence map for better user analysis. Figure 4.8 shows an example cor-
relation map between researchers. The strength of the link between two researchers indicates
the correlation score. We see some researchers have strong correlation because they coauthored
quite a few papers, e.g., Jiawei Han and Philip Yu. While our approach also finds some re-
searchers have strong correlation, e.g., Ravi Kumar and Christos Faloutsos, although they only
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Lise Getoor ChengXiang Zhai Ravi Kumar

[
/

Mohammed Javeed Zaki * Philip S. Y

Charu C. Aggarwal Bing Liu

hristos Faloutsos

Jon M. Kleinberg

Figure4.8: Example correlation analysis between researchers. The strength represents the correlation
score between two researchers.

coauthored one or two paper(s). The discovered correlation can potentially benefit many ap-
plications such as link prediction. More correlation/influence analysis results can be found at
http://arnetminer.org/stnt/.

4.4 SUMMARY

In this chapter, we study an interesting problem of user behavior modeling and prediction in
dynamic networks. We propose a noise tolerant time-varying factor graph model (NTT-FGM)
to formalize this problem in a unified model. Three factor functions are defined to capture the
intuitions discovered in our observation and an efficient algorithm is presented to learn the track-
ing model. A distributed learning algorithm has been implemented under the message-passing
parallel programming model. We experiment on three different genres of data sets and further
present a case study on social action prediction using the learned NTT-FGM model. Experi-
mental results on three different types of data sets demonstrate that the proposed approach can
effectively model the social actions and clearly outperforms several alternative methods for action
prediction. The distributed learning algorithm also has a good scalability performance.
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CHAPTER 5

ArnetMiner: Deep Mining for
Academic Social Networks

In this chapter, we use an online system, ArnetMiner [148]," to explain how the technologies
presented in previous sections help real applications. ArnetMiner is a system aiming to extract
and deep analyze academic social networks. Specifically, it provides four key functions: (1) ex-
traction of a researcher social network automatically from the existing Web; (2) integration of the
publications into the social network from existing digital libraries; (3) modeling of the whole aca-
demic social network; and (4) expertise oriented search using social network. The system has been
in operation since 2006. So far, it has extracted information of more than 31,222,410 researchers
and 69,962,333 publications from the Internet. The system has attracted 5,520,000 independent
IP accesses from 220 countries (and regions) in the world up to 2014.

5.1 OVERVIEW

Previously, several issues in academic social network have been investigated and systems were
developed (e.g., Microsoft Academic Search,” Rexa.info,’, and Google Scholar®). However, most
of the problems are investigated separately and the methods proposed are not sufficient for mining
the whole academic social network. This is because of two reasons. (1) Lack of semantic-based
information. The social information obtained solely from the user entered profile or extracted
by using heuristics is sometimes incomplete or inconsistent. Users do not fill some information
merely because they are unwilling to fill the information. (2) Lack of a unified modeling approach
for efficient mining the social network. Traditionally, different typed information sources in the
academic social network were modeled individually, and thus dependencies between them cannot
be captured. However, dependencies (even strong dependencies) exist between the social data.
High quality search services need to consider the intrinsic dependencies between the different
information sources.

In ArnetMiner, we try to address the above challenges in novel approaches. Our objective
in this system is to answer four questions: (1) How does one automatically extract/create the
researcher profile from the existing Web? (2) How does one integrate the extracted information

"http://aminer.org
*http://academic.research.microsoft.com/
*http://rexa.info

“*http://scholar.google.com
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What’s new? User distribution

AMiner Il is the second generation of ArnetMiner, providing deep analysis and
mining for scientific data: X
« Data Fusion: Integrate scientific data from multiple sources. 1 ®

< Profiling: Automatically create profile for each researcher, including basic
information, research interest, social circles, and publication records.

« Expertfinding: Find right experts, rising stars, reviewers, and collaborators.

¢ Academic meter: Measure scientific impact of authors, journals, and papers, @
and estimate the contribution of each collaborator.

¢ Knowledge trend: Identify the evolutionary trend from the scientific data,
predict future development.

* ArnetApp platform: Use RESTFul API to invoke AMiner’s services, deploy your
applications on AMiner and share them with researchers all around the world.

ArnetMiner since 2006

eg ®
°@®

More than 31 million researcher profiles.
More than 69 million papers.

More than 133 million citation relationships.
More than 10 thousand conferences.

5.22 million users from 220 countries/regions.

o s e s e

Figure 5.1: ArnetMiner overview. The left figure lists the major functionalities in ArnetMiner and
the right figure shows user distributions in the world.

(i.e., researchers’ profiles and publications) from different sources? (3) How does one model the
different typed information sources in a unified model? (4) How does one provide powered search
services in the constructed network?

For the first question, we extend FOAF (Friend-Of-A-Friend) ontology [19] as the schema
and employ a unified approach based on Conditional Random Fields (CRFs) to extract the pro-
file of a researcher from the Web. For the second question, we integrate the extracted researcher
profiles and publications from online digital libraries. We propose a unified probabilistic frame-
work for dealing with the name ambiguity problem in the integration. For the third question,
we propose three generative probabilistic models for simultaneously modeling characteristics of
document contents, author interests, and conference themes. For the last question, we, based on
the modeling results, propose several methods for expertise search (searching expertise authors,
conference/journals, and papers), association search, author interests finding, and academic sug-
gestion.

Architecture. Figure 5.2 shows the architecture of the system. The system mainly consists of five
main components.

1. Extraction: Focuses on automatically extracting the researcher profile from the Web. It first
collects and identifies one’s relevant pages (e.g., homepages or introducing pages) from the
Web, then uses a unified approach to extract data from the identified documents. It also
extracts publications from online digital libraries using heuristic rules.

2. Integration: Integrates the extracted researchers’ profiles and the extracted publications. It
employs the researcher name as the identifier. A probabilistic framework has been proposed
to deal with the name ambiguity problem in the integration. The integrated data is stored
into a researcher network knowledge base (RNKB).

3. Storage and Access: Provides storage and indexing for the extracted/integrated data in the
RNKB. Specifically, for storage it employs Jena [24], a tool to store and retrieve ontological
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5. Search Services
Hot-topic finding Expert search
Author interest finding Paper search
Survey paper finding Conference search
Academic suggestion Association search

A

4. Modeling

Modeling Academic Social Network

A

3. Storage and Access

Access Interface

Indexing N
Storage i RNKB
Metadata
2. Integration
‘ Name disambiguation ‘
1. Extraction

Profile extraction o .
Publication collection

Document Collection

A

$

u Papers
Web | DBLP

Figure 5.2: Architecture of ArnetMiner.

data; for indexing, it employs the inverted file indexing method, an existing method in
information retrieval [153].

4. Modeling: Utilizes a generative probabilistic model to simultaneously model the different
typed information sources. It estimates a mixture topic distribution associated with the
different information sources.
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Research_Interest

Affiliation

Postion

Publisher

Download_URL

Figure 5.3: 'The schema of the researcher profile.

5. Search Services: Provides several powered search services based on the modeling results: ex-
pertise author search, paper search, conference search, and people association search. It also
provides other services for supporting advanced applications, including: hot-topic finding,
author interesting finding, survey paper finding, and academic suggestion.

For several features in the system, e.g., extraction of researchers’ profiles, name disambigua-
tion in the integration, academic modeling, and several search services (i.e., expertise search and
association search), we propose new approaches trying to overcome the drawbacks that exist in
the conventional methods. For some other features, e.g., storage and access, we utilize the state-
of-the-art methods. This is because, these issues have been intensively investigated previously
and the conventional methods can result in good performances. In the rest of the book, we will
introduce in detail the challenges we are dealing with and describe our methods.

We first explain our approach to researcher profiling, and then describe the probabilistic
framework to name disambiguation. Next, we propose three generative probabilistic models to
model the constructed academic social network, and present several search services provided in
ArnetMiner based on the modeling results.

5.2 RESEARCHER PROFILE EXTRACTION

We define the schema of the researcher profile (as shown in Figure 5.3), by extending the FOAF
ontology [19]. In the profile, 24 properties and two relations are defined [145, 146].

It is non-trivial to perform the researcher network extraction from the Web. We produced
statistics on randomly selected 1, 000 researchers. We observed that 85.62% of the researchers are
faculties from universities and 14.38% are from company research centers. For researchers from
the same company, they often have a template-based homepage. However, different companies
have absolutely different templates. For researchers from universities, the layout and content of
the homepages vary largely depending on the authors. We have also found that 71.88% of the
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1,000 web pages are researchers’ homepages and the rest are pages introducing the researchers.
Characteristics of the two types of pages significantly differ from each other.

We analyzed the content of the web pages and found that about 40% of the profile proper-
ties are presented in tables or lists and about 60% are presented in natural language text. This also
means a method without using the global context information in the page would be ineffective. A
statistical study also unveils that (strong) dependencies exist between different profile properties.
For example, there are 1,325 cases (14.54%) in our data that extraction of the property needs to
use the extraction results of the other properties. An ideal method should consider processing all
the subtasks together.

5.2.1 AUNIFIED APPROACH TO PROFILING

'The proposed approach consists of three steps: relevant page identification, preprocessing, and
tagging. In relevant page identification, given a researcher name, we first get a list of web pages
by a search engine (we used Google API) and then identify the homepage/introducing page using
a classifier. We use Support Vector Machines (SVM) [30] as the classification model and define
features such as whether the title of the page contains the person name and whether the URL
address (partly) contains the person name. The performance of the classifier is 92.39% in terms
of F1-measure. In preprocessing, (A) we separate the text into tokens and (B) we assign possible
tags to each token. The tokens form the basic units and the pages form the sequences of units in
the tagging problem. In tagging, given a sequence of units, we determine the most likely corre-
sponding sequence of tags by using a trained tagging model. (The type of the tags corresponds
to the property defined in Figure 5.3.) In this chapter, as the tagging model, we make use of
Conditional Random Fields (CRFs) [87]. Next, we describe the steps (A) and (B) in detail.

(A) We identify tokens in the Web page using heuristics. We define five types of tokens:
standard word, special word, image token, term, and punctuation mark. Standard words are un-
igram words in natural language. Special words [135] include email, URL, date, number, per-
centage, words containing special symbols (e.g., “Ph.D.” and “NET”), unnecessary tokens (e.g.,
“==="and “HH"), etc. We identify special words by using regular expressions. image tokens are
image tags in the HTML file. We identify it by parsing the HTML file. Terms are base noun
phrases extracted from the web pages. We employed a tool based on technologies proposed in
Xun et al. [166].

(B) We assign tags to each token based on the token type. For example, for standard word,
we assign all possible tags (each tag representing a property). For special word, we assign tags:
Position, Affiliation, Email, Address, Phone, Fax, Bsdate, Msdate, and Phddate. For image token,
we assign two tags: Photo and Email (an email is likely to be shown as an image).

In this way, each token can be assigned with several possible tags. Using the tags, we can
perform most of the profiling processing (conducting 16 subtasks defined in Figure 5.3).

The CRF Model. We employ Conditional Random Fields (CRF) as the tagging model. CRF

is a conditional probability of a sequence of labels ¥ given a sequence of observations tokens X,
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Table 5.2: Performances of researcher profiling (%)

- Unified Unified NT Amilcare
Profile

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Photo 90.32 | 88.09 | 89.11 | 89.22 | 88.19 | 88.64 | 87.99 | 89.98 | 88.86 | 97.44 | 52.05 | 67.86
Position 77.53 | 63.01 | 69.44 | 73.99 | 57.67 | 64.70 | 78.62 | 55.12 | 64.68 | 37.50 | 61.71 | 46.65

ANGIEGOW 84.21 | 82.97 | 83.52 | 74.09 | 7042 | 72.16 | 78.24 | 70.04 | 73.86 | 42.68 | 81.38 | 55.99
Phone 89.78 | 92.58 | 91.10 | 74.86 | 83.08 | 78.72 | 7791 | 81.67 | 79.71 | 55.79 | 72.63 | 63.11
Fax 92.51 | 89.35 | 90.83 | 73.03 | 57.49 | 64.28 | 77.18 | 54.99 | 64.17 | 84.62 | 79.28 | 81.86
Email 81.21 | 82.22 | 80.35 | 81.66 | 70.32 | 75.47 | 93.14 | 69.18 | 79.37 | 51.82 | 72.32 | 60.38
LIS 87.94 | 84.86 | 86.34 | 77.66 | 72.88 | 75.15 | 86.29 | 69.62 | 77.04 | 55.68 | 76.96 | 64.62
Bsuniv 74.44 | 6294 | 67.38 | 64.08 | 53.16 | 57.56 | 86.06 | 46.26 | 59.54 | 21.43 | 20.00 | 20.69
BTG 73.20 | 58.83 | 64.20 | 67.78 | 53.68 | 59.18 | 85.57 | 47.99 | 60.75 | 53.85 | 18.42 | 27.45
Bsdate 62.26 | 47.31 | 53.49 | 50.77 | 34.58 | 40.59 | 68.64 | 18.23 | 28.49 | 17.95 | 16.67 | 17.28
Msuniv 66.51 | 51.78 | 57.55 | 59.81 | 40.06 | 47.49 | 89.38 | 34.77 | 49.78 | 15.00 | 882 | 11.11
WEHEIEN 69.29 | 59.03 | 63.35 | 69.91 | 56.56 | 61.92 | 86.47 | 49.21 | 62.10 | 45.45 | 20.00 | 27.78
Msdate 57.88 | 43.13 | 48.96 | 48.11 | 36.82 | 41.27 | 68.99 | 19.45 | 30.07 | 30.77 | 25.00 | 27.59
ISIGULIA 71.22 | 58.27 | 63.73 | 60.19 | 48.23 | 53.11 | 82.41 | 43.82 | 57.01 | 23.40 | 14.29 | 17.74
IICINEIOE 77.55 | 62.47 | 67.92 | 71.13 | 51.52 | 59.30 | 91.97 | 44.29 | 59.67 | 68.57 | 42.11 | 52.17
IGGEICEN 67.92 | 51.17 | 57.75 | 50.53 | 36.91 | 42.49 | 73.65 | 29.06 | 41.44 | 39.13 | 15.79 | 22.50
Overall 84.98 | 81.90 | 83.37 | 75.04 | 69.41 | 72.09 | 81.66 | 66.97 | 73.57 | 48.60 | 59.36 | 53.44

ie., P(Y|X) [87]. All components ¥; of Y are assumed to range over a finite label alphabet Y (as
the properties defined in Figure 5.3). The conditional probability is formalized as:

P(ylx) =

1
70 exp(Y_Ajtj(e.yle.X) + Y sk (v, y]v. X)), (5.1)
e,j v,k

where x is a data sequence, y is a label sequence, and y|, and y/|, are the set of components of y
associated with edge e and vertex v in the data sequence, respectively; #; and sy are feature func-
tions; parameters A; and i are coeflicients respectively corresponding to the feature functions ¢;
and sg, and are to be estimated from the training data; and Z(x) is the normalization factor.

In tagging, a trained CRF model is used to find the sequence of tags ¥ * having the highest
likelihood Y * = maxy P (Y |X), with the Viterbi algorithm.

In training, the CRF model is built with labeled data and by means of an iterative algorithm
based on Maximum Likelihood Estimation.

Feature Definition. Three types of features were defined: content features, pattern features, and
term features. The features were defined for different kinds of tokens. Table 5.1 shows the defined
features.

We can easily incorporate the defined features into the CRF model by defining Boolean-
valued feature functions. Finally, 108,409 features were used in our experiments.
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5.2.2 PROFILE EXTRACTION PERFORMANCE

For evaluating our unified profiling method, we randomly chose 1, 000 researcher names in to-
tal from our researcher network base. We used the method described in Section 5.2.1 to find
the researchers’ homepages or introducing pages. If the method cannot find a web page for a re-
searcher, we remove the researcher name from the data set. We finally obtained 898 web pages.
Seven human annotators conducted annotation on the web pages. A spec was created to guide
the annotation process. For disagreements in the annotation, we conducted “majority voting.”
The annotated data set and the annotation specification are publicly available.”

In the experiments, we conducted evaluations in terms of precision, recall, and F1-measure
(for definitions of the measures, see for example van Rijsbergen [153]).

We defined baselines for researcher profile extraction. We use the rule learning and the
classification based approach as baselines. For the former approach, we employed the Amilcare
system [28]. The system is based on a rule induction algorithm, called L P2. For the later approach,
we train a classifier for identifying the values of each property. We employed Support Vector
Machines (SVM) [30] as the classification model.

To test how dependencies between different types of properties affect profiling, we also con-
ducted experiments using the unified model by removing the transition features (Unified_NT).

Table 5.2 shows the five-fold cross-validation results. Our method clearly outperforms the
baseline methods (4+29.93% and +9.80%, respectively, in terms of F1-score). We can also see that
the performance of the unified method decreases (—11.28% by F1) when removing the transition
features (Unified_NT).

We have implemented the proposed profiling approaches in ArnetMiner. By employing
the proposed profiling approaches, we have extracted more than 30 million researcher profiles.
Figure 5.4 shows an example researcher profile. We see that in the top of the profile page, some
basic information (e.g., person photo, position, and affiliation) of the researcher has been correctly
extracted from the homepage. Below is the research interest and evolution of the research interest
discovered by our interest analysis approach. The right side of the page shows the social graph of
the researcher based on his co-author relationships.

5.3 NAME DISAMBIGUATION

We integrated the publication data from existing online data sources, including DBLP bibli-
ography,® ACM,’” and others, covers more than 4 million papers from major computer science
publication venues. In each data source, authors are identified by their names. For integrating the
researcher profiles and the publications data, we use researcher names and the author names as
the identifier. The process inevitably has the ambiguous problem.

Shttp://arnetminer.org/lab-datasets/profiling/
*http://dblp.uni-trier.de/
’dl.acm. org
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Figure 5.4: An example of researcher profile.

Here we give a formal definition of the name disambiguation task in our context. Given a
person name a, we denote all publications having the author name a as P = {p1, p2, . pn}.

For each publication p;, it has six attributes as shown in Table 5.3.
ey ()
| ’ ai })

i s

For the authors of a paper {al@)’ a

Yn, where h € [1,k .

we call the first author a i(o) as the principal
author and the others secondary authors. Suppose there exist k actual researchers {y1, y2, , Yk}
having the name a, our task is then to assign these n publications to their real researcher




140 5. ARNETMINER: DEEP MINING FOR ACADEMIC SOCIAL NETWORKS
Table 5.3:  Attributes of each publication

Attribute Description
p;.title title of p;
p;.pubvenue published conference/journal of p;
pi.year published year of p;
p;-abstract abstract of p;
p;.authors | authors name set of p;, {ago), agl), e al(-u)}
pi.references references of p;

Table 5.4: Relationships between papers

R W Relation Name Description

r1 | wy | Co-Conference p;-pubvenue = p;.pubvenue
ry | Wy Co-Author Ir,s > 0, alm = aﬁ-s)

r3 | ws Citation p; cites p; or p; cites p;

T4 | wy Constraints Feedbacks supplied by users

r5 | ws | T—CoAuthor | T—extension co-authorship (7 > 1)

We define five types of relationships between papers (Table 5.4). Relationship ry represents
two papers are published at the same venue. Relationship r, means two papers have a secondary
author with the same name, and relationship r3 means one paper cites the other paper. Relation-
ship r4 indicates constraint-based relationships supplied via user feedbacks. For instance, the user
can provide that two specific papers should be disambiguated to the same author. We use an ex-
ample to explain relationship rs. Suppose p; has authors “David Mitchell” and “Andrew Mark,”
and p; has authors “David Mitchell” and “Fernando Mulford.” (We are going to disambiguate
“David Mitchell.”) If “Andrew Mark” and “Fernando Mulford” also co-author one paper, then
we say p; and p; have a 2-co-author relationship.

Specifically, to test whether two papers have a t—co-author relationship, we construct a
Boolean-valued matrix M, in which an element is 1 if its value is larger than 0; otherwise 0
(cf. Figure 5.5). In matrix M, {p1, p2.--- , pn} are publications with the principle author name
i(o), i €[1,n]. Note that {a;,az, -+ ,a,}
does not include the principle author name a fo). Sub matrix M), indicates the relationship between
{P1. p2.-++ . pn} and initially it is an identity matrix. In sub matrix M, an element on row i and
column j is equal to 1 if and only if a; € p;.authors, otherwise 0. The matrix M, is symmetric
to Mp,. Sub matrix M, indicates the co-authorship among {a;,az,--- ,a,}. The value on row
i and column j in M, is equal to 1 if and only if @; and a; coauthor one paper in our database
(not limited in {p1, p2, -+, pn}), otherwise 0. Then t—co-author can be defined easily based on
MY where M) = MO M with © > 0.

a.{ai,az,--- ,ap} is the union set of all p;.authors\a
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Pi1 P2 Pnla; ap P P2 Pnla; a,
pr| 10 0|1 0 Pi
P2l 0 1 0 1 P2 M, M,
Pn| 0 11 0 Pn

arf 1 0 1110 1 ai
=l M, M,
B 01 0|10 1 ap

Figure 5.5: Matrix M for rs relationship.

Table 5.5: Abbreviate Name data set

Abbr. Name # Publications #Actual person ~ Abbr. Name # Publications #Actual Person

B.Liang 55 13 M.Hong 69 17
H. Xu 189 59 W. Yang 249 78
K. Zhang 320 40

Table 5.6: Real name data set

Person Name  # Publications #Actual Person | Person Name # Publications  #Actual Person

Cheng Chang | 12 3 Gang Wu 40 16
Wen Gao 286 4 Jing Zhang 54 25
Yi Li 42 21 Kuo Zhang 6 2
Jie Tang 21 2 Hui Fang 15 3
Bin Yu 66 12 Lei Wang 109 40
Rakesh Kumar | 61 5 Michael Wagner | 44 12
Bing Liu 130 11 Jim Smith 33 5

We empirically set the weight for each type of relationship. For example, we assign rela-
tionship r4 with the highest weight. We assign co-author relationship r; a relatively high weight
and ws as the T power of wy, i.e., ws = wj. co-conference is a weak relationship, so we assign
w; a small value. In our experiments, we set w; ~ ws as 0.2, 0.7, 0.3, 1.0, 0.77, respectively.

'The publication data with relationships can be modeled as a graph comprising of nodes
and edges. Each attribute of a paper is attached to the corresponding node as a feature vector. For
the vector, we use words (after stop words filtering and stemming) in the attributes of a paper as
features and use occurring times as the values.

5.3.1 A UNIFIED PROBABILISTIC FRAMEWORK
We propose a probabilistic framework based on Hidden Markov Random Fields (HMRF) [11],

which can capture dependencies between observations (here each paper is viewed as an observa-
tion). The disambiguation problem is cast as assigning a tag to each paper with each tag repre-
senting an actual researcher [140].
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Specifically, we define the a-posteriori probability as the objective function. We aims at
finding the maximum of the objective function. The five types of relationships are incorporated
into the objective function. According to HMRE, the conditional distribution of the researcher
labels y given the observation x (paper) has

1

PO = 5

exp(—= Y D(xi,yn) — Y (DCxi,x)) D wierk(xi, %)), (5.2)
ih i,j#i Tk

where D(x;, yp) is the distance between the paper x; and the researcher y, and D(x;, x;) is the

distance between papers x; and x;; r¢(x;, X;) denotes a relationship between x; and x;; w is the

weight of the relationship; and Z(x) is the normalization factor.

The EM Algorithm. Three tasks are executed by the Expectation Maximization method: learning
parameters of the distance measure, re-assignment of papers to researchers, and the update of
researcher representatives yy.

We define the distance function D(x;, x;) as follows:

T
D(xi,xj) =1- &
[l lallxs lla
(here A is a parameter matrix). For simplicity, we define it as a diagonal matrix.

'The EM process can be summarized as follows: in the E-step, given the current researcher
representatives, every paper is re-assigned to the researcher by maximize P (Y |X). In the M-step,
the researcher representative yj, is re-estimated from the assignments to maximize P (Y |X) again,
and the distance measure is updated to reduce the objective function.

In the initialization of our EM framework, we first cluster publications into disjoint groups
based on the relationships between them, i.e., if two publications have a relationship, then they
are assigned to the same researcher. Therefore, we first get A groups. If A is equal to our actual
researcher number k, then these groups are used as our initial assignment. If A < k, we choose
k — A random assignments. If A > k, we cluster the nearest group until there are only k groups

left.

, wherel|x; |4 = /x] Ax; (5.3)

1

In the E-step, assignments of data points to researchers are updated to maximize the
P(Y|X). A greedy algorithm is used to sequentially update the assignment for each paper. The
algorithm performs assignments in random order for all papers. Each paper x; is assigned to yp,
h € [1, k] that minimize the function (equivalently to maximize P (yp|x;)):

SOnx) =Y Dy + > (D(xi.xj) Y wierge(xi. x)). (5.4)
i i,j#i Tk

The assignment of a paper is performed while keeping assignments of the other papers

fixed. The assignment process is repeated after all papers are assigned. This process runs until no
paper changes its assignment between two successive iterations.
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Figure 5.6: Comparison with existing method.

In the M-step, each researcher representative is updated by the arithmetic mean of its

points:

Zly=h Xi
Vh= e (5.5)
2 iy = illa

Then, each parameter apm, in A is updated by (only parameters on the diagonal): aym =

Amm + n—af(y” X1 where:

8f(yh,xi) _ Z 8D(xl9yh) Z (aD(Xz,X]) Zwkrk(xi,xj))

mm - o 0amm

T x7 IIxi 13 +x%,, 1% 13
aD(xi, Xj) _ ximxjm“xi ”A”x] ”A —X; ij o 20 ||A||)jcjr.yi|A

Iamm i 13115 11

5.3.2 NAME DISAMBIGUATION PERFORMANCE

Data Sets and Evaluation Measure. To evaluate our methods, we created two data sets from
ArnetMiner, namely Abbreviate Name data set and Real Name data set. The first data set was
collected by querying five abbreviated names in our database. All these abbreviated names are
generated by simplifying the original names to its first name initial and last name. For example,
“Cheng Chang” is simplified to “C. Chang.” The simplification form is popular in bibliographic
records. Statistics of this data set is shown in Table 5.5.

Another data set includes 14 real person names. In these names, some names only corre-
spond to a few persons. For example, “Cheng Chang” corresponds to three actual persons and
“Wen Gao” four; while some names seem to be popular. For example, there are 25 persons with
the name “Jing Zhang” and 40 persons for “Lei Wang.” Statistics of this data set are shown in
Table 5.6.
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Figure 5.8: Distribution analysis.

Five human annotators conducted disambiguation on the papers. A spec was created to
guide the annotation process. Each paper is labeled with a number indicating the actual person.
'The labeling work was carried out based on the publication lists on the authors’ homepages, affili-
ations, and email addresses. For further disagreements in the annotation, we conducted “majority
voting.” The annotated data set can be downloaded here.”

®http://arnetminer.org/disambiguation
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From the statistics we have found that the disambiguation results is extremely unbalance.
For example, there are 286 papers authored by “Wen Gao” with 282 of them authored by Prof.
Wen Gao from Institute of Computing at Chinese Academy of Science and only four papers are
authored by the other three “Wen Gao.”

We defined a baseline based on the hierarchical clustering algorithm. The baseline method
is similar to that proposed by Tan et al. [139] except that Tan et al. [139] also utilize a search engine
to help the disambiguation. We also compared our approach with the existing work, e.g., Yin et
al. [171]. In all experiments, we suppose that the number of person k is provided empirically.

Results. We evaluated the performances of our method and the baseline methods on the two
data sets. Table 5.7 shows the results. It can be seen that our method can significantly outperform
the baseline method for name disambiguation (44.54% on Abbr. Name data set and +10.75%
on Real Name data set in terms of the average F1-score). More results were reported in Tang et

al. [140].

Table 5.7: Results on name disambiguation (%)

Data Set Person Name Bascline Our Approach
Rec. . Rec.
B. Liang 82.07 | 7690 | 79.07 | 49.54 | 100.00 | 66.26
H. Xu 65.87 | 59.48 | 71.27 | 32.77 | 100.00 | 49.37
Abbr. Name K. Zhang 75.67 | 60.27 | 67.84 | 71.03 | 100.00 | 83.06
M. Hong 79.24 | 65.36 | 71.36 | 91.32 | 86.06 | 88.61
W. Yang 71.30 | 62.83 | 66.99 | 52.48 | 99.86 | 68.81
Avg. 74.43 | 6447 | 69.21 | 5943 | 97.18 | 73.75
Cheng Chang 100.00 | 100.00 | 100.00 | 100.0 | 100.0 | 100.0
Wen Gao 96.60 | 62.64 | 76.00 | 99.29 | 98.59 | 98.94
Yi Li 86.64 | 95.12 | 90.68 | 7091 | 97.50 | 82.11
Jie Tang 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
Gang Wu 97.54 | 97.54 | 97.54 | 71.86 | 98.36 | 83.05

Jing Zhang 85.00 | 69.86 | 76.69 | 83.91 | 100.0 | 91.25
Kuo Zhang 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Real Name

Hui Fang 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
Bin Yu 67.22 | 50.25 | 57.51 | 86.53 | 53.00 | 65.74
Lei Wang 68.45 | 41.12 | 51.38 | 88.64 | 89.06 | 88.85

Rakesh Kumar | 63.36 | 9241 | 75.18 | 99.14 | 9691 | 98.01
Michael Wagner | 18.35 | 60.26 | 28.13 | 85.19 | 76.16 | 80.42
Bing Liu 84.88 | 43.16 | 57.22 | 88.25 | 86.49 | 87.36
Jim Smith 92.43 | 86.80 | 89.53 | 95.81 | 93.56 | 94.67
Avg. 82.89 | 7851 | 80.64 | 90.68 | 92.12 | 91.39
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'The baseline method suffers from two disadvantages: (1) it cannot take advantage of rela-
tionships between papers and (2) it relies on a fixed distance measure. Our framework benefits
from the ability of modeling dependencies between assignment results.

We compared our approach with the approach DISTINCT proposed in Yin et al. [171].
We used the person names that were used both in Yin et al. [171] and in our experiments for
comparisons. Figure 5.6 shows the comparison results. It can be seen that for some names, our
approach significantly outperforms DISTINCT (e.g., “Michael Wagner”); while for some names
our approach underperforms DISTINCT (e.g., “Bin Yu”).

Feature Contribution Analysis. We further investigated the contribution of the defined rela-
tions for name disambiguation. We first evaluated the results of our approach by removing all
relations. Then we added the relations: co-conference, citation, co-author, and t—co-author into
our approach one by one. Figure 5.7 shows the results. “w/o Relationships” denotes our approach
without any relationships. “+Co-Conference” denotes the results of by adding co-conference rela-
tionships. Likewise for the others. At each step, we observed improvements in terms of F1-score.
We need note that without using relations the performances drop sharply (—15.65% on Abbr.
Name and —44.72% on Real Name). This confirms us that a framework by integrating relation-
ships for name disambiguation is needed and each defined relationships in our method is helpful.

We can also see that the co-author relationship makes major contributions (424.38%
by F1) to the improvements. co-conference and citation make limited contributions (40.68%
and +0.61%) to the improvements on precision, but can obtain improvements (+13.99% and
+5.20%) on recall.

Distribution Analysis. Figure 5.8 shows several typical feature distributions in our data sets.
'The graphs were generated using a dimension reduction method described in Cai et al. [22]. The
distributions can be typically categorized into: (1) papers of different persons are clearly separated
(“Hui Fang,” in Figure 5.8(a)). Name disambiguation on this kind of data can be solved pretty well
by our approach and as well the baseline method; (2) publications are mixed together, however,
there is a dominate author who writes most of the paper (e.g., “Bing Liu,” in Figure 5.8(b));
our approach can achieve a F1-score of 87.36% however the baseline method results into a low
accuracy (57.22% by F1); and (3) publications of different authors are mixed (“Jing Zhang” and
“Yi Li,” in Figure 5.8(c) and (d)). Our method can obtain 92.15% and 82.11% in terms of F1-
measure; while the baseline method can only obtain a result 76.69% and 90.68% in terms of
F1-measure, respectively.

Figure 5.9 shows a snapshot of the disambiguation result. The user searches for “Jie Tang”
and the system returns three different persons on the top of the page and the background shows
the detailed profile information of chosen person. The method runs in an offline mode and so
far the system already generates the disambiguation results for more than 100,000 person names.
Please note that this is an ongoing project. Visitors should expect the system to change.
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Figure 5.9: An example result of name disambiguation for “Jiec Tang.” There are three different “Jie
Tang” automatically recognized by the proposed methods.

54 TOPIC MODELING

In academic search, representation of the content of text documents, authors interests, and con-
ferences themes is a critical issue of any approach. Traditionally, documents are represented based

on the “bag of words” (BOW) assumption. However, this representation cannot utilize the “se-
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mantic” dependencies between words. In addition, in academic search, there are different typed
information sources, thus how to capture the dependencies between them becomes a challenging
issue.

To deal with this problem, topic models such as probabilistic Latent Semantic Indexing
(pLSI) [69] and Latent Dirichlet Allocation (LDA) [14] have been proposed. Both models can
model the dependencies between words and documents. The Author-Topic model is proposed
for modeling the content of documents and the interests of authors [122, 136]. However, all of
the aforementioned models cannot be directly applied to the context of academic search, as they
cannot capture all intrinsic dependencies in academic search such as dependencies between paper
and conference.

We propose a unified topic modeling approach for simultaneously modeling characteristics
of documents, authors, conferences, and dependencies between them. (For simplicity, we use
conference to denote conference, journal, and book hereafter.)

"The notations used here are summarized as follows. A document d is a vector of N words,
wg, where each wy; is chosen from a vocabulary of size V, a vector of A4 authors ag, chosen from
a set of authors of size A, and a published conference ¢4. A collection of D documents is defined
byD = {(wi,aj.c1), -+, (Wp.ap,cp)}. X4; indicates an author, chosen from a,, responsible for
the ith word in document d. Here each author is associated with a distribution over topics ©,
chosen from a symmetric Dirichlet(«) prior. The number of topic is denoted as 7.

5.4.1 OURPROPOSED TOPIC MODELS
The proposed model is called Author-Conference-Topic (ACT) model. More specifically, dif-

ferent strategies can be employed to model the topic distributions (as shown in Figure 5.10) and
thus the implemented models have different intuitions. In Figure 5.10(a), each author is associ-
ated with a mixture weights over topics and each word token in a paper and a conference stamp
associated to each word token is generated from a sampled topic. In Figure 5.10(b), each author-
conference pair is associated with a mixture weights over the topics and word tokens are then
generated from the sampled topics. In Figure 5.10(c), each author is associated with topics and
each word token is generated from a sampled topic, and then a conference is generated from the
sampled topics of all word tokens in a paper.
In the rest of this section, we will describe the three models in detail.

Model One. In the first model, the conference information is viewed as a stamp for each word
with the same value. The generative process in this ACT model (cf. Figure 5.10(a)) can be sum-
marized as follows.

1. For each topic z, draw ¢, and v, respectively, from Dirichlet priors 8, and .
2. For each word wy; in document d:

* draw an author x4; from a; uniformly;



5.4. TOPICMODELING 149

{=)1(=)
HEHE

Ny

l

ool ©
(a) Model One (b) Model Two (c) Model Three

Figure 5.10: Graphical representation of the three Author-Conference-Topic (ACT) models.

* draw a topic z4; from a multinomial distribution 6y, specific to author x4;, where 6
is generated from a Dirichlet prior o;

* draw a word wg; from multinomial ¢, ; and

* draw a conference stamp c¢g; from multinomial ¥, ..

In the generative process, all conference stamps in a document are observed as the same as
the published venue of the document. In this way, the posterior distribution of topics depends on
three modalities: authors, words, and conferences. Parameterizations in the ACT model are:

xlag ~ Uniform(ag)
Ox il ~ Dirichlet(c)
¢-|B ~ Dirichlet(B)
Y|\ ~ Dirichlet(i)
24ilbx,; ~ Multinomial(0y,,)
Wyil¢z,; ~ Multinomial(¢;,,)
cqilVz,, ~ Multinomial(y;,,).

Hence, in this ACT model, the joint probability of words w, conferences ¢, a set of corre-
sponding latent topics z, and an author mixture x is defined as

D Na AT v c
nze
P(x,z,w,c|®, P,V a) = 1_[ 1_[ - X 1_[ H(@)rcnzxz 1_[ 1z l_[ Yresd), (5.6)
d=1i=1 d x=1z=1 v=1 c=1

where m is the number of times that topic z has been used associated with the chosen author x,
Ny is the number of times that word w, has been generated by topic z, and 7., is the number
of times that conference ¢4 has been generated by topic z.
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By placing a Dirichlet prior over ® and another two over ® and W, and combining them
into Equation (5.6) with further integrating over ®, ® and ¥, we obtain:

Do Na I, az) [ Tlms: + az)
P aw.cle o) = [T 157 H . D) T, s + 02)
F(Z Bv) 1_[ I'(ngy + ,8 ) F(Z He) 1_[ I'(nze + pe)
v v c c 57
l_[ Hv '(Bv) F(Zv(”zv + Bv)) 1_[ l_[c I (pee) F(Zc(nzc + ,ch)) G.7)

It is intractable to directly compute Equation ( 5.7). A variety of algorithms have been
proposed to conduct approximate inference, for example variational EM methods [14], Gibbs
sampling [57, 136], and expectation propagation [57, 109]. We chose Gibbs sampling for its easy
of implementation.

As for the hyperparameters «, f, and p, one could estimate the optimal values by using
a Gibbs EM algorithm [3, 108] or a variational EM method [14]. For some applications, topic
models are sensitive to the hyperparameters and it is necessary to get the right values for the
hyperparameters. In the applications discussed in this book, we found that the estimated topic
models are not very sensitive to the hyperparameters. Thus, for simplicity, we took a fixed value
(e, =50/T, B = 0.01,and u = 0.1).

In the Gibbs sampling procedure, we need to calculate the posterior probability
P(zgi, Xdilz—gi, X—qi, w,c,a, B, u) for the chosen author for sampling the topic for each word
token. We begin with the joint probability of a data set (cf. Equation (5.7)), and using the chain

rule, we can obtain the conditional probability as

—di —d
mxd[zd[ + Ozy; nzd Wy + lgwdt nzd cq + Heq

> mydi o) 3 (n9h + By) Yo (04 4 )
(5.8)

where the superscript —¢ denote a quantity, excluding the current instance (the di-th word token

P(zgi, Xqilz—gi. X—qi, w.c,a, B, ;1)

or the conference stamp in the d-th document).
Given D documents, a set of topics z, and hyperparameters o, 8, and p, the random vari-
ables ¢ (the probability of a word given a topic), ¥ (the probability of a conference given a topic),

and 0 (the probability of a topic given an author) can be estimated via:

Nzwg; + Buwg (5
Zwgi T N . a2 9)
bzwy Zv(nzj_-l- Bv)
Nzey T Mey
e, = ——d _"Td 5.10
& 4 Zc (nze + He) ( )
6, = =t (5.11)

Zz/(mxz’ + ay)
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Model Two. The second model (cf. Figure 5.10(b)) is an alternative model to the first model. The
difference is that it views the conference and authors in a document as a united information and
thus each pair of author-conference is responsible for the sampled topics. The generative process
of this model is:

1. for each topic z, draw ¢, from Dirichlet priors ; and
2. for each word wy; in document d:

* draw an author-conference pair (x4;, c¢g) from {ag, ¢4} uniformly;

* draw a topic z4; from a multinomial distribution 6y, ¢,) specific to author-conference
pair (xg4;, ¢4), where 6 is generated from a Dirichlet prior o; and

¢ draw a word wg; from multinomial ¢, .

Parameterizations in this ACT model are similar as those in Model One, except that we
chose a pair (x, c¢) from {ag, ¢} uniformly and we will not sample the conference stamp in this
model.

'Thus, the joint probability of words w, a set of corresponding latent topics z, and an author
mixture x is defined as

D Ny AC T V

P(x,z,w|®,®, ¥ a c) = l_[ l_[ o l_[ l_[ l_[ QZ’C(;;LZ')Z nzv (5.12)

d=1i=1 |Cd| xc=1z=1v=1

where A4 * |cg] is the number of author-conference pairs for a document. (In practical, it is equal
to A4 as a paper only has one publication venue.)

Again, by placing a Dirichlet prior over ® and another one over ® and putting them into
Equation (5.12) by integrating out © and ®, we can obtain:

D Ny AC

L o) [ Fmie: +az)
Poxata prae) = 1] 157705 pyE <11 T T T +a)

nv F(ﬂv) r(zv(nzv + ,Bv))

Similarly, =~ we  can  calculate  the  posterior  conditional  probability

P(zg;i. (x¢)gilz—gi . X_gi,c—q,w,, B) using a Gibbs sampling procedure analogous to that in
Model One

—di
m(xc)dizdi + azdi zd,wd, + ﬂwdl

_ (5.14)
> md A az) Xy (g + o)

P(zgi, (x¢)gilz—ai X—gi. c—q, W, B) X
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Model Three. Intuition of the third model (cf. Figure 5.10(c)) is derived from the observation
that authors write a paper with a topic distribution and then they want to find a right conference
to submit the paper. Thus, the corresponding generative process is:

1. for each topic z, draw ¢, from Dirichlet priors f;;
2. for each word wy; in document d:

* draw an author x4; from a; uniformly;

* draw a topic z4; from a multinomial distribution 6y, specific to author x4;, where 6
is generated from a Dirichlet prior o; and

* draw a word wg; from multinomial ¢, .

3. draw a conference ¢4 from zy.n, using a normal linear model N(n"z,0?), where 7 is a
vector recording the normalized number of times of each topic sampled from document d.

We define itas 7 := (1/Ny) ZzN=d1 |zail.

In this model, the conference comes from a normal linear model. The covariates in this
model are the empirical frequencies of the topics in the document. The regression coeflicients on
those frequencies constitute 7. Note that we ignore the intercept term, which is used to guarantee
adding a covariate equal to one, because in our model 7 always sum to one. Thus, the difference of
parameterizations of this model from Model One is that the conference stamp is sampled from
a normal linear distribution after all topics were sampled for word tokens in a document.

Accordingly, the joint probability of words w, conference stamps ¢, a set of corresponding
latent topics z, and an author mixture x is defined as

Ng

A T V
P(x,z,w,c|®,®,1n,02% a) = l_[(P(cd|zl Ny 1,0 )H l_[ l_[ H Oz przy). (5.15)
x=1z=1v=1

1—1

For computing the above equation using Gibbs sampling, there is a slight difference from
that in Model One and Model Two, as we also need to estimate the values of 1 and 2. We use
a Gibbs EM algorithm for this model.

In the E-step, for sampling the topic for each word token, the posterior probability
P(zgi, Xdilz—ai.X—qi,cq.w,, B) is calculated by

2
P(Zdi,xdilzd—di,x—di,cd,w a,p,n,07%) «
—dal
mxdzzdz + O[Zdi zd,wd, + ledz

Zz(m;jilz + O[Z) Z (nzd,v + IBU)

P(cqlz1:n, . 0. 07) (5.16)

where
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P(ed ) = L) (5.17)
Cd|Z1:N4>1,07) = e 20 . .

¢ V2mo?

In the M-step, given the sampled topics z, the optimal 7 and 62 can be estimated by max-
imizing

argmx, , log P(x,z,w, cla, f, n,02). (5.18)

Specifically, n is updated by

New < (E[ATADT'E[A]Te (5.19)

and 02 is updated by

02, <« (1/D){c"c—c"E[A|(E[ATA)'E[A] ¢}, (5.20)

new
where E[.] is the expectation of the variables; A4 is a matrix of D x T with the d —th row is E[r] =

¢ = (1/Ny) ZLN=d1 ¢ai and E[AT A] = Zc?:l E[tgt]]isa T x T matrix, where E[t47 ] is de-
fined as:

Ny Ny
Eltaty) = (/NDQ Y daits; + ) _ diag{dai}) (5.21)
i=1j#i i=1

with diag{¢s;} indicating a matrix with diagonal as the vector of ¢4;. Note that ¢4; denotes a
vector of probabilities of topics generating word wy; . (We omitted the details of derivation of the
update Equations (5.19) and (5.20). Interested reader is referred to [13] and [108].)

We estimate the ACT models in an offline mode before applying it to the academic search.
The first two proposed models result into a complexity of O(MDN4T Ag) with slight differences,
where M is the number of sampling times, N, is the average number of word tokens in a docu-
ment, and A is the average number of authors. In most cases, the number A4 is negligible to the
final complexity. The third model has to estimate the optimal values for 7 and 62, which leads to
a higher complexity O(MDN, T + MD?T?). Note that E[A], E[AT A] can be computed in the
previous E-step (while in the sampling process).

5.5 EXPERTISE SEARCH

In academic search, the goal is to find the expertise authors, expertise papers, and expertise con-
terences for a given query [147, 175]

Based on the proposed ACT models, we can calculate the likelihood of the a document
model generating a word using the following equation (we use ACT Model 1 as the example):
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T A4
Pacri(wld,0,¢) = YY" P(wlz,¢2) P(z|x, 6x) P(x|d), (5.22)

z=1x=1
where all probabilities on the right side of the equation are estimated in the ACT model. The
likelihood of an author model and a conference model generating a word can be similarly defined.
However, as a topic in the LDA-style model represent a combination of words, it may not be
as precise as representation as words in non-topic models like the language model. Therefore, only
using ACT itself for modeling is too coarse for academic search [160]. Actually, our preliminary
experiments also show that employing only the ACT or LDA models to information retrieval
hurts the retrieval performance. Finally, we derive a combination form of the ACT models and

the language model:

P(w|d) = Pry(w|d) x Pacr(w|d), (5.23)

where Ppy(w|d) is the generating probability of word w from document d by the language model.
It is defined as [173]:

Na_ tfwd) | Ne | f@.D)
Ng+ A |d| Ng+ A |D|

where |d| is the length of document d, ¢ f(w, d) is the word frequency (i.e., number of words) of
word w in d, | D] is the number of word tokens in the whole collection, and 7 f (w, D) is the word
frequency of word w in the whole collection D. A is the Dirichlet prior and is common to set it

P(w|d) =

(5.24)

according to the average document length in the document collection.
Finally, given a query ¢, P(q|d) can be computed by P(q|d) = yeq P(w|d). Similarly,
we can define P(g|a) for authors and P(g|c) for conferences in a analogous way:

P(qla) = Pru(qla) x Pacr(qla) (5.25)

P(qlc) = Pru(qlc) x Pacr(qlc) (5.26)

where a and c is represented by a collection of papers published by author @ and on conference
¢, respectively.

5.5.1 DATA SETS AND EVALUATION MEASURES

We have collected a list of queries from the query log of ArnetMiner for evaluation purposes.
Specifically, we selected the most frequent queries from the log of ArnetMiner (by removing
overly specific or lengthy queries, e.g., “A Convergent Solution to Tensor Subspace Learning”).
We also normalized similar queries (e.g., “Web Service” and “Web Services” to “Web Service”).

We conducted our experiments on a subset of the data (including 14, 134 persons, 10,716
papers, and 1, 434 conferences) from ArnetMiner. For evaluation, it is difficult to find a standard
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data set with ground truth. As a result, we use the method of pooled relevance judgments [20]
together with human judgments. Specifically, for each query, we first pooled the top 30 results
from three similar (academic search) systems (Libra, Rexa, and ArnetMiner) into a single list.
Then, two faculties and five graduate students from the authors’ lab provided human judgments.
Four grade scores (3, 2, 1, and 0) were assigned, respectively, representing definite expertise, ex-
pertise, marginal expertise, and not expertise. For example, for annotating persons, assessments
were carried out mainly in terms of how many publications she/he has published related to the
given query, how many top conference papers he or she has published, what distinguished awards
she/he has been awarded. Finally, the judgment scores were averaged to construct the final truth
ground. The data set is available online.

In all experiments, we conducted evaluation in terms of P@5, P@10, P@20, R-pre, and
mean average precision (MAP). Readers are referred to Buckley and Voorhees [20] and Craswell
et al. [33] for details of the measures.

We use language model (LM) [173], LDA [14], and Author-Topic model [122, 136] as the
baseline methods. For language model, we use Equation (5.24) to calculate the relevance between
a query term and a document and for LDA, we use a similar equation with Equation (5.23) to
calculate the relevance of a term and a document. AT model can simultaneously capture depen-
dencies between words, documents, and authors. We use similar equations with Equation (5.23)
and (5.25) to calculate the relevance of a query term with a document and an author respectively.

For the LDA and AT models, we performed model estimation on the same data set as that
for the ACT models. We empirically set the number of topics as 80 for LDA, AT, and ACT
models by minimizing the perplexity [7], a standard measure for estimating the performance of
a probabilistic model (the lower the best), of the estimated topic models. One can also use some
solution like [152] to automatically estimate the number of topics.

All experiments were carried out on a Server running Windows 2003 with two Dual-
Core Intel Xeon processors (3.0 GHz) and 2GB memory. It needs 20 and 50 min, respectively,
estimating the LDA model and AT model, 65 min for estimating ACT Model 1, 1.2 hr for ACT
Model 2, and about 3 hr for ACT Model 3 (for 2000 sampling iterations).

5.5.2 RESULTS

Expertise Search

We evaluated performances of our proposed methods (referred to as ACT1, ACT2, and
ACTS3) and the baseline methods (LM, LDA, and AT) using the collected evaluation queries.

Table 5.8 shows the experimental results of retrieving papers, authors, and conferences
using our proposed methods and the baseline methods. We see that all of our proposed three
methods outperform the baseline methods (LM, LDA, and AT). For academic search, the im-
provements over the language model based method range from +5.1% to +9.8% in terms of
MAP and improvements over the pLSI based method range from +0.4% to 4+5.1% in terms of
MAP. Based on all the other evaluation measures, our method consistently performs better than
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Figure 5.11: An example result of expert finding for “Data Mining.” The left side lists experts ranked
by the proposed method, the top-right lists ranked publication venues, and the bottom-right lists
ranked papers.

the three baseline methods. LDA only models dependencies between documents and words and
thus can support only paper search; while AT only models dependencies between documents,
words, and authors, and thus support paper search and author search. Both of the two methods
underperform our proposed unified models. Our models benefit from the ability of capturing all
kinds of dependencies among words, papers, authors, and conferences.

We can also see that ACT1 outperforms ACT2 and ACT3. ACT1 achieves the best perfor-
mance in terms of P@5 (+10.8%, +9.2%, +5.0%, and +4.8% against LM, pLSI, ACT2, and ACT3,
respectively). ATC2 suffers from a sparse problem when sampling a pair of author-conference
from a document. In our experiment, the possible number of pairs scales up to more than 10
million, which makes the associated topics to each pair is very sparse. Thus, the estimated topics
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Table 5.8: Performances of five expert finding approaches (%)

Method Object

LM Paper 37.5 33.8 32.5 8.7 42.1
Author 55.0 37.5 21.3 49.0 62.8
Conference | 47.5 30 194 40.8 51.0
Average 46.7 33.8 24.4 32.8 52.0
pLSI Paper 32.5 33.8 30 9.7 40.4
Author 65.0 | 40.0 22.5 60.4 75.5
Conference | 47.5 36.3 21.3 45.1 54.1
Average 48.3 36.7 24.6 384 56.7
ACT1 Paper 37.5 40.0 36.9 13.7 43.8
Author 80.0 43.8 23.1 70.0 78.4
Conference | 55.0 36.3 20.6 53.1 63.3
Average 57.5 40.0 26.9 45.6 61.8
ACT2 Paper 37.5 28.8 28.1 9.1 41.6
Author 65.0 38.8 23.8 56.6 66.8
Conference | 55.0 33.8 20.6 51.6 62.9
Average 52.5 | 33.8 24.2 39.1 57.1
ACT3 Paper 35.0 37.5 36.3 10.6 43.1
Author 67.5 41.3 24.4 60.7 69.5
Conference | 52.5 36.3 20.6 53.1 61.2
Average 52.7 38.3 27.1 41.5 57.9

cannot accurately characterize the author. As a result, for author search, ACT2 underperforms
ACT1 by —11.6% in terms of MAP. ACT3 underperforms ACT1 by P@5 and P@10 but obtains
the best performance in terms of P@20 and P@30.

For comparison purposes, we also evaluated the results returned by two similar systems:
Libra.msra.cn and Rexa.info. The average MAP obtained by Libra and Rexa on our collected
queries are respectively 51.0% and 46.2%. We see that our methods clearly outperform the two
systems.

Tables 5.9 and 5.10 show the example of retrieved results for the query “Information Ex-
traction” and “Semantic Web.” We can see some interesting patterns. For example, we have found
that in the topic found in Table 5.11, “ISWC” has the highest generative probability from the
topic “Semantic Web” but for the query “Semantic Web,” it is retrieved in the second place while
“WWW?” is returned as the top one. This is because many experts on “Semantic Web” also has
published many papers on “WWW.” The combination of the ACT model and the language model
re-rank the results of ACT model.

Figure 5.11 shows an example of expert finding in ArnetMiner. The user tries to find ex-

perts on “Data Mining.” The system returns experts ranked by the proposed ranking method. In
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Table 5.9: Retrieved results of “Information Extraction” by ACT1

Person Conference Paper
Raymond J. Mooney AAAI Multistrategy Learning for Information Extraction
Nicholas Kushmerick IJCAI Adaptive Information Extraction: Core Technologies for Information Agents
Andrew McCallum ICML Integrating Information to Bootstrap Information Extraction from Web Sites
Dayne Freitag ACL Automatically Constructing a Dictionary for Information Extraction Tasks
Ellen Riloff SIGIR Machine Learning for Information Extraction in Informal Domains
Dan I. Moldovan EACL Collective Information Extraction with Relational Markov Networks
Fabio Ciravegna COLING Exploiting Subjectivity Classification to Improve Information Extraction
Alexiei Dingli ITWeb Evaluating machine learning for information extraction
Daniel S. Weld Machine Learning Multi-level Boundary Classification for Information Extraction
Bernd Thomas ECML Adaptive information extraction for document annotation in amilcare

Table 5.10: Retrieved results of “Semantic Web” by ACT1

Person Conference Paper
Ian Horrocks WWWwW Metamodeling Architecture of Web Ontology Languages
Steffen Staab ISWC Three theses of representation in the semantic web
Stefan Decker Description Logics Learning Ontologies for the Semantic Web
York Sure IEEE Intelligent Systems DAMLA+OIL: a Description Logic for the Semantic Web
Carole A. Goble ESWC Querying the Semantic Web: A Formal Approach
Rudi Studer J. Web Sem. A software framework for matchmaking based on semantic web technology
Peter F. Patel-Schneider ESWS The Networked Semantic Desktop
Jeff Z. Pan AAAI OilEd: a Reason-able Ontology Editor for the Semantic Web
Sergio Tessaris TICAI A Scalable Framework for the Interoperation of Information Sources
Sean Bechhofer IEEE Data Eng. Bull. OntoEdit: Collaborative Ontology Development for the Semantic Web

addition, the top-right of the screen lists ranked publication venues, and the bottom-right lists
ranked papers.

Association Search

Given a social network, the association is defined as as follows.
Association: Given a social network G = (V, E), an association «(a;, a;), a;,a; € V, is a se-
quence of relations {e];, e, -, e} satisfying e, .\ € E form =1,2,--- .1 — 1, where a;
and a; are the source and the target persons, respectively.

We assume that no person will appear on a given association more than one time. Each
association is assigned with a score representing its goodness.
Association Search: Given an association query (a;,a;), association search is to find possible

associations {a (a;,a;)} from a; to a; and rank the associations according to their goodness.
From the definition, we see that there are two subtasks in association search: finding associ-
ations between the two persons and ranking the associations. Given a large-scale social network,
to find all possible associations is obviously an NP-hard problem. In this paper, we focus on find-
ing the most “goodness” associations. Hence, the problem becomes how to evaluate the goodness
of an association and one key issue is how to calculate the distance between two persons. Based
on the modeling results (cf. Section 5.4), we define the distance between authors a; and a; as the
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symmetric KL divergence between the topics distribution conditioned on each of the authors:

T
0a. Oa,
sKL(aj.aj) = Y (0a;zl0g 9‘“ + 6a,zlog 25 ), (5.27)
p :

a; Oa; z

z=1

where 0, is calculated by Equation (5.11).

We use the accumulated value of distances between authors on an association path as the
score of the association. We call the association with the smallest score as the shortest association
and our goal is to find the near-shortest associations. By near-shortest associations, we mean
associations whose scores are within a factor of (1 + y) of the score of the shortest association for
some user-defined y > 0.

We formalize the association search problem as that of near-shortest associations and em-
ploy a two stage approach to find the near-shortest associations.

(1) Shortest association finding. It aims at finding shortest associations from all persons
a € V\a; in the network to the target person a; (the score of the shortest association from a;
to a; is denoted as L,in). In a graph, the shortest path between two nodes can be found using
the state-of-the-art algorithms, for example, Dijkstra algorithm. However, we are dealing with a
large-scale social network, the conventional Dijkstra algorithm results in a high time complexity
of O(n?). We use a heap-based Dijkstra algorithm to quickly find the shortest associations that
can achieve a complexity of O(nlogn).

(2) Near-shortest associations finding. Based on the shortest association score Ly, > 0
found in Step 1 and a pre-defined parameter y, the algorithm requires enumeration of all asso-
ciations that are less than (1 + ¥)L,uin by a depth-first search. We constrain the length of an
association to be less than a pre-defined threshold. This length restriction can reduce the com-
putational cost, and each association score is calculated by summing the distances (computed by
Equation (5.27)) between authors on the association. Finally, all associations are ranked based on
the scores according to the policy of “the lower the best.”

Table 5.12: Performances of association search (Second)

Test Set Total Time Avg. Time
Brute Force 483,708 483.71
Average | Two-stage Baseline | 1,161,441 1161.44
Our Approach 2,941 2.94

Association Search Performance. As there is no a standard data set for evaluating the association
search. Here we focus on evaluating the effectiveness of the proposed approach. We created 9 test
sets, each of them containing 369-1, 000 association queries (i.e., person pairs). An association
query is composed of a source person and a target person.

The test sets were created as follows. We randomly selected 1,000 person pairs from the
researcher network and created the first test set. For the other eight test sets, we collected person
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Figure 5.12: An example result of advisor-advisee relationship mining.

lists of different research areas (e.g., Data Mining (DM) and Semantic Web (SW)) and selected
person pairs from different research areas.

We use the average running time on a test set to evaluate our approach and to compare
with other methods. Running times do not include the time required to load the social network
and output the associations.

We used the method of brute force enumeration as the baseline. In this method, we directly
conducted depth-first search on the social network to find associations with length less than the
threshold max_length. We also defined a two-stage method as the baseline. In the first stage of the
method, we make use of the conventional Dijkstra algorithm [40] to find shortest paths and in
the second stage we use depth-first search to find associations with length less than the threshold
max_length.

Table 5.12 shows the results on the test sets. We see that our approach achieve high perfor-
mance in all of the association search tasks. In terms of the average time, our approach can find
associations in less than 3 s.

5.6 ACADEMIC SOCIAL NETWORK MINING

We now in particular discuss how the introduced technologies in Chapters 2—4 are applied in
ArnetMiner. For social tie analysis, we applied the proposed unsupervised method TPFG (cf.
Section 2.3.2) to automatically infer advisor-advisee relationships. For social influence, we use
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several case studies to demonstrate how effective the topic-based social influence graphs learned by
the method presented in Section 3. For user modeling, we use the method described in Section 4
to extract authors’ research interests.

5.6.1 MINING ADVISOR-ADVISEE RELATIONSHIPS

We applied the introduced method (TPFG) in Section 2.3.2 to analyze the roles of authors and
discover the likely advisor-advisee relationships. Experimental results show that the proposed
approach infer advisor-advisee relationships efficiently and achieves a state-of-the-art accuracy
(80-90%) without any supervised information. Figure 5.12 shows the results of inferring advisor-
advisee relationships from the coauthor network. The figure is the ego-network of the centered
author “Jie Tang.” The red colored link indicates that the author on the other end of the link is
the identified advisor of “Jie Tang” and the yellow colored relationships indicate those authors on
the other end are advisee of “Jie Tang,” while green colored links indicate colleague relationships.

Applications: Expert finding and Bole search. The identified advisor-advisee relationships can
help with many applications. Here we illustrate one application on bole search [169], a specific
expert finding task, aiming to identify best supervisors (according to their nurture ability [110]) in
a specific research field. The task requires advisor-advisee relationships as input which are usually
unavailable. To quantitatively evaluate how the advisor-advisee relationships can help bole search,
we compare a retrieval method with and without those relationships on a data set used in Yang et
al. [169]. Specifically, the data set consists 9 queries (e.g., data mining and machine learning), and
for each query, 50 top-ranked researchers by ArnetMiner.org are taken as candidates. We sent an
email to each of the 50 researchers and another 50 young researchers who start publishing papers
only in recent years (> 2003) for feedbacks (“yes,” or “no,” or “not sure”). Finally a list of best
supervisors are organized for each query by simply counting the number of “yes”(+1) and “no”(-1)
from the 100 received feedbacks. Details can be referred to in Yang et al. [169]. For easy com-
parison, we did not use the learning-to-rank approach (as reported in Yang et al. [169]). Instead,
we use the language model (LM), which does not consider the advisor-advisee relationships, and
a heuristic-based method which simply combines the language model with the advisor-advisee
relationships identified by the baseline method (LM+Rule) or identified our proposed approach
(LM+TPFG) by

1
si =ar; + (1 —a)m Z Ta;» (5.28)
! ajEAi

where r; is the relevance score obtained by the language model; A4; is a set of advisees of researcher

a; identified by the rule-based method or TPFG; and « is a parameter to trade off the balance

between researcher’s expertise and his advisees’ expertise score. We empirically set o« = 0.7.
Figure 5.13(b) shows the results (Precision@2, Precision@5, mean average precision

(MAP), and NDCG®@5 [7]) of bole search by the three methods. We see that by considering
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B LM+TPFG
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(a) An example of Bole Search (b) Performance

Figure 5.13: Application: from Expert Finding to Bole Search.

the advisor-advisee relationships (obtained by either rule-based method or TPFG) the perfor-
mance of bole search can be significantly improved. We can also see that with a higher accuracy,
TPFG clearly achieves a better improvements, particularly for the top two retrieved results (71.4%
by TPFG vs. 64.3% by rule-based method in terms of P@2).

5.6.2 MEASURING ACADEMIC INFLUENCE
We applied the Topical Affinity Propagation (TAP) method presented in Section 3 to Arnet-

Miner to identify representative authors and representative papers.

Table 5.13 shows representative nodes (authors and papers) found by our algorithm on
different topics from the coauthor data set and the citation data set. The representative score of
each node is the probability of the node influencing the other nodes on this topic. The probability
is calculated by EIENBOQUULIT W can see some interesting results. For example, some

=12/ eNBHUL} Hij
papers (e.g., “FaCT and iFaCT”) that do have have a high citation number might be selected as
the representative nodes. This is because our algorithm can identify the influences between papers,
thus can differentiate the citations of the theoretical background of a paper and an odd citation

in the reference.

Table 5.14 shows four representative authors and researchers who are mostly influenced by
them. Table 5.15 shows two representative papers and papers that are mostly influence by the
two papers. Some other method, e.g., the similarity-based baseline method using cosine metric,
can be also used to estimate the influence according to the similarity score. Comparing with the
similarity-based baseline method, the presented TAP method has several distinct advantages.
First, such a method can only measure the similarity between nodes, but cannot tell which node
has a stronger influence on the other one. Second, the method cannot tell which nodes have the
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Table 5.13: Representative nodes discovered by our algorithm on the co-author data set and the
citation data set

Dataset

Representative Nodes

Data Mining

Heikki Mannila, Philip S. Yu, Dimitrios Gunopulos, Jiawei Han, Christos Faloutsos, Bing Liu,
Vipin Kumar, Tom M. Mitchell, Wei Wang, Qiang Yang, Xindong Wu, Jeffrey Xu Yu, Osmar
R. Zaiane

Author Machine Learning Pat Langley, Alex Waibel, Trevor Darrell, C. Lee Giles, Terrence J. Sejnowski, Samy Bengio,
Daphne Koller, Luc De Raedt, Vasant Honavar, Floriana Esposito, Bernhard Scholkopf
Database System Gerhard Weikum, John Mylopoulos, Michael Stonebraker, Barbara Pernici, Philip S. Yu, Sharad
Mehrotra, Wei Sun, V. S. Subrahmanian, Alejandro P. Buchmann, Kian-Lee Tan, Jiawei Han
Information Retrieval | Gerard Salton, W. Bruce Croft, Ricardo A. Baeza-Yates, James Allan, Yi Zhang, Mounia Lal-
mas, Zheng Chen, Ophir Frieder, Alan F. Smeaton, Rong Jin
Web Services Yan Wang, Liang-jie Zhang, Schahram Dustdar, Jian Yang, Fabio Casati, Wei Xu, Zakaria
Maamar, Ying Li, Xin Zhang, Boualem Benatallah, Boualem Benatallah
Semantic Web Wolfgang Nejdl, Daniel Schwabe, Steffen Staab, Mark A. Musen, Andrew Tomkins, Juliana
Freire, Carole A. Goble, James A. Hendler, Rudi Studer, Enrico Motta
Bayesian Network | Daphne Koller, Paul R. Cohen, Floriana Esposito, Henri Prade, Michael I. Jordan, Didier
Dubois, David Heckerman, Philippe Smets
Data Mining Fast Algorithms for Mining Association Rules in Large Databases, Using Segmented Right-
Deep Trees for the Execution of Pipelined Hash Joins, Web Usage Mining: Discovery and
Citation Applications of Usage Patterns from Web Data, Discovery of Multiple-Level Association Rules

from Large Databases, Interleaving a Join Sequence with Semijoins in Distributed Query Pro-
cessing

Machine Learning

Object Recognition with Gradient-Based Learning, Correctness of Local Probability Propaga-
tion in Graphical Models with Loops, A Learning Theorem for Networks at Detailed Stochastic
Equilibrium, The Power of Amnesia: Learning Probabilistic Automata with Variable Memory
Length, A Unifying Review of Linear Gaussian Models

Database System

Mediators in the Architecture of Future Information Systems, Database Techniques for the
World-Wide Web: A Survey, The R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles, Fast Algorithms for Mining Association Rules in Large Databases

Web Services

The Web Service Modeling Framework WSME, Interval Timed Coloured Petri Nets and their
Analysis, The design and implementation of real-time schedulers in RED-linux, The Self-Serv
Environment for Web Services Composition

‘Web Mining

‘Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data, Fast Algo-
rithms for Mining Association Rules in Large Databases, The OO-Binary Relationship Model:
A Truly Object Oriented Conceptual Model, Distributions of Surfers’ Paths Through the World
Wide Web: Empirical Characterizations, Improving Fault Tolerance and Supporting Partial
Writes in Structured Coterie Protocols for Replicated Objects

Semantic Web

FaCT and iFaCT, The GRAIL concept modelling language for medical terminology, Semantic
Integration of Semistructured and Structured Data Sources, Description of the RACER System
and its Applications, DL-Lite: Practical Reasoning for Rich Dls

highest influences in the network, which the presented TAP approach naturally has the capacity
to do. This provides many immediate applications, for example, expert finding.

We further conduct a dynamic influence analysis. We use Dr. Jian Pei as the example to
analyze how the influences of Dr. Pei on or by his coauthors change during 2000 and 2008.
Table 5.16 shows the dynamic analysis result. We see that the influence evolution uncovers the
growing up of Dr. Pei. For example, in 2000 Dr. Pei is mainly influenced by Prof. Han, while
he only has limited influence on Prof. Han. After 2004, Dr. Pei starts influencing some other
researchers (e.g., Chun Tang and Shiwei Tang). While in 2008, Dr. Pei already becomes a mature
researcher and has many strong influences on other researchers.
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Table 5.14: Example of influence analysis from the coauthor data set. There are two representative
authors and example list of researchers who are mostly influenced by them on topic “data mining,” and
their corresponding influenced order on topic “database” and “machine learning”

op D 0
Influencer Jiawei Han Heikki Mannila
David Clutter Arianna Gallo
Hasan M. Jamil Marcel Holsheimer
Influencee K. P. Unnikrishnan Robert Gwadera
Ramasamy Uthurusamy | Vladimir Estivill-Castro
Shiwei Tang Mika Klemettinen
op D base
Influencer Jiawei Han Heikki Mannila
David Clutter Vladimir Estivill-Castro
Shiwei Tang Marcel Holsheimer
Influencee Hasan M. Jamil Robert Gwadera
Ramasamy Uthurusamy Mika Klemettinen
K. P. Unnikrishnan Arianna Gallo
0 e 0
Influencer Jiawei Han Heikki Mannila
Hasan M. Jamil Vladimir Estivill-Castro
K. P. Unnikrishnan Marcel Holsheimer
Influencee Shiwei Tang Mika Klemettinen
Ramasamy Uthurusamy Robert Gwadera
David Clutter Arianna Gallo

5.6.3 MODELING RESEARCHER INTERESTS

We applied the method presented in Section 4 to ArnetMiner to model authors’ research interests.
'The basic idea is to use the prediction model to predict who will be interested in which (predefined)
topics. Figure 5.14 shows an example result of user interest modeling. The middle of the figure
shows the author’s research interests and interest changes over time.

5.7  CONCLUSIONS

In this chapter, we introduce a system—ArnetMiner—for deep mining of a researcher social
network. We introduce the architecture and the main features of the system. We describe in
detail the research issues that we are currently focusing on and proposed our approaches to them.
We have carried out experiments for evaluating each of the proposed approaches. Experimental
results indicate that the proposed methods can achieve high performances.

In the implementation of ArnetMiner, we have a few problems which need to be investi-
gated in the future, for example, extraction of more types of relationships. In ArnetMiner, we use
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Table 5.15: Example of influence analysis results on topic “data mining” from the citation data set.
There are two representative papers and example paper lists that are mostly influenced by them

Influential paper Fast Algorithms for Mining Association Rules in Large Databases
Mining Large Itemsets for Association Rules

A New Framework For Itemset Generation

Efficient Mining of Partial Periodic Patterns in Time Series Database

A New Method for Similarity Indexing of Market Basket Data

A General Incremental Technique for Maintaining Discovered Associa-
tion Rules

Influenced paper

Influential paper Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data
Mining Web Site’s Clusters from Link Topology and Site Hierarchy

Predictive Algorithms for Browser Support of Habitual User Activities on

the Web

Influenced paper A Fine Grained Heuristic to Capture Web Navigation Patterns

A Road Map to More Effective Web Personalization: Integrating Domain
Knowledge with Web Usage Mining

Table 5.16: Dynamic influence analysis for Dr. Jian Pei during 2000-2008. Due to space limitation,
we only list coauthors who most influence on/by Dr. Pei in each time window

Year Pairwise Influence

2000 Inﬂuence. Jiawei Han (0.4961)
on Dr. Pei
Influenced | Jiawei Han (0.0082)
by Dr. Pei

2002 Influence Jiawei Han (0.4045), Ke Wang (0.0418), Jianyong Wang (0.019),
on Dr. Pei | Xifeng Yan (0.007), Shiwei Tang (0.0052)
Influenced | Shiwei Tang (0.436), Hasan M.Jamil (0.4289), Xifeng Yan|
by Dr. Pei | (0.2192), Jianyong Wang (0.1667), Ke Wang (0.0687)

2004 Influence Jiawei Han (0.2364), Ke Wang (0.0328), Wei Wang (0.0294),
on Dr. Pei | Jianyong Wang (0.0248), Philip S. Yu (0.0156)
Influenced | Chun Tang (0.5929), Shiwei Tang (0.5426), Hasan M.Jamil
by Dr. Pei | (0.3318), Jianyong Wang (0.1609), Xifeng Yan (0.1458)

2006 Influence Jiawei Han (0.1201), Ke Wang (0.0351), Wei Wang (0.0226),
on Dr. Pei | Jianyong Wang (0.018), Ada Wai-Chee Fu (0.0125)
Influenced | Chun Tang (0.6095), Shiwei Tang (0.6067), Byung-Won On|
by Dr. Pei | (0.4599), Hasan M.Jamil (0.3433), Jaewoo Kang (0.3386)

2008 Influence Jiawei Han (0.2202), Ke Wang (0.0234), Ada Wai-Chee Fu|
on Dr. Pei | (0.0208), Wei Wang (0.011), Jianyong Wang (0.0095)
Influenced | ZhaoHui Tang (0.654), Chun Tang (0.6494), Shiwei Tang
by Dr. Pei | (0.5923), Zhengzheng Xing (0.5549), Hasan M.Jamil (0.3333)
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the co-author relationship as the relationship in a social network. In the future, we will extract
other relationships, for example, the relationship of co-organization and co-project, etc. In future
work, we also plan to investigate more mining issues, for example how to integrate the citation
information into the topic models.
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CHAPTER 6

Research Frontiers

The general problem of mining knowledge links and social networks represents an interesting
research direction in computer science. There are still many challenges and also potential future
directions on this topic. Here we list several major challenges.

* Big data vs. small data. Big data is one of the hottest terms used today to describe the
exponential growth and availability of data on the Internet. Technically, there are several
challenges and also opportunities. First, as the data is generated dynamically and arrives in a
streaming manner, it is necessary to develop efficient algorithm for incrementally mining the
semantics of links and social relationships in large dynamic networks. On the other hand,
people also argue that big data may be not that important. In many practical applications,
small data might be sufficient to achieve an enough accurate performance. Big data may only
introduce extra computational cost. The challenging question is: when should we resort to
big data and when should we simply consider sampled small data.

* Macro vs. micro. At the macro-level, social network mining focuses on studying the global
patterns of the social networks; and at the micro-level, it is mainly concerned with modeling
individuals’ behaviors and interactions between users. What is the fundamental relationship
between the two types of analyses? When should we consider macro-level analysis and when
micro?

* Globality vs. locality. Most existing works focus on studying social relationships in the entire
network. However, as most users and their behaviors are influenced by friends in their local
circles. It would be interesting to study how semantics of social relationships can be inferred
from the locality perspective. There are some related research on this topic. For example,
McAuley and Leskovec developed a semi-supervised learning framework for automatically
grouping a user’s friends into different circles [104]. Zhang et al. proposed the notion of so-
cial influence locality [174]. They find that the influence between users is strongly correlated
with the inner structure formed by them.

* Correlation vs. causality. Most existing methodologies only consider correlation between
variables. However, correlation is not equal to causality. In many problems, we may be
more interested in understanding the reason of a phenomenon rather than observing other
correlated phenomena.
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* Precise vs. approximation. To precisely process the networked data is computationally costly.
However, as online networks become larger and larger, it is necessary to find some efficient
algorithms to speed up the process even with some loss on the precision. From the algo-
rithmic perspective, it is challenging to design eftective algorithms with theoretical approx-
imation guarantees.

* Social theories. How does one seamlessly incorporate social theories into the mining algo-
rithms? Traditionally, this problem has been dealt with in an ad hoc manner. For example,
Hopcroft et al. [70] and Tang et al. [142] combined social balance theory, social status the-
ory, and structural hole theory into the factor graph model. However, it is still not clear how
to develop a unified model so that the other social theories can be easily incorporated. More
importantly, the social networks are very dynamic. The semantic of social relationships may
change over time. It is important to capture the dynamic pattern and infer the changes of
social relationships.

* Applications. It has many real applications based on the results of mining knowledge links
and social tie. For example, we can use the inferred social ties to help information recom-
mendation in the social network. According to the social influence theory, a user’s connec-
tions with different social ties would have very different influence on her/his behaviors from
different aspects.
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APPENDIX A

Resources

We have developed a Social Analytic Engine (SAE) for analyzing and mining large social net-
work. The cornerstone of the analytic engine is a distributed graph database, which provides
storage for the networking data. On top of the database, there are three core components: net-
work integration, social network analysis, and distributed machine learning. The toolkit can be
download here:

https://github.com/actnet/saedb.

A.1 SOFTWARE

We also provide a list of softwares various social tie analysis, social influence analysis and user
behavior prediction.

* PLP-FGM: The PLP-FGM model [150] is designed for inferring the type of social rela-
tionships in a partially labeled social network.
http://arnetminer.org/socialtie

* TriFG: The Triad Factor Graph model [70, 101] aims to predict the formation of reciprocal
relationships and the formation of triadic closure.
http://arnetminer.org/reciprocity

* TAP: The Topical Affinity Propagation algorithm [143] is to estimate the topic-level social
influence on large networks.
http://arnetminer.org/lab-datasets/soinf/

* Confluence: The Confluence model [144] formalizes the effects of social conformity into a
probabilistic factor graph model and can distinguish and quantify the effect of the different
types of conformities.
http://arnetminer.org/Confluence

* NTT-FGM: The NTT-FGM model [138] formalizes social influence, correlation (ho-
mophily), and users’ action dependency into a unified approach and distinguishes their ef-
tects for modeling and predicting users’ actions in social networks.
http://arnetminer.org/stnt/
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* ACT: The Author-Conference-Topic [148] model can simultaneously model topical dis-
tributions of papers, authors, and conferences (or any three different types of entities).
http://keg.cs.tsinghua.edu.cn/jietang/software/ACT-code.zip

* HIS&MaxD: The two algorithms aim to detect top-k structural hole spanners in large-
scale social networks. With the algorithms, we discovered that 1who span structural holes
control 25% of the information diffusion on Twitter.
http://arnetminer.org/structural-hole

* RAIN: The model can jointly model users roles and information diffusion. It can discover
different social roles and also model how users of different social roles control the informa-
tion diffusion.
http://aminer.org/billboard/rain

* WhoAml: The WhoAml model aims to predict user demographics based on their com-
munication behaviors.
http://arnetminer.org/demographic

A.2 DATASETS

We also provide a list of data sets for research on social networks.

* Citation: The citation data is extracted from DBLP, ACM, and other sources, consisting
of >2,000,000 papers and >4,000,000 citation relationships. The data set can be used for
clustering with network and side information, studying influence in the citation network,
finding the most influential papers, topic modeling analysis, etc.
http://arnetminer.org/citation
http://arnetminer.org/AMinerNetwork (containing more information related to au-
thors).

* Weibo: This is a dynamic Weibo networking data, containing more than 1,700,000 users,
308,000,000 following relationships, 300,000 original tweets and 23,000,000 retweets. The
dataset is unique, as it contains all the dynamic information.
http://arnetminer.org/Influencelocality

* Tencent Weibo: The dataset contains the directed following networks and posting logs of
over 200 million users in Tencent Weibo. In total, we have 184,491 users, and 4,588,559
original posts. We removed original posts that were reposted by fewer than 5 users, and use
the remaining 242,831 original posts for experiments.
http://arnetminer.org/rain

* Flickr: The Flickr dataset consists of 354,192 randomly downloaded images posted by 4,807

users. For each image, we also collect its tags and all comments. In total, we have 557,177
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comments posted by 6,735 users.
http://arnetminer.org/emotion

* Name disambiguation: The data set is from Arnetminer.org, consisting of manually labeled
disambiguation results for 6,730 papers authored by 100 author names.
http://arnetminer.org/disambiguation
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