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ABSTRACT
Mining high-speed data streams has become an important topic due
to the rapid growth of online data. In this paper, we study the prob-
lem of active learning for streaming networked data. The goal is to
train an accurate model for classifying networked data that arrives
in a streaming manner by querying as few labels as possible. The
problem is extremely challenging, as both the data distribution and
the network structure may change over time. The query decision
has to be made for each data instance sequentially, by considering
the dynamic network structure.

We propose a novel streaming active query strategy based on
structural variability. We prove that by querying labels we can
monotonically decrease the structural variability and better adapt to
concept drift. To speed up the learning process, we present a net-
work sampling algorithm to sample instances from the data stream,
which provides a way for us to handle large volume of streaming
data. We evaluate the proposed approach on four datasets of dif-
ferent genres: Weibo, Slashdot, IMDB, and ArnetMiner. Experi-
mental results show that our model performs much better (+5-10%
by F1-score on average) than several alternative methods for active
learning over streaming networked data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Active Learning, Data Streams, Network Sampling

1. INTRODUCTION
With the availability and massive amount of streaming data in

online social networks and social media, mining streaming data
has become an important topic. One challenge for mining stream-
ing data is the lack of labeled data due to rapid changes in data
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Figure 1: Streaming Networked Data: when a new instance yi
arrives, new edges (dash lines) are added to connect the new
instance and existing instances. {Gi}∞i=0 are snapshots of the
streaming network.

distribution and high costs of labeling efforts. Active learning can
alleviate this problem, by actively querying as few “informative”
instances as possible so as to build an accurate model. In existing
literature [28, 6, 5, 29], active learning for streaming data has been
studied. However, these studies ignore an important factor − net-
work correlation among the data instances. Some other research
indeed studied the active learning problem for networked data [23,
25, 3, 4, 10, 27, 8, 22]. However, their methods target static net-
works, and cannot be directly adapted to streaming networked data.
In this paper, we particularly focus on investigating the problem of
active learning for streaming networked data. As far as we know,
this problem has not been extensively studied before.

One example of streaming networked data is illustrated in Figure
1. Instances arrive in a streaming fashion. When a new instance
arrives, edges are added to connect the new instance to existing
instances. In this way, we form a streaming network that evolves
dynamically over time.

The problem of active learning for streaming networked data is
extremely challenging, in practice. The first challenge is how to
adapt to concept drift in data streams, i.e., the fact that the distri-
bution of input data changes over time. The second challenge lies
in the use of network correlation. In the networked data, there is
correlation among instances. How to model the correlation in the
streaming data is a challenging problem. One natural method is
to use graphical models to model the networked data. However,
graphical models tend to be computationally expensive, and we
need to make a trade-off between efficiency and the model perfor-
mance. The third challenge is that we must decide whether to query



(a) Weibo (b) Slashdot (c) IMDB (d) ArnetMiner
Figure 2: Streaming Active Query: the x-axis indicates the labeling rate, and the y-axis represents the F1 score; the higher, the better.

an instance at the time of its appearance, which makes it infeasible
to optimize a global objective function.

In this work, we propose an active learning approach to address
the above questions. We propose a novel streaming active query al-
gorithm for querying labels of instances by minimizing structural
variability. We analyze our algorithm and justify that our proposed
method can leverage the network correlation for classification and
better adapt to concept drift. Further, to handle large volume of
streaming data, we design a streaming network sampling algorithm
to sample instances into a reservoir for model learning and predic-
tion. We consider the loss incurred by discarding an instance in
both spatial and temporal dimensions. We evaluate the proposed
approach on four different genres of datasets: Weibo, Slashdot,
IMDB, and ArnetMiner. As illustrated in Figure 2, our active query
method Minimum Variability (MV) performs much better (+5-10%
by F1-score on average) than several alternative methods for active
learning for streaming networked data.

Our major contributions are as follows: (a) formulate a novel
problem of active learning for streaming networked data; (b) pro-
pose a streaming active query algorithm based the structural vari-
ability; (c) design a streaming network sampling algorithm to han-
dle large volume of streaming data; (d) empirically evaluate the
effectiveness and efficiency of our proposed approach over four
datasets of different genres.

Organization. Section 2 formulates the problem; Section 3 in-
troduces the model and learning method; Section 4 describes our
approach; Section 5 presents the experimental results; Section 6
discusses related work; and Section 7 concludes the work.

2. PROBLEM SETTINGS
In this section, we first give several necessary definitions, and

then formulate the problem addressed in this paper.
Let ∆ = {δi}∞i=0 denote a data stream and each datum be de-

noted as a 4-tuple δi = (xi, ti,Υi, yi), where xi denotes a data in-
stance (represented as a feature vector); ti corresponds to the time
when δi arrives in the data stream; Υi = {(yi, yj)|tj ≤ ti} is a
set of undirected edges connecting yi to earlier arrived instances
{yj}; and yi ∈ Y is an associated label to represent the category
of instance xi. In different practical applications, the output space
of yi can be defined in different ways. For simplicity, we focus on
the binary case (i.e., Y = {+1,−1}) here, but the problem and the
framework proposed later are flexible and can be extended to multi-
class case. In our problem setting, the value of yi is unknown until
we actively query for it.

In data streams, the distribution of the input data usually changes
over time. This problem is referred to as concept drift [28]. For-
mally, let P (yi|ti, .) denote the distribution of label values at time
ti. The probability distribution may be different at different time

stamps. Given this, we can formally define our problem addressed
in this paper.

Problem 1. Active Learning for Streaming Networked Data.
Our input is a data stream ∆. At any time ti, we maintain a classi-
fier Ci learned from the arrived instances. For a new instance xi+1,
we first predict its label and then we can choose to query its label
yi+1 to incrementally update the learned classifier Ci. Our goal is
to use a small number of queries, so as we can learn a high accurate
classifier to predict the labels of the coming instances.

The problem has two unique characteristics that make it quite
different from the traditional active learning or streaming data min-
ing. First, as the data arrives in a streaming manner, we need to
make the decision whether to query the label of a new instance
when it arrives, which means the traditional pool-based active
learning for networked data (e.g. [23]) does not work here. Sec-
ond, the data instances are connected with each other. This means
that we need to not only consider processing each data instance
sequentially, but also consider the dynamic network structure. In
the rest of this paper, we first introduce a model to model the net-
worked data, and then propose our approach for actively learning
the streaming data.

3. MODELING NETWORKED DATA
In our problem, instances are connected with each other, and

thus, at any time ti, we can construct a time-dependent network
Gi by all the arrived instances before and at time ti. Formally,
we can derive a network Gi = (Xi, Ei,y

L
i ,y

U
i ), where Xi is a

matrix, with an element xij indicating the jth feature of instance
xi; Ei = {el = (yj , yk, cl)} records all edges between instances
and cl is the edge type of el; yL

i denotes a set of labels of instances
that we have already actively queried before and yU

i denotes a set
of unknown labels for all the other instances.

Now, our first challenge is how to model the networked data.
Graphical models are appropriate for modeling networked data be-
cause they are capable of capturing correlation between instances.
Typically, there are two types of graphical model: directed and
undirected model [21]. In this work, we focus on the undi-
rected graphical model, also referred to as Markov Random Field
(MRF) [11]. According to MRF, we can define two sets of poten-
tial (factor) functions respectively on the instances and the edges
between instances.

• f(xj , yj ,λ): the factor function defined for instance xj ,
where λ are unknown parameters associated with the instan-
tiation functions of f(.).

• g(el,β): the edge factor function associated with the edge
el = (yj , yk, cl), where β are unknown parameters associ-
ated with the instantiation functions of g(.).



In the above functions, θ = (λ,β) are model parameters we
seek to estimate. We let ȳ represent the true label configuration of
y, and ȳj the true label of yj . By combining the two types of factor
functions, we can write the energy of the network Gi as:

QGi(ȳ
L
i ,y

U
i ;θ) =

∑
yj∈ȳL

i ∪y
U
i

f(xj , yj ,λ) +
∑

el∈Ei

g(el,β) (1)

In the above definition, we do not give the instantiation of the
two factor functions f(.) and g(.). In general, they can be defined
in different ways in different applications. The only constraint is
that f(·) should be differentiable w.r.t. λ and g(·) should be differ-
entiable w.r.t. β.

Model Inference. Suppose we have a learned parameter configu-
ration θ. Then we can apply the model to predict the label of a new
instance yi+1. The task is to assign labels to instances in yU

i , such
that the energy function QGi is minimized, i.e.,

min
yU
i

QGi(ȳ
L
i ,y

U
i ;θ) (2)

It is usually intractable to directly solve the above problem.
A number of approximate algorithms can be considered, such as
Loopy Belief Propagation (LBP) [16] and Mean Field [24]. Here
we consider a dual decomposition method [17], which provides a
flexible approach for deriving and solving tight dual relaxations
for our problem by decomposing the original (intractable) prob-
lem into a set of tractable subproblems. Let yU

l = {yj |yj ∈
el and yj ∈ yU

i }, ȳL
l = {ȳj |yj ∈ el and yj ∈ yL

i }, and
Itij = {el|yj ∈ el and el ∈ Gi}. The dual optimization prob-
lem is as follows

LGi = max
σ

∑
el

min
yU
l
|ȳL

l

(
g(el,β) + σl

j(yj) + σl
k(yk)

)
(3)

s.t.
∑

el∈I
ti
j

σl
j(·) = f(xj , ·,λ) (4)

where σ is a set of dual variables. By optimizing the inner min-
imization of the above problem, we find a label configuration for
all unlabeled instances. Specifically, we solve the optimization in
Eq. (3) by the projected subgradient method [13]. We omit the
presentation of subgradients here due to space limit. Let ŷlj be the
local minimizer for yj of each subproblem on el. Let ŷU

i be the
predictive labels for yU

i . We use voting to obtain ŷU
i ; i.e., we use

the major label of ŷlj among all edges Itij .

Max-margin Learning. In learning, our task is to estimate the
unknown parameters θ. LetDy(y1,y2) be a dissimilarity measure
between two possible label configurations y1 and y2. Following
[12], we assume that the dissimilarity measure can be factorized
onto vertices and edges. More formally,

Dy(y1,y2) =
∑
j

dv(y1,j , y2,j) +
∑
j,k

de(y1,j , y1,k, y2,j , y2,k) (5)

where j and k are indices of instances in the graph, and dv and
de are dissimilarity measures on vertices and edges respectively;
Notation ym,j represents label of the jth instance in ym.

Following the max margin Markov network [20], given unla-
beled instances yU

i , the parameter θ should satisfy a property that
the energy of the MRF model with labeled instances ȳL

i is less
than the energy with any other label configuration yL

i by at least
Dy(ȳi,yi), where ȳi = ȳL

i ∪ yU
i , and yi = yL

i ∪ yU
i . If we add

a slack variable ξθ , the constraint can be written as

QGi(ȳ
L
i ,y

U
i ;θ) ≤ QGi(y

L
i ,y

U
i ;θ)−Dy(ȳi,yi) + ξθ (6)

The objective function is written as a combination of the slack
variable and a regularization term,

min
θ

1

2
‖θ‖2 + µξθ (7)

where µ is a tunable factor. According to Eq. (6), the slack variable
can be written as:

ξθ =

max
yL
i ,yU

i

{
QGi

(ȳL
i ,y

U
i ;θ)−QGi

(yL
i ,y

U
i ;θ) +Dy(ȳi,yi)

}
(8)

Because both the energy functionQGi and the dissimilarity mea-
sure Dy can be factorized onto vertices and edges, we can leverage
dual decomposition to relax problem (8). For concise notation, we
let ȳj and yj both denote yj ∈ yUs

i . Similar to model inference,
the dual optimization problem becomes

Lθ = min
η,γ

∑
el

max
yU
l
,yL

l
|ȳL

l

(
g(ēl,β) + ηlj(ȳj) + ηlk(ȳk)

− g(el,β)− ηlj(yj)− ηlk(yk)

+de(ȳj , ȳk, yj , yk) + γl
j(yj) + γl

k(yk)
)

s.t.
∑

el∈I
ti
j

ηlj(·) = f(xj , ·,λ);
∑

el∈I
ti
j

γl
j(·) = dv(ȳj , ·)

(9)

where η and γ are sets of dual variables. ēl = (ȳj , ȳk, cl), while
el = (yj , yk, cl). yL

l = {yj |yj ∈ el and yj ∈ yL
i }. Therefore, the

optimization problem becomes

min
θ

1

2
‖θ‖2 + µLθ (10)

which could also be solved by the projected subgradient method.
We can write the subgradient w.r.t. θ and then update by θ =
θ − αdθ, where α is the learning rate. For more details of the
projected subgradient method, please refer to [13].

4. STREAMING ACTIVE LEARNING
Now we discuss how to perform active learning for the above

MRF, when the data arrives in a streaming fashion. In our set-
ting, instances in the networked data arrives one by one. All the
arrived data (instances) are unlabeled until we choose to query its
label. For querying one instance’s label, we need to make the de-
cision immediately. When making the decision, we consider the
instance’s feature xi, and its connections (edges) to the earlier ar-
rived instances. If we decide not to query, we will not be able
to query the label of the instance again. As the network structure
is dynamically changing, traditional pool based active learning al-
gorithms [23, 25] are not applicable here. Existing active learning
algorithms for independent vector based streaming data [28, 6] also
do not work because they cannot model the network correlation.

We propose to use structural variability as the query criterion
and design an algorithm for streaming active query. Algorithm 1
gives the framework of the proposed streaming active learning
method. There are mainly four steps in the framework: (1) MRF-
based inference for networked data, (2) streaming active query, (3)



Algorithm 1: Framework: Active Learning for Streaming Net-
worked Data

Input: The data stream ∆
Output: Predictive labels {ŷi}∞i=1

1 initialize θ, η, and γ
2 initialize G0

3 while ∆ not the end do
4 Step 1: MRF-based inference:
5 δi ← new datum from ∆
6 insert yi and the associated edges into Gi−1 to form Gi

7 initialize σ
8 while not convergence do
9 search local minimizers ŷlj in Eq. (3)

10 update σ by projected subgradient

11 predict ŷi by the label in ŷU
i

12 Step 2: Streaming active query by Algorithm 2
13 Step 3: MRF-based parameter update:
14 create components in η and γ for yi and the associated

edges
15 while not convergence do
16 search local maximizers ŷlj in Eq. (9)
17 update θ, η and γ by projected subgradient

18 Step 4: Network sampling by § 4.2

MRF-based parameter update, and (4) network sampling. The first
and third steps have already been described in § 3, and the fourth
step (network sampling) is to enhance the learning framework by
sampling instances from the data stream, as it is inefficient to keep
all arrived instances for learning the MRF model. We will explain
the sampling strategy in § 4.2. Herein, we focus on describing the
streaming active learning algorithms.

4.1 Streaming Active Query
In our problem, as labels of instances are unknown until we

choose to query, the resultant MRF can be considered partially
labeled. For actively querying instances from the streaming net-
worked data, we propose a novel criterion, structural variability, to
measure the potential effects of the unlabeled instances.

Let yQ
i represent the set of queried labels before time ti. Let N

be the total number of instances in the data stream. The streaming
active query problem is to make a tradeoff between the number of
queried labels |yQ

N | and the structural variability for each snapshot
graph.

Structural Variability. We define the structural variability for
an MRF. According to Algorithm 1, when we predict the label ŷi,
we need to infer the unknown labels ŷU

i , by minimizing the energy
of the MRF. If we can control the gap between the energy of the
inferred configuration and that of any other possible configuration,
the effects of the unlabeled instances on the energy of the MRF can
be controlled. Based on this idea, we define the structural variabil-
ity as follows,

Vi
θ(yL

i ) = max
yU
i

(
QGi(ȳ

L
i ,y

U
i ;θ)−QGi(ȳ

L
i , ŷ

U
i ;θ)

)
(11)

The structural variability can effectively capture both instance-
based and edge-based information. First, if the structural variability
is small, the unknown labels do not significantly affect the model
energy and thus future prediction, so we do not need to query the
labels of unknown instances. Second, the structural variability can,
to some extent, help adapt to concept drift, which will be detailed

in the following sections. Theoretically, the structural variability
defined in Eq. (11) has the following properties: monotonicity,
normality, and centrality.

PROPOSITION 1. (Monotonicity) Suppose yL
1 and yL

2 are two
sets of instance labels. Given θ, if yL

1 ( yL
2 , then we have

Vi
θ(yL

1 ) ≥ Vi
θ(yL

2 )

PROOF. See appendix.

PROPOSITION 2. (Normality) If yU
i = ∅, we have

Vi
θ(yL

i ) = 0

PROOF. Because yU
i = ∅, we have QGi(ȳ

L
i , ŷ

U
i ;θ) =

QGi(ȳ
L
i ,y

U
i ;θ). Therefore, by definition, Vi

θ(yL
i ) = 0

PROPOSITION 3. (Connection to centrality) Suppose G is a
star graph with (n + 1) instances. The central instance is y0 and
the peripheral instances are {yj}nj=1. Each peripheral instance
yj is connected to y0 with an edge ej and no other edges exist.
Given the parameter θ, suppose for each ej , g(ej ;θ) = w+ ≥ 0
if yj = y0 = +1; g(ej ;θ) = w− ≥ 0 if yj = y0 = −1 and
otherwise g(ej ;θ) = w0 ≤ 0. If w+ 6= w−, then there exists a
positive integer N , such that for all n > N , we have

E[Vi
θ({y0})] ≤ E[Vi

θ({yj})], ∀j > 0

PROOF. See appendix.

Proposition 1 guarantees that the structural variability will not
increase when we label more instances in the MRF model. Propo-
sition 2 shows that if we label all instances in the graph, we incur
no structural variability at all. Proposition 3 gives the connection
between the structural variability and network centrality. Under
the given conditions, to minimize the structural variability leads to
querying instances with high network centrality. Further, we define
a decrease function for each instance yi, given θ, as

Φi = Vi
θ(yQ

i−1)− Vi
θ(yQ

i−1 ∪ {yi}) (12)

which could be viewed as the decrease of the structural variability
by querying yi.

Based on the above propositions and the decrease function, our
objective of active learning becomes to query for the labels of a sub-
set of the unlabeled instances that can result in the most decrease
in structural variability.

Active Query Algorithm. Our proposed streaming active query
algorithm is based on Eq. (12). Specifically, we use thresholding to
select instances to query. Given the constant threshold κ, we query
yi if and only if Φi is greater than or equal to κ. However, the
computation of Φi is in general intractable due to the exponential
complexity of computing the exact structural variability defined in
Eq. (11).

To approximate the decrease function, we estimate the structural
variability after querying yi by

V̂i
θ =

∑
y∈Y

P ∗(ȳi = y)Vi
θ(yL

i−1 ∪ {yi = y}) (13)

where P ∗(·) represents the true probability of an event. In this way,
V̂i
θ is the expectation of the structural variability Vi

θ(yL
i−1 ∪ {yi}).

Now the problem becomes how to compute the true probability
P ∗(·) and the structural variability Vi

θ(yL
i ). P ∗(·) is generally

intractable because we never know the true probability of an event.



Algorithm 2: Streaming Active Query

Input: The threshold κ, the set of queried labels yQ
i−1, the

weight vector θ
Output: The updated set of queried labels yQ

i

1 compute P (ȳi = ±1) using Eq. (14)
2 set yi to be unknown
3 initialize χ
4 while not convergence do
5 search local maximizers ŷlj in Eq. (15)
6 update χ using Eq. (16)

7 compute the dual structural variability Vi
θ(·) using Eq. (11)

with local maximizers ŷlj
8 set yi to be +1 and repeat Lines 3 - 7
9 set yi to be −1 and repeat Lines 3 - 7

10 Φi ← Vi
θ(yLs

i−1)−
∑

y∈Y P (ȳi = y)Vi
θ(yLs

i−1 ∪ {yi = y})
11 if Φi ≥ κ then
12 yQ

i ← yQ
i−1 ∪ {yi}

13 else
14 yQ

i ← yQ
i−1

Therefore, we assume the probability that an instance yj is labeled
as y ∈ Y can be represented by an exponential-linear function [9,
14]. Given the parameter θ at time ti, we first label the instance
to be yi = +1, and calculate the energy function Qi

+1 using Eq.
(1). We then label its yi to be −1, and again calculate the energy
function as Qi

−1. Finally, the true probability P ∗(ȳi = y) is ap-
proximated by

P (ȳi = y) =
e−Qi

y

e−Qi
y + e−Qi

−y

(14)

To compute the structural variability Vi
θ(yL

i ) (Eq. 11), we again
leverage dual decomposition to relax the problem. Following the
routine introduced in § 3, the dual optimization problem becomes,

Lθ = min
χ

∑
el

max
yU
l
|ȳL

l
,ŷU

l

(
g(el,β) + χl

j(yj) + χl
k(yk)

−g(ēl,β)− χl
j(ȳj)− χl

k(ȳk)
)

s.t.
∑

el∈I
ti
j

χl
j(·) = f(xj , ·,λ)

(15)

where χ are sets of dual variables. ēl = (ȳj , ȳk, cl), while el =
(yj , yk, cl). For conciseness, here ȳj refers to ŷj for any unlabeled
instance yj . Let ŷlj be the local maximizer for yj of the subproblem
el. The subgradients can be written as dχl

j(·) = I[ŷlj = ·]− I[ȳj =
·]. The update rules are as follows:

χl
j(·) = χl

j(·)− αdχl
j(·) +

∑
el′∈I

ti
j

αdχl′
j (·) + df(xj , ·,λ)

|Itij |
(16)

where α is the learning rate and df(·) represents the difference of
f(·) from the last iteration. The active query algorithm is summa-
rized in Algorithm 2.

Analysis and Discussions. We further compare the proposed
structural variability with other typical active learning criteria and
convey the essential difference between different query criteria. We
begin with a toy example, as illustrated in Figure 3. Suppose, at

Figure 3: How our method adapts to concept drift and utilizes
network correlation: compare different criteria with an exam-
ple.

the very beginning, there are two clusters of instances in the MRF
model, one positive and the other negative. Instances are connected
with edges within each cluster. Soon, there comes a wave of con-
cept drift, and a drastically increasing number of negative instances
are connected to the positive cluster. We call this a concept drift
because in our previous concept, the upper cluster is learned to be
positive and the lower cluster negative, while for now a number of
negative instances are connected to the upper cluster. In this case,
the previously learned classifier (concept) does not apply any more.

Active query can be used to alleviate this problem. Without
active query, the model would classify all the new instances into
the positive category because they are closely connected to the up-
per cluster. However, all the newly arrived instances are negative,
which means the model would suffer from a high error rate. In our
active query setting, we could choose to query one instance at each
time stamp. If we query by random sampling, we will probably be
unlucky and query the instance in the blue box, which is isolated
from other newly arrived instances and would not be helpful for
updating the MRF model. If we query by uncertainty measure, we
will choose the instance in the black box to query because it is con-
nected to positive and negative instances at the same time. How-
ever, it is not really an ideal choice because it cannot significantly
affect other newly arrived instances through network structure.

Finally, consider query by minimizing the structural variability.
By proposition 3, to minimize the structural variability, we will
choose the central instance in the red box. The basic intuition is
that by fixing the label for the central instance, connections among
unlabeled instances are reduced and thus the structural variability
will be relatively small. In this way, more instances will be affected
because the queried instance takes an important position in the net-
work. Since more instances will be affected, we expect the model
can adapt to the new concept with less iterations. Different from
naive degree based criteria, by optimizing a global objective (11),
our method can effectively manage and distribute the labeling bud-
get (i.e., queried instances will not be closely connected). Also, as
stated above, minimizing the structural variability will control the
effects of unknown labels and we do not need to query the unknown
labels for future prediction.

4.2 Enhancement by Network Sampling
In practice, it is inefficient to store all the data for learning the

MRF models. We present a streaming network sampling algorithm
to enhance the learning process. The basic idea is to maintain an
instance reservoir of a fixed size (denoted as n), and update the
reservoir sequentially on the arrival of streaming data. Formally, at



time ti, we reserve a subgraph Gs
i = (yLs

i ,yUs
i , Es

i ,X
s
i ) ⊆ Gi,

such that |yLs
i ∪ yUs

i | does not exceed the memory budget n. The
rest of the graphGi\Gs

i will be removed from the graphical model.
When a new instance arrives, we first add it into the instance

reservoir to predict its label. This operation will possibly make
the size of reservoir exceed the budget n. To handle this, we se-
lect one instance in the reservoir and remove it from the reservoir,
along with its associated edges. Which instance should we dis-
card? Straightforwardly, we can discard early-arrived instances so
as to adapt to concept drift. The method may work when instances
are independent. However, in our problem, instances are correlated
and dependent. Simply discarding early-arrived instances may de-
grade the network correlation. Thus, instead, we consider the loss
of an instance in two dimensions, spatial and temporal. For spatial,
we consider the loss in a snapshot graph based on network correla-
tion deterioration; and for temporal, we integrate the spatial loss of
snapshot graphs over time.

Spatial Dimension. We first consider the sampling strategy in the
dual optimization problem (Eq. 3). When we remove an instance
yj from a graph Gi, we remove all associated edges Itij at the
same time. The dual variables σ related to the neighbors of yj will
no long satisfy constraint (4). We use dual variables as indicators
of network correlation. To measure the deterioration of network
correlation in a spatial dimension, we define the violation for each
instance yk as follows:

ΓGi(yk) = f(xk, yk,λ)−
∑

el∈I
ti
k

σl
k(yk) (17)

In this way, the spatial loss function of yj at the current time
stamp ti can be defined as the sum of violation over its neighbors,

Λti(yj) =
∑

yk∈N
ti
j

ΓGi\yj (yk) =
∑

yk∈el∈I
ti
j

σl
k(yk) (18)

where N ti
j is the set of neighbor instances of yj at time ti and

Gi\yj indicates the remaining graph after yj and its related edges
are removed. The intuition behind the definition of the spatial loss
function can be interpreted from two aspects. For one thing, as dual
variables can be interpreted as the message sent from the edge fac-
tor to each instance [17], we define the loss function to reduce the
loss of such messages. For another, the more serious the constraint
(4) is violated, the more we need to adjust the dual variables; i.e.,
the network correlation is more seriously affected.

Temporal Dimension. Because the streaming network is evolving
dynamically, we should not only consider the current spatial loss,
but also consider the loss in a temporal dimension, by estimating
spatial loss for successive time stamps. To proceed, we assume that
for a given instance yj , dual variables of its neighbors σl

k(yk) have
a distribution with an expectation µj for yk ∈ el and el ∈ Itij , and
that the dual variables are independent. We obtain an unbiased es-
timator of µj based on the sample mean on current snapshot graph
Gi. Specifically, we have

µ̂j =
∑

yk∈N
ti
j

σl
k(yk)/|Itij | (19)

At time ti, for an instance yj , we consider the spatial function
from ti to tj + Tm, where Tm is a constant term to restrict the
maximum time span for all instances. Then the loss of removing
yj from Gi is defined as the expectation of the spatial loss of yj

integrated from ti to tj + Tm. More formally, we have

LossGi(yj) = E
[∫ tj+Tm

ti

Λt(yj)dt

]
PROPOSITION 4. Suppose edges are added according to pref-

erential attachment [2]; i.e.,

d|Itj |
dt

=
|Itj |
2t

. (20)

We have,

LossGi(yj) =
2

3

µj

∣∣Itij ∣∣√
ti

(
(tj + Tm)

3
2 − t

3
2
i

)
(21)

The proof of the above proposition is given in the appendix. We
then use Eq. (19) to estimate µj , and rewrite the loss function of yj
as

LossGi(yj) = CΛti(yj)

(
(tj + Tm)

3
2 − t

3
2
i

)
(22)

where C is a constant, whose value does not affect our sampling
decision.

Network Sampling Algorithm. Based on loss function (22), we
can formulate our sampling strategy. At time ti, we receive a new
datum δi from ∆, and append yi and the associated edges into the
MRF model. If the number of instances exceeds the reservoir size
n, we remove the instance with the least loss function and its asso-
ciated edges from the MRF model.

Interpretation. We provide more intuitive interpretation for the
loss function in Eq. (22). The loss function of an instance is deter-

mined by two terms: Λti(yj) and ((tj + Tm)
3
2 − t

3
2
i ). The term

Λti(yj) enables us to leverage the spatial loss function in the net-
work Gi. It is consistent with the intuition that instances that are
important to the current model are also likely to remain important

in the successive time stamps. The second term ((tj +Tm)
3
2 − t

3
2
i )

indicates the preference towards reserving late-arrived instances.
As Tm and ti are constants for the current time stamp, instances
with larger tj are reserved. In this manner, our sampling proce-
dure has implicitly handled the problem of concept drift, because
later-arrived instances are more relevant to the current concept [28].
We see that by combining the two terms, our proposed sampling
strategy incorporates the current spatial loss and concept drift in a
unified representation.

4.3 Implementation Note
In our implementation, we empirically set the parameter Tm =

3nTa, where Ta is the average time interval between two consec-
utive data instances and n is the reservoir size. In real world ap-
plications, it is easy to estimate Ta, by sampling consecutive data
streams.

Following [12], we use Hamming loss as the dissimilarity mea-
sure between label configurationsDy(·). Following the convention
of graphical models [14], we use linear factor functions, where the
local factor function is formulated as f(xi, yi,λ) = λᵀf(xi, yi)
and the edge factor function is defined as g(el,β) = βᵀg(el).
Here f(xi, yi) is the local feature vector and g(el,β) is the edge
feature vector. Moreover, we set µ = 1 in Eq. (7).

The reservoir size n (resp. the query threshold κ) is a tunable
parameter for tradeoff between model performance and efficiency.



(a) Weibo (b) Slashdot (c) IMDB (d) ArnetMiner

(e) Weibo (f) Slashdot (g) IMDB (h) ArnetMiner
Figure 4: Concept Drift: The x-axis indicates the index of data chunks, and the y-axis represents the F1 score of prediction in the
corresponding data chunk. The upper row shows the results on the original data streams and the lower row presents the results on
the shuffled data. The high the better.

(a) Weibo (b) Slashdot (c) IMDB (d) ArnetMiner

Figure 5: Streaming Network Sampling: The x-axis indicates the reservoir size, and the y-axis represents the F1 score. ”rsv.” means
reservoir. The higher the better.

Table 1: Dataset Statistics
Dataset #Instance #Edge Time Stamp
Weibo 72,923 123,517 Second
Slashdot 19,901 1,790,137 Second
IMDB 45,275 1,145,977 Day
ArnetMiner 20,415 227,375 Month

5. EXPERIMENTS

5.1 Datasets and Settings
Datasets. We evaluate the proposed method on four different gen-
res of networks: Weibo, Slashdot, IMDB, and ArnetMiner. Table 1
lists statistics of the four networks.

Weibo1 is the most popular microblogging service in China. We
use a dataset from [26]. We view the retweeting flow as a stream.
Given a microblog, each user at a given time stamp is viewed as
an instance. Our task is to predict whether a user will retweet the
microblog. We view every second as a time stamp. Three types of

1http://weibo.com

edge factor functions are defined: friends; sharing the same user;
and sharing the same tweet.

Slashdot2 is an online social network for sharing technology re-
lated news. In 2002, Slashdot introduced the Slashdot Zoo which
allows users to tag each follow relationship as “friends” or “foes”
(enmity). We treat each follow relationship as an instance. Our
task is to classify the relationships into friends and foes. Instances
are generated only if two users comment on the same post, and are
sorted by the time of the latest comments. We view every second
as a time stamp. Three types of edges are defined: appearing in
the same post; sharing the same follower; and sharing the same
followee.

IMDB3 is an online database of information related to movies
and TVs. Each movie is treated as an instance, and edges indi-
cate common-star relationships between movies. We view every
day as a time stamp. Our task is to classify movies into categories
Romance and Animation.

ArnetMiner4 is an academic social network. The dataset is from
[19]. Each publication is treated as an instance, and edges indi-

2http://slashdot.org/
3http://www.imdb.com/interfaces
4http://arnetminer.org/citation/



(a) Weibo (b) Slashdot (c) IMDB (d) ArnetMiner
Figure 6: Streaming Network Sampling Comparison: The x-axis indicates the reservoir size, and the y-axis represents the F1 score−
the higher the better.

Table 2: F1 Score (%) Comparison for Different Combinations of Streaming Active Query and Network Sampling Algorithms
Query MV VU FD RAN
Sampling ML SW PIES MD ML SW PIES MD ML SW PIES MD ML SW PIES MD

IMDB 74.78 72.30 72.38 62.54 58.62 54.55 55.40 43.83 71.91 67.16 66.64 56.19 71.93 67.22 67.67 55.05
Slashdot 70.95 67.33 65.35 69.12 60.69 58.98 57.20 41.52 68.70 68.80 66.78 53.26 69.21 67.67 66.46 56.10
Weibo 67.39 66.98 64.18 64.42 58.60 57.90 59.08 66.92 66.45 66.78 65.46 66.48 65.08 64.56 64.58 66.90
ArnetMiner 81.82 78.87 81.08 81.45 67.04 61.20 62.29 78.83 76.90 74.10 75.64 76.59 79.60 74.01 75.25 74.72

cate co-author relationships between publications. We view every
month as a time stamp. Our task is to classify publications into
categories such as Data Mining and Machine Learning.

Evaluation Aspects. To quantitatively evaluate the proposed ap-
proach, we consider the following aspects:

Active Query. We focus on evaluating the active query method
by keeping all arrived instances in the reservoir. We compare dif-
ferent streaming active query algorithms with varied labeling rates
(the ratio of queried labels).

Network Sampling. We focus on evaluating the effectiveness
of the network sampling algorithm. We fix the active learning al-
gorithm and vary the reservoir size to compare different network
sampling algorithms. We also measure the efficiency improvement
achieved by network sampling.

Hybrid. We combine the streaming active query and the network
sampling algorithms, and evaluate its performance. We evaluate all
comparison methods in terms of F1-score.

5.2 Active Query Performance
We first suppress the network sampling method by keeping all

arrived instances in the reservoir, and focus on testing the effec-
tiveness of the active query algorithm.

Comparison Methods. We compare the following active query
algorithms.

Minimum Variability (MV): it is our approach proposed in Al-
gorithm 2. We adjust the threshold κ to achieve different labeling
rates.

Variable Uncertainty (VU): it is a variant of uncertainty sam-
pling proposed by [29]. According to [29], we set the adjusting
step to 0.01, and the initial labeling threshold to 1. We compute the
predictive probability using Eq. (14).

Feedback Driven (FD): it was proposed in [5]. According to
[5], we set the parameter ε = 0.1. We adjust the threshold value
Qth to have different labeling rates. Again, we compute the pre-
dictive probability using Eq. (14).

Random (RAN): it is the simplest strategy for active query. In
this method, we randomly select instances for query.

We also implement the naive algorithm that queries instances
with highest degrees. However, the performance is even worse than
random so we do not include this method in our discussion.

Results. Figure 2 shows the results of different methods on the
four datasets. In each subgraph, the x-axis indicates the labeling
rate and the y-axis represents the F1 score. It can be easily seen that
our proposed active query algorithm significantly and consistently
outperforms other comparison method on all the four datasets.
Since VU and FD are methods adapted from vector-based stream-
ing active learning, the result justifies that vector-based streaming
active learning strategies are not applicable to active learning for
streaming networked data. In general, by actively labeling mere
10% of the instances, our approach achieves a performance com-
parable to the result obtained with all labels. For example, in the
ArnetMiner dataset, the F1 with 10% labels is 91.2% of the F1 with
50% labels, a significant improvement over alternative methods (+
10.7%).

Concept Drift. To further cast insight into the difference between
different algorithms, we split the data streams into data chunks and
analyze the performance on each data chunk. We also randomly
shuffle the data streams and run the same algorithms on the data.
The experimental results are plotted in Figure 4, where we set the
size of each data chunk as equally 1000. The x-axis is the index
of the data chunk and the y-axis represents the F1 score of the pre-
diction in the corresponding data chunk. The upper row shows the
results in the original order while the lower row illustrates the re-
sults on the shuffled data. We clearly find some evidence about
the existence of concept drift. The most significant phenomenon
comes from the Weibo dataset. With the original data stream, the
F1 scores fluctuate drastically over time; in the shuffled data, the
F1 scores are much more stable among different data chunks (ex-
cept VU). This is because random shuffle eliminates the effect of
concept drift in the original data stream. Similar phenomena can be
detected in the other datasets, though less significant. For example,
in the IMDB dataset, the concepts in posterior data chunks seem
much more difficult to learn and all methods suffer slow decrease
over time; the situation does not happen in the shuffled data.

Our proposed algorithm is robust in that it not only better adapts
to concept drift (as demonstrated in the upper row), but also per-
forms well even without concept drift (as demonstrated in the lower
row). An outlier here is VU, which obtains good results in prior
data chunks but relatively poor prediction accuracy in posterior
chunks. This results from the imbalance of the distribution of



Figure 7: Speedup performance by network sampling. The x-
axis indicates the reservoir size, and the y-axis represents the
running time− the lower the better.

queried instances. VU uses most of its label budget in the prior
data chunks because it is insensitive to the concept drift and net-
work structure evolution in the data stream. This is consistent with
our analysis in § 4.1 that uncertainty sampling is not suitable for
active learning for streaming networked data.

5.3 Network Sampling Performance
We test the effectiveness of the network sampling algorithm. We

run our streaming network sampling algorithm by varying the reser-
voir size n and compare with the original method that does not use
the sampling method (thus, performance of the method that does
not consider sampling can be considered as an upper bound of dif-
ferent sampling strategies). We plot the experimental results in Fig-
ure 5. The x-axis represents the labeling rate and the y-axis denotes
the F1 score with the corresponding reservoir size. Figure 7 shows
the speedup performance obtained by streaming network sampling.
In most datasets, the decrease of the reservoir size leads to minor
decrease in performance but significantly less running time. For ex-
ample, in the IMDB dataset, if we set the reservoir size to be 2,000,
we can obtain a 6× speed up with the decrease of F1 less than 2%.
We further demonstrate the effectiveness of our proposed algorithm
by comparison. We fix the labeling rate to be 0.1, and compare the
performances of different streaming network sampling algorithms
with variable reservoir size.

Comparison Methods. We compare the following sampling
methods.

Minimum Loss (ML): it is our approach proposed in § 4.2.
Sliding Window (SW): it was first proposed by [28] under the

streaming settings. This approach keeps the latest instances in the
reservoir.

Partially-Induced Edge Sampling (PIES): it is a two-phase
sampling method proposed by [1].

Minimum Degree (MD): it is similar to ML, but each time we
discard the instance with minimum degree. The basic idea of this
method is that high-degree instances are incorporated in more fac-
tor function computation.

Results. We report the F1 score on each dataset in Figure 6,
where the x-axis indicates the reservoir size and the y-axis shows
the F1 score. We observe that our proposed algorithm outperforms
alternative methods significantly. This further justifies our analy-
sis in § 4.2 that our streaming network sampling algorithm incor-
porates both spatial and temporal dimensions, and thus is able to
consider the evolving characteristics of the streaming network. SW
is competitive in Weibo and Slashdot, and MD is competitive in
IMDB and ArnetMiner, while ML performs consistently well on
four datasets. The result is expected because MD aims to preserve
the network structure with preference to high degree instances; SW
reverses the most recent instances to capture the current concept;

our method (ML) combines advantages of the two by a unified
representation (Cf. § 4.2) and therefore yields consistently better
performance. PIES can be regarded as random sampling; our ex-
periment shows that sampling by recency or structural centrality is
better than random.

5.4 Performance of Hybrid Approach
In this section, we fix the reservoir size at 1000, and the label-

ing rate at 0.1. We consider all possible combinations of compar-
ison methods of streaming network sampling and streaming ac-
tive query. The experimental results are shown in Table 2. Our
approach outperforms all other combinations over four datasets,
which demonstrates the effectiveness of our active learning algo-
rithms. We can also demonstrate that both two parts of our ac-
tive learning algorithms are important to the classification accu-
racy, because replacing any part with another comparison method
will lead to a decrease in performance. Also, some combinations
other than our approach may achieve relatively good results in spe-
cific datasets, such as VU-MD in Weibo and RAN-ML in Slashdot.
However, such combinations do not perform consistently well on
different datasets.

6. RELATED WORK
Active Learning in Data Streams Different from pool-based ac-
tive learning [23], active learning in data streams needs to make the
query decision online. [28] first addressed the problem of active
learning from data streams, and proposed a classifier-ensemble-
based framework. [6] considered the unbiasedness property in the
sampling process, and minimized the variance in the stochastic pro-
cess. [5] presented a framework for stream-based multi-class active
learning. [29] explicitly handled concept drift in their active learn-
ing framework. However, none of them handles networked data,
where instances are correlated and dependent.

Active Learning for Networked Data [3] proposed an active
learning algorithm for networked data. [4] studied active learning
on trees and graphs. [10] studied active learning on graphs using
variance minimization. [27] leveraged Gaussian fields for active
learning on graphs. However, they do not consider streaming data.
[8] studied online active learning on graphs. [22] proposed a my-
opic active learning method for graph search. Again, those methods
cannot be directly applied to streaming data.

Streaming Network Sampling [7] provided a comprehensive tu-
torial, covering diverse methods and applications of network sam-
pling. [15] compared and evaluated several sampling methods with
novel measures. [1] designed a family of sampling methods for
streaming graphs. Their works are different from ours, int that they
focused on persistent graph structure rather than instance correla-
tion.

7. CONCLUSIONS
In this paper, we study a novel problem of active learning for

streaming networked data. We first frame the classification prob-
lem for the streaming networked data using a Markov random field.
We define a novel query criterion for active query with theoretical
justification and provide novel techniques for computation. Then
we propose a streaming network sampling algorithm to handle
large volume of streaming data by considering the loss of instance
removal in both spatial and temporal dimensions. Our methods sig-
nificantly outperform alternative methods on four different genres
of datasets.



Building an effective learning model for streaming data− in par-
ticular, streaming networked data − is very important for mining
big data, and represents a new and interesting research direction.
As for future work, it would be interesting to further improve the
efficiency of the proposed algorithms. It is also interesting to ex-
tend this work to the social network and incorporate social factors
such as social influence [18] into the proposed model.
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APPENDIX
Proof of Proposition 1

PROOF. Let yU∗
1 = arg maxVi

θ(yL
1 ) and yU∗

2 = arg maxVi
θ(yL

2 ).
Because yL

1 ( yL
2 , we have yU

2 ( yU
1 . It follows

QGi
(ȳL

1 , ŷ
U
1 ;θ) ≤ QGi

(ȳL
2 , ŷ

U
2 ;θ) (23)

Now we construct a new label configuration yUn
1 . Let yj be the label of

instance yj ∈ y. For an instance yj ∈ yUn
1 , if yj ∈ yU

2 , then we set yUn
1j

to be yU∗
2j . Otherwise yj ∈ yL

2 , then we set yUn
1j to be ȳL

2j . By definition,
it follows QGi

(ȳL
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1 ;θ) = QGi
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2 ;θ). It follows
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Combining the inequalities (23) and (24), we can obtain
QGi

(ȳL
1 ,y
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1 ;θ)−QGi
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1 ;θ) ≥ QGi

(ȳL
2 ,y
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(ȳL
2 , ŷ
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2 ;θ)

which concludes the proof.

Proof of Proposition 3
PROOF. For any edge ej , we use gj(y0, yj) to represent the edge factor

function with given labels y0 and yj . Without loss of generality, we assume
w+ > w−. Let P j

y represent P (ȳj = y). First we fix y0, we can obtain
E[Vi

θ({y0})] = P 0
+1Vi

θ({y0 = +1}) + P 0
−1Vi

θ({y0 = −1})

= P 0
+1

n∑
j=1

(w+ − w0) + P 0
−1

n∑
j=1

(w− − w0)

We fix yk, k > 0 and obtain
E[Vi

θ({yk})] = Pk
+1Vi

θ({yk = +1}) + Pk
−1Vi

θ({yk = −1})

≥ Pk
+1

n∑
j=1

(w+ − w0) + Pk
−1

∑
j 6=k

(w+ − w0)

Let N = maxk

⌊
Pk
−1(w+−w0)

P0
−1(w+−w−)

⌋
. For any n > N , we have

E[Vi
θ({y0})] ≤ E[Vi

θ({yk})] for all k > 0, which concludes the
proof.

Proof of Proposition 4
PROOF.

LossGi
(yj) = E

[∫ tj+Tm

ti

Λt(yj)dt

]

=
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ti
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 dt
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Solving the differential equation (20) yields
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.
Therefore, we have
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