

CIKM 2014 Competition: Second Place Solution

Task

- Given a sequence of query sessions
 - Example

Class1 Query1 –

Class1 Query1 Title1

Class2 Query2 –

Class2 Query2 Title2

Class2 Query2 Title3

Classify the class label of test queries

Challenge

- Encoding character
 - Only little prior knowledge can be used
- Heterogeneous data
 - -Query, title, session information
- User search behavior
 - How to incorporate user search behavior to help the classification task?
- Unlabeled data
 - -How to utilize the large scale unlabeled data?

Result

0.9245 (public) / 0.9245 (private)

2nd place winner

Achieve in 4 days, from Sep. 27th to Sep. 30th EST

Final LeaderBoard

	Rank	Name	Best Quiz Score	Best Submit Time	
)	1	topdata	0.9296	Sep 30 2014 23:59:15 (PDT)	
į	2	FAndy	0.9245	Sep 30 2014 23:15:04 (PDT)	
	3	adfr	0.9222	Sep 30 2014 03:44:32 (PDT)	
	1	vingwei vin	0.9220	Sen 30 2014 23:57:42 (PDT)	

Feature Extraction

Bag of word

- Given a query Q
- One gram, two grams, last gram of Q $-0 \rightarrow 0.8452$
- One gram, two grams of the clicked titles $-0.8452 \rightarrow 0.9091$, top 12 in the leaderboard!
- Higher grams give a bit more improvement
- More bag of words features?
 - -Queries in the same session of Q?
 - -Titles in the same session of Q?
 - -Performance decreases, 0.9091 -> 0.89x

Search behavior

- Macro features
 - -#total search, average length of clicked titles,length of the query
 - $-0.9091 \rightarrow 0.9105$
- Session class features
 - -For each potential class C, calculate:
 - #class C queries in the same session
 - #class C queries in the next/previous query
 - $-0.9105 \rightarrow 0.9145$

- Same session's queries features
 - -Only use similar queries!
 - Use Jaccard to measure similarity between queries

$$\mathsf{J}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Bag of words feature for same session's queries that are similar to the query Q
- -0.9145 -> 0.9182, utilizing the large scale unlabeled data!
- Performance decrease for adding same session's titles

Learning Models

Learning setting

- Given a query Q
- Treat each class label respectively
- Train a classification model to predict the probability that Q belongs to a specific class
- Take the class labels with probability > 0.5 as the classes of the query Q
- If there are more than 2 labels, keep the top two with largest probability

Models

Logistic regression

$$p_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i})}}$$

Use the implementation of Liblinear

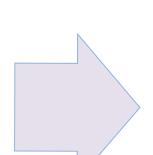
Factorization machine

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

Use the implementation of LibFM

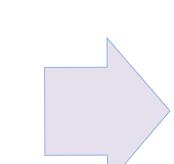
Gradient Boosted Decision Trees

$$\gamma_m = \underset{\gamma}{\arg\min} \sum_{i=1}^n L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)).$$


$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

Use the implementation of XGBoost

Ensemble


Step 1. Feature Extraction

- a. Bag of words features
- b. Search behavior features

Step 2. Individual Model Learning

- a. Logistic regression
- b. Factorization Machine
- c. Gradient boosted decision trees

Step 3. Ensemble Results

- a. Obtain the prediction results of individual models
- b. Use logistic regression to ensemble to results

Experimental Results

Performance on different features and different models.

GBDT is the best individual model. Ensemble can significantly improve the performance

Feature	Leaderboard
1gram, 2gram of query	0.8452
+1gram, 2gram of titles	0.9091
+macro features	0.9105
+session class features	0.9145
+same session query features	0.9182

Method	Implementation	Leaderboard
Logistic Regression	Liblinear	0.9182
Factorization Machine	LibFM	0.9151
GBDT	XGBoost	0.9225
Ensemble	N/A	0.9245