

#### CIKM Competition 2014 Second Place Solution

Team: FAndy Zhanpeng Fang, Jie Tang Department of Computer Science Tsinghua University



#### Task



- Given a sequence of query sessions
  - Example
    - Class1 Query1 –
    - Class1 Query1 Title1
    - Class2 Query2 –
    - Class2 Query2 Title2
    - Class2 Query2 Title3
- Classify the class label of test queries



#### Challenges



- Encoding character
  - Only little prior knowledge can be used
- Heterogeneous data
  Query, title, session information
- User search behavior
  - How to incorporate user search behavior to help the classification task?
- Unlabeled data
  - How to utilize the large scale unlabeled data?

#### Result



- 0.9245(public score)/0.9245(private score)
- 2<sup>nd</sup> place winner
- Achieve in 4 days, from Sep. 27th to Sep. 30th EST

#### Final LeaderBoard

| Rank | Name        | Best Quiz Sco | ere Best Submit Time       |
|------|-------------|---------------|----------------------------|
| 1    | topdata     | 0.9296        | Sep 30 2014 23:59:15 (PDT) |
| 2    | FAndy       | 0.9245        | Sep 30 2014 23:15:04 (PDT) |
| 3    | adfr        | 0.9222        | Sep 30 2014 03:44:32 (PDT) |
| 4    | yingwei_xin | 0.9220        | Sep 30 2014 23:57:42 (PDT) |



### Our Approach



- Feature extraction
  - Bag of words
  - User search behavior
- Learning models
  - Logistic regression
  - Gradient boosted decision trees
  - Factorization machines
- Ensemble



- Given a query Q
- One gram, two grams, last gram of Q
  0 -> 0.8452



- Given a query Q
- One gram, two grams, last gram of Q
  0 -> 0.8452
- One gram, two grams of the clicked titles
  0.8452 -> 0.9091, top 12 in the leaderboard!



- Given a query Q
- One gram, two grams, last gram of Q
  0 -> 0.8452
- One gram, two grams of the clicked titles
  0.8452 -> 0.9091, top 12 in the leaderboard!
- More bag of words features?
  - Queries in the same session of Q?
  - Titles in the same session of Q?



- Given a query Q
- One gram, two grams, last gram of Q
  0 -> 0.8452
- One gram, two grams of the clicked titles
  0.8452 -> 0.9091, top 12 in the leaderboard!
- More bag of words features?
  - Queries in the same session of Q?
  - Titles in the same session of Q?
  - Performance decreases, 0.9091 -> 0.89x
  - How to use the session information?



- Given a query Q
- Macro features
  - #total search, average length of clicked titles, length of the query
  - 0.9091 -> 0.9105



- Given a query Q
- Macro features
  - #total search, average length of clicked titles, length of the query
  - 0.9091 -> 0.9105
- Session class features
  - For each potential class C, calculate:
    - #class C queries in the same session
    - #class C queries in the next/previous query
  - 0.9105 -> 0.9145



 Same session's queries can help but might contain noises



- Same session's queries can help but might contain noises
- Only use similar queries!
- Same session's queries feature
  - Bag of words feature for same session's queries that are similar to the query Q
  - Use Jaccard to measure similarity between queries
  - 0.9145 -> 0.9182, utilizing the large scale unlabeled data!



- Further add clicked titles of same session's similar queries
  - Performance decrease, 0.9182 -> 0.9176



### Learning Models



- Logistic regression
  - Use the implementation of Liblinear
- Factorization machine
  - Use the implementation of LibFM
- Gradient boosted decision trees
  - Use the implementation of XGBoost

| Method                | Implementation | Score on leaderboard |
|-----------------------|----------------|----------------------|
| Logistic Regression   | Liblinear      | 0.9182               |
| Factorization Machine | LibFM          | 0.9151               |
| GBDT                  | XGBoost        | 0.9225               |



#### Ensemble



Ensemble prediction results from different
models by logistic regression

| Method                | Implementation | Score on Validation |
|-----------------------|----------------|---------------------|
| Logistic Regression   | Liblinear      | 0.9182              |
| Factorization Machine | LibFM          | 0.9151              |
| GBDT                  | XGBoost        | 0.9225              |
| Ensemble              | Liblinear      | 0.9245              |

 Ensemble can significantly improves the performance



#### Summary



- "Tricks" on how to win 2<sup>nd</sup> place
  - -Use unlabeled data
  - -Train multiple models
  - -Ensemble different results





#### Thank you! Questions ?

