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ABSTRACT 
Addressed in this paper is the issue of ‘email data cleaning’ for 
text mining. Many text mining applications need take emails as 
input. Email data is usually noisy and thus it is necessary to clean 
it before mining. Several products offer email cleaning features, 
however, the types of noises that can be eliminated are restricted. 
Despite the importance of the problem, email cleaning has 
received little attention in the research community. A thorough 
and systematic investigation on the issue is thus needed. In this 
paper, email cleaning is formalized as a problem of non-text 
filtering and text normalization. In this way, email cleaning 
becomes independent from any specific text mining processing. A 
cascaded approach is proposed, which cleans up an email in four 
passes including non-text filtering, paragraph normalization, 
sentence normalization, and word normalization. As far as we 
know, non-text filtering and paragraph normalization have not 
been investigated previously. Methods for performing the tasks on 
the basis of Support Vector Machines (SVM) have also been 
proposed in this paper. Features in the models have been defined. 
Experimental results indicate that the proposed SVM based 
methods can significantly outperform the baseline methods for 
email cleaning. The proposed method has been applied to term 
extraction, a typical text mining processing. Experimental results 
show that the accuracy of term extraction can be significantly 
improved by using the data cleaning method.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval - Information filtering, selection 
process 

General Terms 
Algorithm, Design, Experimentation, Theory. 

Keywords 
Text Mining, Data Cleaning, Email Processing, Statistical 
Learning 

1. INTRODUCTION 
Email is one of the commonest means for communication via text. 
It is estimated that an average computer user receives 40 to 50 
emails per day [8]. Many text mining applications need take 
emails as inputs, for example, email analysis, email routing, email 
filtering, email summarization, information extraction from email, 
and newsgroup analysis. 

Unfortunately, Email data can be very noisy. Specifically, it may 
contain headers, signatures, quotations, and program codes; it 
may contain extra line breaks, extra spaces, and special character 
tokens; it may have spaces and periods mistakenly removed; and 
it may contain words badly cased or non-cased and words 
misspelled. 

In order to achieve high quality email mining, it is necessary to 
conduct data cleaning at the first step. This is exactly the problem 
addressed in this paper. 

Many text mining products have email data cleaning features. 
However, the number of noise types that can be processed is 
limited. In the research community, no previous study has so far 
sufficiently investigated the problem, to the best of our 
knowledge. Data cleaning work has been done mainly on 
structured tabular data, not unstructured text data. In natural 
language processing, sentence boundary detection, case 
restoration, spelling error correction, and word normalization 
have been studied, but usually as separated issues. The 
methodologies proposed in the previous work can be used in 
email data cleaning. However, they are not sufficient for 
removing all the noises. 

Three questions arise for email data cleaning: (1) how to 
formalize the problem (since it involves many different factors at 
different levels and appears to be very complex); (2) how to solve 
the problem in a principled approach; and (3) how to make an 
implementation. 

(1) We formalize email data cleaning as that of non-text filtering 
and text normalization. Specifically, email cleaning is defined as 
a process of eliminating irrelevant non-text data (it includes 
header, signature, quotation and program code filtering) and 
transforming relevant text data into canonical form like that in 
newspaper (it includes paragraph, sentence and word 
normalization). 

(2) We propose to conduct email cleaning in a ‘cascaded’ fashion. 
In the approach, we clean up an email by running several passes: 
first at email body level (non-text filtering), and then at paragraph, 
sentence, and word levels (text normalization). 
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(3) It turns out that some of the tasks in the approach can be 
accomplished with existing methodologies, but some cannot. The 
tasks of email header detection, signature detection, and program 
code detection in non-text filtering, and paragraph ending 
detection in paragraph normalization do not seem to be examined 
previously. We view the former three tasks as ‘reverse 
information extraction’. We propose a unified statistical learning 
approach to the tasks, based on SVM (Support Vector Machines). 
We define features for the models.  

We tried to collect data from as many sources as possible for 
experimentation. In total, 5,565 emails from 14 different sources 
were gathered. Our experimental results indicate that the proposed 
SVM based methods perform significantly better than the baseline 
methods for cleaning. We also applied our method to term 
extraction. Experimental results indicate that our method can 
indeed enhance the accuracy of term extraction. We observed 
38%-45% improvements on term extraction in terms of F1-
measure. 

The rest of the paper is organized as follows. In Section 2, we 
introduce related work. In Section 3, we formalize the problem of 
email data cleaning. In Section 4, we describe our approach to the 
problem and in Section 5, we explain one possible 
implementation. Section 6 gives our experimental results. We 
make concluding remarks in Section 7. 

2. RELATED WORK 
2.1 Data Cleaning 
Data cleaning is an important area in data mining. Many research 
efforts have been made so far. However, most of the previous 
work was focusing on cleaning up of structured data and only a 
little work was concerned with semi-structured or non-structured 
data cleaning. 

Email Data Cleaning 

Several products have email cleaning features. For instance, 
eClean 2000 is a tool that can clean up emails by removing extra 
spaces between words, removing extra line breaks between 
paragraphs, removing email headers, and re-indenting forwarded 
mails [33]. It conducts email cleaning using rules defined by users.  

WinPure ListCleaner Pro is a data cleaning product. It also has an 
email cleaning module [34]. It can identify inaccurate and 
duplicated email addresses in a list of email addresses. However, 
it does not conduct cleaning on email data itself.  

To the best of our knowledge, no previous work has been done on 
email cleaning in the research community. 

Web Page Data Cleaning 

Considerable efforts have been placed on the cleaning of web 
pages. 

For instance, Yi and Liu [30] define banner ads, navigational 
guides, and decoration pictures as web page noises. They assign a 
weight to each block in a web page, where a weight represents the 
importance (cleanness) of a block. They use, in the weight 
calculation, the fact that web pages in a site tend to follow fixed 
layouts and those parts in a page that also appear in many other 
pages in the site are likely to be noises. 

Lin and Ho view the problem of web page cleaning as that of 
discovering informative contents from web pages [16]. They first 
partition a page into several blocks on the basis of HTML tags. 
They next calculate entropy value of each block. Finally, they 
select the informative blocks by a predefined threshold from the 
page. See also [14]. 

Tabular Data Cleaning 

Tabular data cleaning is aimed at detecting and removing 
duplicate information when data is consolidated from different 
sources. Therefore, tabular data cleaning significantly differs in 
nature from text data cleaning.   

Tabular data cleaning has been investigated at both schema level 
and instance level. At schema level, the differences in data 
schemas can be absorbed by schema translation and schema 
integration. The main problem here is to resolve naming and 
structural conflicts [23]. At instance level, the main problem is to 
identify overlapping data. The problem is also referred to as 
object identification [10], duplicate elimination, or merge/purge 
problem [13]. See [25] for an overview.  

Some products provide tools for tabular data cleaning. For 
instance, SQL Server 2005 provides a tool for tabular data 
cleaning called Fuzzy Grouping. The ETL tool performs data 
cleaning by identifying rows of similar or duplicate data and 
choosing a canonical row to represent the rows of the data [35].  

2.2 Language Processing 
Sentence boundary detection, word normalization, case 
restoration, spelling error correction, and other related issues have 
been intensively investigated in natural language processing, but 
usually as separated issues. 

Sentence Boundary Detection 

Palmer and Hearst, for instance, propose using a neural network 
model to determine whether a period in a sentence is the ending 
mark of the sentence, an abbreviation, or both [22]. They utilize 
the part of speech probabilities of the tokens surrounding the 
period as information for the disambiguation. See also [20]. 

Case Restoration 

Lita et al. propose employing a language modeling approach to 
address the case restoration problem [17]. They define four 
classes for word casing: all lower case, first letter upper case, all 
letters upper case, and mixed case, and formalize the problem as 
that of assigning the class labels to words in natural language 
texts. They then make use of an n-gram model to calculate the 
probability scores of the assignments. 

Mikheev proposes making use of not only local information but 
also global information in a document in case restoration [20]. 
See also [5, 9]. 

Spelling Error Correction 

Spelling error correction can be formalized as a word sense 
disambiguation problem. The goal then becomes to select a 
correct word from a set of confusion words, e.g., {to, too, two} in 
a specific context. For example, Golding and Roth propose using 
statistical learning methods to address the issue [12]. 



The problem can also be formalized as that of data conversion 
using the noise channel model from Information Theory. The 
source model can be built as an n-gram language model and the 
channel model can be constructed with confusing words measured 
by edit distance. For example, Mayes et al., Church and Gale, 
Brill and Moore have developed techniques for the confusing 
words calculation [2, 4, 18]. 

Word Normalization 

Sproat et al. have investigated normalization of non-standard 
words in texts, including numbers, abbreviations, dates, currency 
amounts, and acronyms [27]. They define a taxonomy of non-
standard words and apply n-gram language models, decision trees, 
and weighted finite-state transducers to the normalization. 

2.3 Information Extraction 
In information extraction, given a sequence of instances, we 
identify and pull out a sub sequence of the input that represents 
information we are interested in. Hidden Markov Model [11], 
Maximum Entropy Model [1, 3], Maximum Entropy Markov 
Model [19], Support Vector Machines [7], Conditional Random 
Field [15], and Voted Perceptron [6] are widely used information 
extraction models. 

Information extraction has been applied, for instance, to part-of-
speech tagging [26], named entity recognition [32] and table 
extraction [21, 24, 29]. 

3. CLEANING AS FILTERING AND 
NORMALIZATION 
Mining from emails is an important subject in text mining. A 
large number of applications can be considered, for example, 
analysis of trends in emails, automatic routing of email messages, 
automatic filtering of spam emails, summarization of emails, 
information extraction from emails, and analysis of trends in 
newsgroup discussions (newsgroup articles are usually emails). 

1.   On Mon, 23 Dec 2002 13:39:42 -0500, "Brendon" 
2.   <brendon@nospamitology.net> wrote:

3.   NETSVC.EXE from the NTReskit. Or use the 
4.   psexec from 
5.   sysinternals.com. this lets you run 
6.   commands remotely - for example net stop 'service'. 

7.   --
8.   --------------------------------------
9.   Best Regards
10. Brendon
11. 
12. Delighting our customers is our top priority. We welcome your comments and 
13. suggestions about how we can improve the support we provide to you.
14. --------------------------------------

15.  >>-----Original Message----- 
16.  >>"Jack" <jehandy@verizon.net> wrote in message 
17.  >>news:00a201c2aab2$12154680$d5f82ecf@TK2MSFTNGXA12...
18.  >> Is there a command line util that would allow me to 
19.  >> shutdown services on a remote machine via a batch file?

20.  >>Best Regards
21.  >>Jack  

Figure 1. Example of email message 
1.   NETSVC.EXE from the NTReskit. Or use the psexec from sysinternals.com. 
2.   This lets you run commands remotely - for example net stop 'service'.  

Figure 2. Cleaned email message 

Unfortunately, emails are usually very noisy and simply applying 
text mining tools to them, which are usually not designed for 
mining from noisy data, may not bring good results. We 
examined the quality of the 5,565 emails and found that 
surprisingly 98.4% of the emails have this or that type of noise for 
text mining (based on the definition of clean email described 
below). 

Figure 1 shows an example email which includes many typical 
noises (or errors) for text mining. Lines 1 and 2 are a header; lines 
from 7 to 14 are a signature; and a quotation lies from line 15 to 
line 21. All of them are supposed to be irrelevant to text mining. 
Only lines from 3 to 6 are actual text content. However, the text is 
not in canonical form. It is mistakenly separated by extra line 
breaks. The word “this” in line 5 is also not capitalized. 

Figure 2 shows an ideal output of cleaning on the email in Figure 
1. Within it, the non-text parts (header, signature and quotation) 
have been removed. The text has been normalized. Specifically, 
the extra line breaks have been eliminated. The case of word 
“this” has been correctly restored. 

In this paper, we formalize the email cleaning problem as that of 
non-text data filtering and text data normalization. By ‘filtering’ 
of an email we mean a process of removing the parts in the email 
which are not needed for text mining, and by ‘normalization’ of 
an email we mean a process of converting the parts necessary for 
text mining into texts in canonical form (like a newspaper style 
text). 

Header, signature, quotation (in forwarded message or replied 
message), program code, and table are usually irrelevant for 
mining, and thus should be identified and removed (in a particular 
text mining application, however, we can retain some of them 
when necessary). On the other hand, text and list are needed for 
text mining and thus should be retained. 

In a text in canonical form, paragraphs are separated by line 
breaks; sentences have punctuation marks (period, question mark, 
exclamation mark, colon, ellipsis); the first words in the sentences 
are capitalized; and all the words are correctly cased and spelled. 

Usually natural language processing and text mining systems are 
designed for processing texts in canonical form. A desirable 
consequence of conducting cleaning in this way is that we can 
significantly enhance the modularity of text mining. 

Here, we only consider handling emails in plain text format, i.e., 
non-structured data. We do not take into consideration of emails 
in other formats such as HTML and Rich Format Text. There are 
two reasons: all the other formats can be reduced to plain text 
(with the format information lost, however) and usually many 
emails for text mining (and data mining) are stored in databases as 
plain texts. 

4. CASCADED APPROACH 
We perform email cleaning in four passes of processing: non-text 
filtering, paragraph normalization, sentence normalization, and 
word normalization. Figure 3 shows the flow. 

The input is an email message. In non-text filtering, we identify 
the existing header, signature, quotation, and program code in the 
email and remove the identified blocks. In paragraph 
normalization, we identify extra line breaks and remove them. In 



sentence normalization, we figure out whether a period, a 
question mark, or an exclamation mark is a real sentence-ending. 
If so, we take it as a sentence boundary. Moreover, we remove 
non-words including non-ASCII words, tokens containing many 
special symbols, and lengthy tokens, and take their locations as 
sentence boundaries as well (a sentence obtained in this way is 
not necessarily a natural sentence). In word normalization, we 
conduct case restoration on badly cased words. 

Non-text filtering

Paragraph Normalization

Sentence Normalization

Word Normalization

Text Normlization

Noisy email 
message

Cleaned email 
message

 
Figure 3. Flow of email data cleaning 

We note that it is reasonable to conduct cleaning as described 
above. Removing noisy blocks first are preferable, because such 
blocks are not needed in the other processing. Normalizing text 
from paragraph to sentence and then to word is desirable, because 
there are dependencies between the processes. Word 
normalization (e.g., case restoration) needs sentence beginning 
information. Paragraph normalization (e.g., paragraph ending 
information) helps sentence normalization. 

We should also filter out other noisy blocks like tables. In this 
paper, we confine ourselves to the removal of the noisy blocks 
described above (header, signature, and program code), because 
we have observed only a few other block types (tables) available 
in our data. (0.6% of emails in the 14 data sets have other types). 
We should also conduct spelling error correction in word 
normalization. However, we will leave this to future work, 
because spelling errors are less common than casing errors in 
emails. (93.6% of the word level errors are casing errors.) 

5. IMPLEMENTATION 
We consider one implementation of the cascaded approach. We 
employ a unified machine learning approach in non-text filtering 
and paragraph normalization. Furthermore, we utilize rules in the 
sentence normalization and word normalization. The former two 
issues have not been investigated previously and are the main 
focus of our work. The latter two issues have been intensively 
studied in the literature as explained. 

5.1 Outline 
The input is an email message. The implementation carries out 
cleaning in the following steps. 

(1) Preprocessing. It uses patterns to recognize ‘special words’, 
including email address, IP address, URL, date, file directory, 
Date (e.g. 02-16-2005), number (e.g. 5.42), money (e.g. $100), 
percentage (e.g. 92.86%), words containing special symbols (e.g. 
C#, .NET, .doc, Dr.). It also uses patterns to recognize bullets in 
list items (e.g.: (1), b), etc.) 

(2) Non-text filtering. It detects the header and signature (if there 
exist) in the email by using a classification model. It then 
eliminates the identified blocks. It next detects program codes (if 
there exist) in the email with the same approach and removes the 
identified blocks. Finally, it filters out quotations using hard-
coded rules. It views lines starting with special characters (e.g. >, |, 
>>) as quotations. After this step, only relevant text data remains. 
The step relies on header detection, signature detection, and 
program code detection. 

(3) Paragraph normalization. It identifies whether or not each line 
break is a paragraph ending by using a classification model. If not, 
it removes the line break. It also forcibly removes consecutive 
(redundant) line breaks between paragraphs into a single line-
break. As a result, the text is segmented into paragraphs. The step 
is mainly based on paragraph ending detection. 

(4) Sentence normalization. It determines whether each 
punctuation mark (i.e., period, exclamation mark, and question 
mark) is sentence ending by utilizing rules. If there is no space 
after an identified sentence ending, it adds a space there. It also 
removes redundant symbols (including space, exclamation mark, 
question mark, and period) at the sentence ending.  Furthermore, 
it eliminates noisy tokens (e.g. non-ASCII characters, tokens 
containing many special symbols, and lengthy tokens) and views 
the positions as sentence endings (this is because a sentence can 
rarely be across such tokens). As a result, each paragraph is 
segmented into sentences. 

(5) Word normalization. It conducts case restoration on badly 
cased words using rules and a dictionary. 

5.2 Classification Model 
We make use of Support Vector Machines (SVM) as the 
classification model [28]. 

Let us first consider a two class classification problem. Let {(x1, 
y1), … , (xN, yN)} be a training data set, in which xi denotes an 
instance (a feature vector) and }1,1{ +−∈iy  denotes a 
classification label. In learning, one attempts to find an optimal 
separating hyper-plane that maximally separates the two classes 
of training instances (more precisely, maximizes the margin 
between the two classes of instances). The hyper-plane 
corresponds to a classifier (linear SVM). It is theoretically 
guaranteed that the linear classifier obtained in this way has small 
generalization errors. Linear SVM can be further extended into 
non-linear SVMs by using kernel functions such as Gaussian and 
polynomial kernels. 

We use SVM-light, which is available at 
http://svmlight.joachims.org/. We choose polynomial kernel, 
because our preliminary experimental results show that it works 



best for our current task. We use the default values for the 
parameters in SVM-light. When there are more than two classes, 
we adopt the “one class versus all others” approach, i.e., take one 
class as positive and the other classes as negative. 

5.3 Header and Signature Detection 
5.3.1 Processing 
Header detection and signature detection are similar problems. 
We view both of them as ‘reverse information extraction’. 
Hereafter, we take header as example in our explanation. The 
learning based header detection consists of two stages: training 
and detection. 

In detection, we identify whether or not a line is the start line of a 
header, and whether or not a line is the end line of a header using 
two SVM models. We next view the lines between the identified 
start line and the end line as header. 

In training, we construct the two SVM models that can detect the 
start line and the end line, respectively. In the SVM models, we 
view a line in an email as an instance. For each instance, we 
define a set of features and assign a label. The label represents 
whether the line is start, end, or neither. We use the labeled data 
to train the SVM models in advance. 
It seems reasonable to take lines as instances for non-text filtering. 
We randomly picked up 104,538 lines from the 5,565 emails and 
found that 98.37% of the lines are either text or non-text (header, 
signature, program code, etc). It is really rare to have a mix of text 
and non-text in a line. 

The key issue here is how to define features for effectively 
performing the cleaning task. 

5.3.2 Features in Header Detection Models 
The features are used in both the header-start and header-end 
SVM models. 

Position Feature: The feature represents whether the current line 
is the first line in the email. 

Positive Word Features: The features represent whether or not 
the current line begins with words like “From:”, “Re:”, “In 
article”, and “In message”, contains words such as “original 
message” and “Fwd:”, or ends with words like “wrote:” and 
“said:”. 

Negative Word Features: The features respectively represent 
whether or not the current line contains words like “Hi”, “dear”, 
“thank you”, and “best regards”. The words are usually used in 
greeting and should not be included in a header. 

Number of Words Feature: The feature stands for the number of 
words in the current line. 

Person Name Feature: The feature represents whether or not the 
current line contains a person name (first name or last name).  

Ending Character Features: The features respectively represent 
whether or not the current line ends with colon, semicolon, 
quotation mark, question mark, exclamation mark or suspension 
points. (The first line of a header is likely to end with characters 
like quotation mark, but is less likely to end with characters like 
colon or semicolon.) 

Special Pattern Features: In the preprocessing step, the special 
words have already been recognized. Each of the features 
represents whether or not the current line contains one type of 
special words. Positive types include email address and date. 
Negative types include money and percentage. 

Number of Line Breaks Feature: The feature represents how 
many line breaks exist before the current line. 

The features above are also defined similarly for the previous line 
and the next line. 

5.3.3 Features in Signature Detection Model 
The features are used in both the signature-start and signature-end 
SVM models. 

Position Features: The two features are defined to represent 
whether or not the current line is the first line or the last line in 
the email.  

Positive Word Features: The features represents whether or not 
the current line contains positive words like “Best Regards”, 
“Thanks”, “Sincerely” and “Good luck”. 

Number of Words Features: One of the two features stands for 
the number of words in the current line. The first line of a 
signature usually contains a few words, such as the author’s name 
or words like “Best Regards”, “Thanks”. The other feature stands 
for the number of words in a dictionary. 

Person Name Feature: The feature represents whether or not the 
current line contains a person name (first name or last name). A 
signature is likely to begin with the author’s name. 

Ending Character Features: The features respectively represent 
whether or not the current line ends with a punctuation mark like 
colon, semicolon, quotation mark, question mark, exclamation 
mark and suspension points. (A signature is less likely to end with 
punctuation marks like colon or semicolon.) 

Special Symbol Pattern Features: The features respectively 
indicate whether the line contains consecutive special symbols 
such as: “--------”, “======”, “******”. Such patterns can be 
frequently found in signatures. 

Case Features: The features represent the cases of the tokens in 
the current line. They indicate whether the tokens are all in upper-
case, all in lower-case, all capitalized or only the first token is 
capitalized. 

Number of Line Breaks Feature: The feature represents how 
many line breaks exist before the current line. 

The features above are also defined similarly for the previous line 
and the next line. 

5.4 Program Code Detection 
5.4.1 Processing 
Program code detection is similar to header and signature 
detection. It can also be viewed as a ‘reverse information 
extraction’ problem. The detection is performed by identifying 
the start line and the end line of a program code using SVMs. A 
recognized program code is then removed. Again, utilizing 
effective features in the SVM models is the key to a successful 
detection. 



5.4.2 Features in Program Code Detection Model 
The following features are used in both the code-start and code-
end models. 

Position Feature: The feature represents the position of the 
current line. 

Declaration Keyword Feature: The feature represents whether 
or not the current line starts with one of the keywords, including 
“string”, “char”, “double”, “dim”, “typedef struct”, “#include”, 
“import”, “#define”, “#undef”, “#ifdef”, and “#endif”. 

Statement Keyword Features: The four features represent 

-whether or not the current line contains patterns like “i++”; 

-whether or not the current line contains keywords like “if”, “else 
if”, “switch”, and “case”; 

-whether or not the current line contains keywords like “while”, 
“do{”, “for”, and “foreach”; 

-whether or not the current line contains keywords like “goto”, 
“continue;”, “next;”, “break;”, “last;” and “return;”. 

Equation Pattern Features: The four features are defined for 
equations as follows: 

-whether or not the current line contains an equation pattern like 
“=”, “<=” and “<<=”; 

-whether or not the current line contains an equation pattern like 
“a=b+/*-c;”; 

-whether or not the current line contains an equation pattern like 
“a=B(bb,cc);”; 

-whether or not the current line contains an equation pattern like 
“a=b;”. 

Function Pattern Feature: The feature represents whether or not 
the current line contains function pattern, e.g., pattern covering 
“fread(pbBuffer,1, LOCK_SIZE, hSrcFile);”. 

Function Definition Features: The two features represent 
whether or not the current line starts with “sub” or “function”, and 
whether or not it starts with “end function” or “end sub”. 

Bracket Features: The four features represent whether or not the 
line starts with or ends with “{” and whether or not the line starts 
with or ends with “}”. 

Percentage of Real Words Feature: The feature represents the 
percentage of ‘real’ words in the line that can be found in a 
dictionary. 

Ending Character Features: Program code lines usually end 
with a semicolon “;”, but seldom end with a question mark “?” or 
an exclamation mark “!”. The two features are defined to 
represent whether the current line ends with a semicolon and 
whether the line ends with a question mark or an exclamation 
mark. 

Number of Line Breaks Feature: The feature represents how 
many line breaks exist before the current line. 

The features above are also defined similarly for the previous line 
and the next line. 

5.5 Paragraph Ending Detection 
5.5.1 Processing 
A text may contain many line breaks. We identify whether each 
of line break is a paragraph ending or an extra-line-break. We 
view this problem as that of classification and employ a SVM 
model to perform the task. If a line break is recognized as an 
extra-line-break, then we remove it; otherwise, we retain it. In this 
way, we segment the text into normalized paragraphs.  

In the SVM model, we view a line as an instance. For each 
instance, we define a set of features and assign a label. The label 
represents whether the line break in the line is unnecessary. We 
use the labeled data to train the SVM model in advance. The lines 
having extra line breaks are positive instances, and the other lines 
are negative instances. 

5.5.2 Features in Paragraph Ending Detection 
Model 
The following features are defined in the paragraph-ending model. 

Position Features: The two features represent whether or not the 
current line is the first line and whether or not it is the last line. 

Greeting Word Features: The features respectively represent 
whether or not the line contains greeting words like “Hi” and 
“Dear”. (In such case, the line break should not be removed). 

Ending Character Features: The features respectively represent 
whether or not the current line ends with a punctuation mark like 
colon, semicolon, quotation mark, question mark, exclamation 
mark and suspension points. 

Case Features: The two features represent whether the current 
line ends with a word in lower case letters and whether or not the 
next line starts with a word in lower case letters. 

Bullet Features: The features represent whether or not the next 
line is one kind of bullet of a list item like “1.” and “a)”. (In such 
cases, the line break should be retained) 

Number of Line Breaks Feature: The feature represents how 
many line breaks exist after the current line. 

The features above are also defined similarly for the next line. 

6. EXPERIMENTAL RESULTS 
6.1 Data Sets and Evaluation Measures 
6.1.1 Data sets 
We tried to collect emails for experimentation from as many 
sources as possible. We randomly chose in total 5,565 emails 
from 14 sources and created 14 data sets. DC, Ontology, NLP and 
ML and J2EE are from newsgroups at Google (http://groups-
beta.google.com/groups). Jena is a newsgroup at Yahoo 
(http://groups.yahoo.com/group/jena-dev/). Weka is from a 
newsgroup at Waikato University (https://list.scms.waikato.ac.nz). 
Protégé and OWL are from a project at Stanford University 
(http://protege.stanford.edu/). Mobility, WinServer, Windows, 
PSS and BR are email collections or newsgroups at Microsoft.  

Human annotators conducted annotation on all the emails. 
Specifically, headers, signatures, quotations, program codes, etc, 
in the emails were labeled.  Paragraph boundaries were identified. 



Sentence boundaries were marked. Incorrectly-cased words were 
modified and spelling errors were corrected. 

Table 1 shows the statistics on the data sets. The columns 
respectively represent data set, number of emails, and percentages 
of emails containing headers, signatures, program codes, and text 
only. 

Table 1. Statistics on data sets (%) 

No Data Set Number Header Signature Code Text 
Only

1 DC 100 100.0 87.0 15.0 0.0

2 Ontology 100 100.0 77.0 2.0 0.0

3 NLP 60 100.0 88.3 0.0 0.0

4 ML 40 100.0 97.5 5.0 0.0

5 Jena 700 99.6 97.0 38.0 0.0

6 Weka 200 99.5 97.5 17.0 0.5

7 Protégé 500 28.0 82.2 3.2 16.8

8 OWL 500 38.4 93.2 4.2 4.8

9 Mobility 400 44.0 74.5 0.0 18.3

10 WinServer 400 44.9 67.2 1.25 22.1

11 Windows 1000 47.6 65.3 0.7 21.8

12 PSS 1000 49.2 66.8 1.0 20.8

13 BR 310 49.5 64.3 0.0 24.4

14 J2EE 255 100.0 56.1 9.4 0 

 Average 5565 58.5 76.0 7.2 13.8

 

From table 1, we see that a large portion of emails contain headers 
and signatures. In three of the data sets, more than 15% of emails 
contain program codes.  

We also made statistics on other types of errors. In summary, 
73.2% of the emails need paragraph normalization, 85.4% of the 
emails need sentence normalization, and 47.1% of the emails need 
case restoration. Only 7.4% of the emails contain at least one 
spelling error. Only 1.6% of the emails are absolutely clean. We 
omit the details due to space limitation. 

6.1.2 Evaluation measures 
In all the experiments on detection and extraction, we conducted 
evaluations in terms of precision, recall and F1-measure. The 
evaluation measures are defined as follows: 

Precision: P = A / ( A + B ) 

Recall:  R = A / ( A + C ) 

F1-measure: F1 = 2PR / ( P + R ) 

where, A, B, C and D denote number of instances. 

Table 2. Contingence table on results of detection and 
extraction 

 Is Target Is Not Target 

Found A B 

Non Found C D 

 

In all evaluations, we view a correction or extraction made by 
humans as a ‘target’. If a method can find the target, we say that it 
makes a correct decision; otherwise, we say that it makes a 
mistake. Precision, recall, and F1-measure are calculated on the 
basis of the result. For header, signature, quotation, program code, 
and paragraph ending detections, we conduct evaluation at line 
level. For the other tasks, we perform evaluation at word level. 

6.1.3 Baseline methods 
For header detection and paragraph ending detection, we used 
eClean [33] as baselines. There were default rules in eClean for 
header detection, and we made some extensions on the rules 
based on the features of our SVM models for header detection. 

For signature detection, we used as a baseline the most useful 
features in our SVM models for signature detection. For program 
code detection, it was hard to find a baseline. (There is no feature 
in eClean for signature and program code detection.) 

The rule for header detection is as follow. If a line begins with a 
pattern of “From:”, “Newsgroups:”, “To:”, “Sent:”, “Cc:”, 
“Subject:”, “sender:”, “news:”, “In article”, “In Message”, or 
“Re:”, contains a pattern of “---Original Message---” or “Fwd:”, 
or ends with a pattern of “wrote:”, “said:”, or “wrote in message”, 
then identify the line as a line in the header. 

The rule for signature detection is as follow. If a line is in the last 
five lines of the email, and begins with words of “Best Regards”, 
“Regard”, “Best Wishes”, “Thanks”, “Hope this help”, “Cheers”, 
“Sincerely”, “Yours”, or “Gratefully”, then identify the line and 
all the following lines as signature. 

The rule for paragraph ending detection is as follows. If a line 
does not end with a punctuation mark of “!” and “.”, and the first 
word of the next line is neither capitalized nor a number, then 
remove the line break between the two lines. 

6.2 Data Cleaning 
6.2.1 Experiment 
We evaluated the performances of our non-text filtering methods 
(header, signature, quotation and program code filtering) and our 
text normalization methods (paragraph normalization, sentence 
normalization, and word normalization) on the first 12 data sets 
and used the remaining two data sets for other experiment. 

We conducted the experiment in the following way. First, we 
conducted header and signature filtering. We also performed 
quotation filtering. After that, we conducted program code 
filtering. Then, we conducted paragraph normalization. Finally, 
we conducted sentence normalization and word normalization. In 
each step, we evaluated the data cleaning results in terms of 
precision, recall, and F1-measure. We also made comparisons 
with the baseline methods as described above.  



Table 3 shows the five-fold cross-validation results on the 12 data 
sets. In the table, Header, Signature, Quotation, Program, 
Paragraph, Sentence, and Word denote the cleaning steps 
described above. 

We see that our methods can achieve high performances in all the 
tasks. For Header, Signature, and Paragraph, our methods 
significantly outperform the baselines. We conducted sign tests on  

Table 3. Performances of non-text filtering and text 
normalization (%) 

Detection Task Precision Recall F1-
Measure

Our Method 98.97 96.57 97.76 
Header 

Baseline 99.81 60.55 75.37 

Our Method 91.35 88.47 89.88 
Signature 

Baseline 88.54 23.68 37.36 

Quotation 98.18 92.01 95.00 

Program 92.97 72.17 81.26 

Our Method 85.53 97.65 91.19 
Paragraph 

Baseline 63.55 98.13 77.15 

Sentence 94.93 93.91 94.42 

Word 93.23 89.51 91.33 

 

the results. The p values are much smaller than 0.01, indicating 
that the improvements are statistically significant. 

For Header, Signature, and Paragraph, both precision and recall of 
our methods are high. For Program, precision of our method is 
high, but recall needs further improvement.  

6.2.2 Discussions 
(1) High precision. Precisions of our methods range from 85.53% 
to 98.97%. It indicates that the use of features and rules described 
above is very effective for email data cleaning. 

 (2) Improvements over baseline methods. The rule-based 
header detection baseline suffers from low recall (only 60.55%), 
although its precision reaches 99.81%. This is due to a low 
coverage of the rules. Usually it is difficult to identify headers by 
using rules. For signature detection, recall of the baseline is also 
low (only 23.68%) due to a similar reason. For paragraph ending 
(conversely extra-line-break) detection, the baseline of using rules 
cannot work well either. This is because the task is hard to be 
performed with rules. 

(3) Error analysis. We conducted error analysis on the results of 
our method.  

For header detection, there were mainly three types of errors. 
More than 43% of the errors were from headers having specific 
patterns. About 40% of the errors occurred when there were extra 
line breaks in headers. Furthermore, there were about 5% errors 
from headers containing non-ASCII characters. 

For signature detection, about 38% of the errors were from 
signature start line identification and 62% of the errors were from 

end line identification. Sometimes, signatures are hard to detect. 
The characteristics of signatures can vary largely depending on 
authors. Signatures are sometimes similar to the main texts.  

In program code detection, recall is only 72.17%. This is because 
it is hard to find general patterns for the task.  

For paragraph detection, 61% of the errors were due to incorrect 
elimination of necessary line breaks and 39% of the errors were 
results of overlooking unnecessary line breaks. About 69% of the 
former errors happened before lists. This is because sometimes 
bullets in lists were missing. As for the latter errors, about 51.6% 
were due to errors of program code detection at the previous step.  

For sentence ending detection, about 33% of the errors were 
misclassification of periods in acronyms. 22% of the errors were 
failures in recovering missing periods. 

For word normalization, the errors fell into three categories. First, 
more than half of the errors were due to out of vocabulary words.  
Second, one fourth of the errors were due to ambiguities of words. 
For example, “Outlook 2003” vs. “a pleasant outlook”. We need 
implement a more sophisticated mechanism for dealing with the 
problem. Third, the erroneous results of sentence ending detection 
at the previous step also affected the results of word 
normalization.  

6.3 Term Extraction 
6.3.1 Experiment 
To evaluate the effectiveness of our method, we applied it to term 
extraction. Term extraction is a task in which base noun phrases 
are extracted from documents. The extracted terms can be used as 
features of documents and thus term extraction is a fundamental 
processing in text mining. 

We evaluated term extraction results before and after conducting 
email data cleaning. 

The two data sets BR and J2EE were used in the experiment. 
Terms in the two data sets were also manually labeled. In term 
extraction, we employed a tool based on technologies proposed in 
[30]. The tool first conducts part of speech tagging with a Hidden 
Markov Model. It then extracts base noun phrases as terms using 
a Finite State Machine. 

We carried out data cleaning in the same way as that in the 
experiment in Section 6.2. The SVM models were trained with the 
first 12 data sets. After each step of data cleaning, we performed 
term extraction. Table 4 shows the results of term extraction. In 
the table, Original Data denotes the results of extraction from the 
original noisy data and Header, Signature, Quotation, Program, 
and Paragraph denote the results of extraction after the cleaning 
steps described above. Base denotes the baseline method for 
cleaning and SVM denotes our proposed method. 

We see that significant improvements can be obtained on term 
extraction precision (+74.2% on BR and +42.4% on J2EE). At 
each cleaning step, we observe improvements on precision. The 
results indicate that our method of data cleaning works well and 
each of the steps in our method is needed.  

From the results we see that our method is significantly better 
than the baseline. We conducted sign tests on the results. The p 



values on the two data sets are much smaller than 0.01, indicating 
that the improvements are statistically significant.  

Table 5 shows a comparison between the term extraction results 
on manually cleaned data and those on the automatically cleaned 
data using our method. The former results, thus, are upper bounds 
for our method. We see that the results obtained with our method 
are close to the upper bounds. We again confirm the effectiveness 
of our data cleaning method. 

Table 4. Performances of term extraction on original data and 
cleaned data (%) 

Precision Recall F1-MeasureData 
Set 

Term 
Extraction Base SVM Base SVM Base SVM

Original 
Data 50.0 85.2 63.0 

+Header 
60.1 

+20.0 
64.1

+28.0
85.2 
+0.0 

85.2 
+0.0 

70.5
+11.8

73.1
+16.0

+Signature 
61.9 

+23.7 
79.8

+59.5
84.8 
-0.4 

84.3 
-1.0 

71.6
+13.6

82.0
+30.1

+Quotation 
61.9 

+23.7 
79.8

+59.5
84.8 
-0.4 

84.3 
-1.0 

71.6
+13.6

82.0
+30.1

+Program 
61.9 

+23.7 
79.8

+59.5
84.8 
-0.4 

84.3 
-1.0 

71.6
+13.6

82.0
+30.1

BR 

+Paragraph 
67.5 

+34.8 
87.2

+74.2
91.3 
+7.2 

90.6 
+6.4 

77.6
+23.1

88.9
+41.0

Original 
Data 38.9 68.7 49.7 

+Header 
42.6 
+9.5 

43.3
+11.4

68.3 
-0.6 

68.3 
-0.6 

52.5
+5.6

53.0
+6.7

+Quotation  
48.0 

+23.3 
48.6

+25.0
68.3 
-0.6 

68.3 
-0.6 

56.4
+13.4

56.8
+14.4

+Signature  
48.6 

+25.0 
51.2

+32.9
67.9 
-1.2 

67.7 
-1.5 

56.7
+14.1

58.6
+18.0

+Program 
Code 

48.6 
+25.0 

52.9
+36.0

67.9 
-1.2 

67.6 
-1.6 

56.7
+14.1

59.3
+19.5

J2EE 

+Paragraph 
50.3 

+29.4 
55.4

+42.4
70.2 
+2.2 

70.3 
+2.3 

58.6
+18.0

62.0
+24.7

 

Table 5. Performances of term extraction on clean data and 
data cleaned by our method (%) 

Data 
set 

Term 
Extraction Precision Recall F1-

Measure

Clean 88.71 91.87 90.26 
BR 

Our Method 87.16 90.63 88.86 

Clean 61.68 71.05 66.03 
J2EE 

Our Method 55.40 70.27 61.96 

6.3.2 Discussions 
(1) The improvements on precision are significant (ranging from 
+42.4% to +74.2%). The results are consistent with those 
obtained in the experiment in Section 6.2. 

(2) Non-text filtering (header, signature, quotation and program 
code detection) makes major contributions to the improvements. 
The improvements on precision are +59.5% and +36.0%. 

(3) Non-text filtering induces small drops in recall sometimes. 
This is because filtering has certain errors and can mistakenly 
discard some text data. 

(4) Paragraph normalization (paragraph ending detection) is 
useful. It can concatenate broken lines and makes possible the 
extraction of noun phrases that lie across two broken lines. As a 
result, it improves not only precision (+14.7% and +6.4%), but 
also recall (+6.4% and +2.3%). 

(5) Term extraction after cleaning with our method outperforms 
that with the baseline methods. On BR, the improvement by our 
methods is +41.0% and the improvement by the baseline is only 
+23.1%. On J2EE, the improvement by our methods is 24.7% and 
that by the baseline is 18.0%. 

(6) It is difficult to accurately extract terms from J2EE, even after 
manual cleaning. This is because the text contains many out-of-
vocabulary words and thus it is hard to extract terms from the data. 

7. CONCLUSION 
In this paper, we have investigated the problem of email data 
cleaning. We have defined the problem as that of non-text 
filtering and text normalization. We have proposed a cascaded 
approach to the task. Using Support Vector Machines, we have 
been able to make an implementation of the approach. 
Experimental results show that our approach can significantly 
outperform baseline methods for email data cleaning. When 
applying it to term extraction from emails, we observe a 
significant improvement on extraction accuracy. 

As future work, we plan to make further improvement on the 
accuracy of each step. We also want to apply the cleaning method 
to other text mining applications. 
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