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Abstract. With the advent of the Semantic Web, there is a great need to 
upgrade existing web content to semantic web content. This can be 
accomplished through semantic annotations. Unfortunately, manual annotation 
is tedious, time consuming and error-prone. In this paper, we propose a tool, 
called iASA, that learns to automatically annotate web documents according to 
an ontology. iASA is based on the combination of information extraction 
(specifically, the Similarity-based Rule Learner—SRL) and machine learning 
techniques. Using linguistic knowledge and optimal dynamic window size, SRL 
produces annotation rules of better quality than comparable semantic annotation 
systems. Similarity-based learning efficiently reduces the search space by 
avoiding pseudo rule generalization. In the annotation phase, iASA exploits 
ontology knowledge to refine the annotation it proposes. Moreover, our 
annotation algorithm exploits machine learning methods to correctly select 
instances and to predict missing instances. Finally, iASA provides an 
explanation component that explains the nature of the learner and annotator to 
the user. Explanations can greatly help users understand the rule induction and 
annotation process, so that they can focus on correcting rules and annotations 
quickly. Experimental results show that iASA can reach high accuracy quickly. 

1. Introduction 

The Semantic Web is an extension of the current web in which information is given 
well-defined meaning, better enabling computers and people to work in cooperation 
[4, 5]. In recent years, semantic web has made significant progress, in particular 
through the development of infrastructure such as: ontology language like RDF and 
OWL, ontology editor like Protégé, and reasoning engine like Racer. 

In order to provide semantic web with ‘understandable’ data, it is necessary to 
conduct annotation for at least two kinds of metadata. Specifically, commonly used 
ontologies for semantic web need to be created; and existing web contents need to be 
upgraded to semantic web content, i.e. semantic annotation. The later issue is exactly 
the problem addressed in this paper. 

Semantic annotation aims to markup the web pages by an ontology, which defines 
the meaning of contents in the pages. Figure 1 shows an example of semantic 
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annotation. The inputs of semantic annotation are web document and ontology, the 
output is the annotated result. In this example, the text “4:00 PM” and “6:00 PM” are 
annotated as “stime” and “etime” respectively. 

Ontology

Speaker

Seminar

hasSpeaker

stime

etime

location

Start_time

end_time

Place_of_seminar

Semantic 
annotation

Document

    Dates: 10-Apr-92
    Time: 4:00 PM- 6:00 PM
    PostedBy: F. Ted Tschang on 06-Apr-
92 at 23:10

<rdf:RDF>
…...  
<seminar rdf:ID="Soup_Substance_Lecture">
…...
  <stime rdf:datatype="# dateTime">4:00 PM 
</stime>     
  <etime rdf:datatype="# dateTime">6:00 PM 
</etime>    
  </seminar >
…...
</rdf:RDF>

input

output

 
Fig. 1. An example of semantic annotation 

Many existing tools have semantic annotation features. However, most of them 
support only manual annotation [26, 27]. Manual annotation is tedious, time 
consuming and error-prone. More recent efforts make use of existing wrapping 
method (e.g. Amilcare [9] and Rapier [7]) and disambiguation technology to automate 
this process [1, 17, 24, 28, 42, 49]. In information extraction, many models are 
proposed, such as: Hidden Markov Model [21, 44], Maximum Entropy Model [3, 8], 
Support Vector Machines [13], and Conditional Random Field [32]. See section 8.4 
for details. The methodologies proposed in the previous work can be used in semantic 
annotation. However, they seem not sufficient for the task. 

In this paper, we try to address semantic annotation in a new approach. In our 
approach, the annotation mainly consists of two stages: learning and annotation. 

In learning, we generalize the learned rules. For each rule, we define the extracted 
text and its context text as features and assign a label. The label represents which type 
of metadata the extracted text should be annotated. We use the labeled documents to 
generalize the learned rule set in advance. 

In annotation, we identify, extract, and annotate the string in given documents 
using learned rules.  

We propose a method called Similarity based Rule Learner (SRL) to generate the 
rules. We utilize an empirical method to select the optimal dynamic window size for 
the rule. We make use of machine learning techniques to improve the annotation 
results by selecting the correct annotated instances and by predicting the missing 
annotated instances. Finally, we provide a mechanism for explaining the nature of the 
rule learner and annotator. The explanation can be very useful in system analysis both 
for development and usage scenario.  

We have developed a tool based on the approach that is call iASA. iASA is 
targeting structured web data. In iASA, we learn the annotation rules by SRL, and 
apply the learned rules to un-annotated documents. We also make use of the 
explanation to help users refine the learned rules or to correct the annotation results. 
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We conducted the experiments on two data sets, and performed the comparison 
with existing methods. The experimental results indicate that the proposed method 
performs well for semantic annotation. We applied the method in a practical project: 
TIPSI. In TIPSI, we are aimed to extract the semi-structured information from 
company annual reports for Stock Exchange. Both of the results of the analysis on a 
user feedback and the result of an analysis on annotation results show that the features 
in iASA are helpful. We are trying to apply the tool to Contact Search on internet.  

The rest of the paper is organized as follows. In section 2, we give an overview of 
the architecture of iASA and introduce the terminology and notations used throughout 
the paper. In section 3, we describe our rule learning method: similarity based Rule 
Learner (SRL). In section 4, we introduce the annotator. In section 5, we propose to 
improve the annotation results by using machine learning methods and in section 6, 
we provide a mechanism for explaining the nature of the rule learner and annotator. 
Section 7 gives our experimental results. Finally, before making concluding marks, 
we give the survey of related works. 

2. iASA: An Automated Semantic Annotator 

We perform semantic annotation in four main passes of procedures: learning, 
annotation, refinement, and the explanation. These procedures correspond to the 
following four components: SRL, Annotator, Annotation Improvement and 
Explanation (as shown in figure 2). 

SRL
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Select window size
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Rule Pruning
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rule set

Manual validation

Annotated 
documents

(Training corpus)
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window size
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Learned 
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Un-annotated 
documents

Annotation by learned 
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Prune using domain 
knowledge

Annotated 
documents

Domain 
Ontology

Explanation

Annotation Improvement

Instances selection

Missing instance 
completion

 
(a) Rule Learning (b) Annotator 

Fig. 2. The architecture of iASA 

In Rule Learning, the input is the annotated documents. We preprocess the 
annotated documents and construct an initial rule sets. We then use an empirical 
method to find the optimal window size for each concept’s/property’s rules. Next, we 
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employ the similarity based rule induction on the initial rule set and obtain a set of 
annotation rules. After the pruning procedure, the output is a learned rule set. On the 
learned rule set, explanation component supports a user interaction, which helps the 
user to refine the learned rule sets. 

In Annotation, the input is un-annotated documents. We apply the learned rules to 
the un-annotated documents and annotate them according to an ontology. The 
ontology is defined to represent the annotated or un-annotated documents. After that, 
we try to refine the annotation results by using machine learning techniques. The 
output is the annotated documents (an example of annotated document is shown in 
figure 9). In the procedure, the explanation component supports a user interaction to 
help the user understand the annotation and the refinement process. 

In the rest of this section, we will present the necessary terminologies and 
definitions. 

2.1. Terminology and Notation 

The following terminologies are used throughout this paper. 
For short, we use entity to denote concept and property in ontology hereafter. Let 

E={ei|i∈[1,m]} be a set of entities, where m is the number of entities. In annotated 
documents, the texts that are annotated as entity ei are called the instances of ei. An 
instance’s content includes one or more words/phrases. Let i be an instance and let I 
denote a set of instances. Notation },,,,,,{, 2211 ><><><>=<

ii ininiiiiii ciciciCI  
denotes a set of instance-occurring time pairs, in which Ii is the set of instances of ei 
and ii1 is one possible value of the instance and ci1 is the corresponding occurring time 
of the value in the instance set Ii. ni is the number of entity in Ii. 

2.1.1. Token Definition 
1. Token 

In both Rule Learning and Annotator, the annotated and un-annotated documents 
are split into a sequence of tokens {t0, t1, …, tn}. Each token can be a word (A word is 
a set of contiguous upper or lowercase letters), a gazetteer entry (e.g. person’s first 
name, currency unit, location, etc) or a name entity (e.g. organization, person’ name 
and date, etc).  

Each token is associated with linguistic attributes. Specifically, linguistic attributes 
of word include: “kind”, “orth”, “type”, “pos”, and “name”; linguistic attributes of 
gazetteer entry (lookup) include: “name” and “type”; and linguistic attribute of name 
entity is its “name”. Table 1 shows the details of the three types of tokens and their 
attributes. The columns respectively represent token, its attributes, description of the 
attribute, example of the attribute’s value, and description of the example value. 
2. Token similarity 

According to the attributes of tokens, we define the similarity of two tokens as: 
Token_S( it , '

jt )=∑
k

jkikk aamatchw ),(  

where aik and ajk respectively represent the k-th attribute vaule of token ti and ti
’. 

Function match() is a zero-one function, which ends up with 1 when aik equals to ajk, 
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0 otherwise. wk is the weight of the k-th attribute. (In experiments, the weight of 
attributes “name”, “pos”, “kind”, “type”, and “orth” for word are tentatively set as 
0.45, 0.25, 0.1, 0.1, and 0.1, respectively; the weight of attributes “name” and “type” 
for gazetteer are tentatively set as 0.7 and 0.3.) 

Table 1. Details of the three types of tokens and their attributes 

Token Attribute Comment Examples Value Description 
Name Original string  “Time”  

“OneHyphen” Indicates the word is a 
simple hyphen (“-” or “_”) 

“AllCap” Indicates all letters in the 
word are capitalized 
(“CHINA”) 

Orth Orthography of the 
word 

“Capitalized” Indicates the first letter is 
capitalized (“Time”) 

“punctuation” Indicates the word is a 
punctuation (“,” or “.”) 

“word” Normal word (“Time”) Kind Kind of the word 
“number” Indicates the word is 

numeric (“486”) 
“NN” Singular common noun 

with word initial capital POS Part-Of-Speech of the 
word 

“CD” Cardinal number (one, 100) 
“Spacetoken” Indicates the word is a 

enter or space 

Word 

Type Indicate whether word 
is a space token or not “Token” Other words except whose 

type is “spacetoken” 
person’s first 
name 

E.g. “Jeanne” 

Organization E.g. “Motorola” Name Major type of the 
gazetteer entry 

Location E.g. “Oregon” 
Female Minor type of person’s first 

name 
company Minor type of organization 

(“Motorola”) 

Lookup 
(gazetteer 

entry) 
Type Minor type of the 

gazetteer entry 
Province Minor type of location 

(“Oregon”) 
Organization Includes company or 

governmental organization 
(“Oracle”, “Intel”) 

person’s name E.g. “Jeanne Heembrock” 

Name 
entity Name Recognized over the 

original words. 

date E.g. “17 Nov 1996” 
 
3. Pattern definition 

A pattern is a sequence of tokens with length n (n could be zero). Formally, a 
pattern can be written as: 
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},,,{ 10 ntttpattern =  
where ti is the i-th token in the pattern. 

As the example in figure 1, the string “4:00 PM” is annotated as the property stime. 
It can be viewed as a body pattern (defined in the following section) containing one 
token: name entity “date” or a body pattern containing four word tokens: “4”, “:”, 
“00”, and “PM”).  

We also define similarity between the two patterns. See section 3.3 for details. 

2.1.2 Rule definition 
Semantic annotator needs abstract patterns that are defined based on all the features 
potentially helpful for the ontology annotation. These abstract patterns are defined as 
rules. In iASA, the rule is represented in XML. 

Each rule has an entity name and consists of three parts: 1) left pattern: it is used to 
match the text that immediately precedes the instance (w tokens to the left); 2) body 
pattern: it corresponds to the instance of an entity (tokens contained); 3) right pattern: 
it is used to match the text that immediately follows the instance (w tokens to the 
right).  

Figure 3 shows an example of a rule of entity etime. In the rule, Left, body and 
right pattern are denoted by “leftpattern”, “bodypattern” and “rightpattern”, 
respectively, and the token in these patterns is denoted by “tag”. The attribute 
“indicator” of “tag” denotes the type of the token. The type can be name entity, 
gazetteer entry (lookup), or word. Attributes “kind”, “name”, “orth”, “type”, and 
“pos” represent the attributes of corresponding token (as shown in table 1). We use 
“<tag indicator=“unknown”/>” to denote a placeholder. 

<rule name="etime" no="12">
  <leftpattern>
    <tag indicator="word" kind="word" name="Time" orth="O: Capitalized" type="token" /> 
    <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" /> 
    <tag indicator="unknown" /> 
    <tag indicator="word" kind="punctuation" name="-" orth="O: OneHyphen" pos=":" type="token" /> 
  </leftpattern>
  <bodypattern>
    <tag indicator="nameentity" name="date" /> 
  </bodypattern>
  <rightpattern>
    <tag indicator="word" name="" type="spacetoken" /> 
    <tag indicator="word" kind="word" orth="O: Capitalized" type="token" /> 
    <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" /> 
  </rightpattern>
</rule>

 
Fig. 3. An example of rule 

In order to learn the target rules, the user typically needs to provide a set of 
annotated documents (also called training documents). In the training documents, we 
label a set of training instances in advance. Each instance is enclosed by a start tag 
(e.g. <stime rdf:datatype="http://www.w3.org/2001/XMLSchema#string">) and an 
end tag (e.g. </stime>). Context of annotated instance (viz. leftpattern, bodypattern 
and rightpattern) is constructed according to the start and end tags. Specifically, the 
text that enclosed by a pair of tags is viewed as an instance and is transformed into a 
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bodypattern; w tokens that precedes the instance are transformed into leftpattern; and 
w tokens that follows the instance are transformed into rightpattern. 

3. SRL—Similarity based Rule Learner 

SRL has four main modules: preprocessor, rule set initialization, rule induction, and 
rule set pruning. The input is annotated documents. Preprocessor exploits Natural 
Language Processing (NLP) techniques to process the documents. Rule set 
initialization takes the preprocessed corpus as input and generates the initial rule set 
using dynamic window size based context. Rule induction performs rule 
generalization in an iterative mode. In each iteration, we select pairs of rules with 
high similarity in the initial rule set according to the rule similarity (see section 3.3 for 
definition of rule similarity), generalize new rules, evaluate each new rule, and then 
insert the new rule into the learned rule set if it survives the pruning phrase. Finally, 
SRL outputs the learned rule set. 

3.1. Preprocessor 

In preprocessing, we use NLP techniques to process the document, which has been 
proved to be useful for machine learning and information processing [7, 9]. NLP 
associates additional knowledge to each word in the document. 

We make use of GATE as the NLP toolkit [14]. GATE is a general toolkit for text 
processing. It integrates many tools for NLP, including morphological analyzer, a 
POS tagger, gazetteer lookup, and named entity recognition (recognition of person 
name, dates, number and organization names, etc). For example, in the document 
snippet: “…; Patrick Stroh, assistant professor, SDS…”, “Patrick Stroh” is annotated 
as an instance of entity speaker. After processing by GATE, each word is associated 
with linguistic knowledge: part of speech (POS), token kind (Kind), lookup, and name 
entity, etc. Table 2 gives an example about how GATE provides the linguistic 
knowledge. 

Table 2. An example of preprocessed result with NLP knowledge 

Instance with NLP Knowledge 
Word POS Kind Lookup Name Entity

Annotated 
as 

; : Punctuation    
Patrick NNP Word Person’s first name 
Stroh NNP Word  

Person Speaker 

, , Punctuation    
assistant NN Word Jobtitle   
professor NN Word    

, , Punctuation    
SDS NNP Word    
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The linguistic knowledge seems very useful in rule induction. For example, tags in 

the rule can be relaxed by substituting constraints on words by constraints on some 
parts of the linguistic knowledge. In this way, we can generalize the rules by name 
entity (e.g. “person’s first name (male)”) or POS (e.g. “NNP”) instead of only flat 
words. 

3.2. Rule Set Initialization 

For rule induction, we first need to construct the initial rule set that contains the 
mostly specified rules. In annotated documents, each instance is enclosed by a start 
tag and an end tag. We transform the instance and its context in the preprocessed 
document into an initial rule. Existing methods usually define a window of fixed size 
(size=w) as the instance context and build the initial rule by using w tokens to the left 
and w tokens to the right for a given annotated instance. 

In the rule set initialization, we exploit the linguistic attributes, and we also use the 
dynamic window size by an empirical method. 

1. Linguistic knowledge based context 
Suppose w is “3”, for the annotated instance of stime in figure 1, table 3 gives a 

comparison of linguistic knowledge based context and word based context. The 
second column represents the linguistic knowledge based context and the third 
column represents the flat word based context. 

Table 3. Linguistic knowledge based context vs. word based context 

Initial Rule Linguistic Context Words’  Context Semantic Entity 
Date (name entity) “10-Apr-92”  

“Time” (word) “Time”  Left Pattern 
“:” (punctuation) “:”  

Body Pattern Date (name entity) 4:00 PM stime 
“-” (word) “-” (word)  

Date (name entity) “6:00 PM” (word)  Right Pattern 
Return Return  

In table 3, we see that by the comparison of the word based context, the linguistic 
knowledge based context substitutes a name entity ‘Date’ for both ‘10-Apr-92’ and 
‘6:00 PM’. The linguistic knowledge based context seems more reasonable, because 
the rules derived from it intuitively can be applied to broader cases. 

2. Optimal dynamic window size based context 
Analysis on our preliminary experimental results shows that different entities 

prefer to contexts with different window sizes. For example, in the task of annotating 
CMU Seminar announcements, with the increase of window size (tested from 2 to 8), 
the performance (evaluated by F-measure) for entity etime becomes better; however 
for entity stime, the performance becomes worse.  

We perform the window size selection for each entity by using cross-validation, a 
typical approach for experimental selection [43]. Cross validation is a commonly used 
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technique in machine learning to prevent bias. The main idea is based on the 
following assumption: if the rules learned from a subset of the training data produce 
accurate result, it is also likely that it will produce highly accurate predictions when 
trained on the entire dataset. 

In this method, to determine w for each entity, we evaluate the performance on 
training corpus with contexts of different window sizes using cross-validation. 
Specifically, let T be the training corpus. The examples in T are first randomly 
divided into d equal parts T1, T2, …, Td (we use d = 10 in our experiments). Next, for 
each part Ti, i∈[1,d], we try to learn the rules from the other (d-1) parts, then apply 
the learned rules to the examples in Ti. Finally, we select the window size that 
performs best for each entity. Section 7 will show the comparison of dynamic window 
size and fixed one. 

3.3. Rule Induction 

The input of rule induction is an initial rule set, rule induction aims to learn rules over 
the initial rule set and to output a learned rule set. 

Within rule induction, the following problems should be considered:  
 Tokens in body patterns may be very sparse, which make it difficult for 

generalization. For example: instances of address: “Baker Hall 237B”, “room 
1001”, “WeH 5403”, etc. 

 Sometimes token in the rule may be only a placeholder instead of a meaning 
ones, e.g. in examples: “the speaker is <speaker>”, “the speaker: <speaker>”, 
and “the speaker, <speaker>”. A placeholder can be defined so as to match “is”, 
“:” and “,”. 

 Each learned rule should be scored. The higher the score is, the higher 
probability that the rule is accepted in the final rule set. 

In regular expression language, “*” usually is exploited to represent any group of 
characters and “?” usually is exploited to represent any character. In our rule 
definition, we extend this idea slightly and make use of “*” and “?” to respectively 
represent any group of tokens and any token. In this way, for the first problem, we use 
“*” to represent the body pattern and for the second problem, we use “?” to represent 
the placeholder. 

Unfortunately, most of the existing rule induction methods do not have the feature 
of generalizing the wildcard “*” and “?”. In this section, we introduce how SRL 
solves these two problems. Moreover, we describe the evaluation metric that is used 
to score each learned rule. 

1. Rule similarity 
Rule similarity is the basic idea in SRL. SRL runs in an iterative mode. In each 

iteration, we always try to select the most similar pair of rules for generalization. 
Califf et al adopt a random strategy for the rule selection [7]. The similarity based 
selection method seems more reasonable. There are two reasons for this: similarity 
based method is more efficient than random method by avoiding the pseudo 
generalization and the learned rules by the random method may be inconsistent. 

We then need to define the similarity of a pair of rules. Typically, a rule can have 
three patterns (see section 2.1.2 for the definition). We calculate the similarities of the 
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three corresponding patterns and sum them into an aggregate one. But soon, we found 
that there are mainly two kinds of rules: rules with sparse body patterns and rules with 
non-sparse body patterns. Examples of the former include rules of entity speaker; 
examples of the later include rules of entity platform or entity database.  

Our proposal is that similarity of rules with sparse body patterns are calculated by 
the similarities of corresponding left patterns and right patterns, and similarity of rules 
with non-sparse body patterns includes only the similarity of body patterns. We, 
therefore, define rule similarity as: 

⎩
⎨
⎧

≤
>+

=
µ

µ
)(,),(

)(,),(),(
),(

21

2121
21 bpsparsebpbpsim

bpsparserprpsimlplpsim
rrsim  

where r1 and r2 are two rules. sim(lp1, lp2), sim(bp1, bp2), and sim(rp1, rp2) 
respectively represent the similarities of corresponding left patterns, right patterns, 
and body patterns in rules r1 and r2. sparse(bp) is a measurement indicating whether 
the body pattern is sparse or not. It is calculated by count(value)/count(instance). 
count(value) is the number of instance values for the given entity, and count(instance) 
is the total number of instances (e.g. “4:00 PM” and “4:00 PM” are two instances of 
etime with only one value). Parameter µ is a threshold (we tentatively set it as 0.5).  

2. Pattern similarity 
We calculate the similarity of patterns by a recursive procedure called Multiple 

Layer Recursive Matching (MLRM) algorithm. This idea is derived from [46].  
In MLRM algorithm, the input is two patterns: pattern1 and pattern2. Output is the 

similarity score of the two patterns. 
The MLRM algorithm is described in Figure 4. 

Input: pattern1[t0,t1,…,tn]
         pattern2[t0’,t1’,…,tm’];
Output: Seq_S(pattern1,pattern2); //pattern similarity
MLRM(pattern1[t0,t1,…,tn], pattern2[t0’,t1’,…,tm’])
{
    if(either pattern1 or pattern2 is empty or no more higher layer)
        return 0;
    A=0;B=0;
    while(A<=n and B<=m)
    {
        for( i from A to n )
          for( j from B to m )
            select the most similar token pair : argmax(Token_S ( ti, tj’));
            {
                 Seq_S(pattern1,pattern2) += Token_S ( ti, tj’) * weightk;
                 Seq_S(pattern1,pattern2) += MLRM(pattern1[tA,…,ti-1], 
                                                      pattern2[tB’,…,tj-1’]);
                 A=i+1; B=j+1; break to while;
            }
    }
    Seq_S(pattern1, pattern2) += MLRM(pattern1[tA,…,tn], 
                                                      pattern2[tB’,…,tm’]);
    return Seq_S(pattern1, pattern2);
}

 
Fig. 4. The MLRM algorithm 

MLRM uses the function MLRM() for estimating the similarity between two 
patterns. Token_S(ti, ti

’) calculates the similarity between token ti and ti
’ using their 
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linguistic information (token similarity is defined in section 2). Seq_S is the similarity 
of the two patterns by aggregating the similarities of individual pairs of tokens. 
MLRM recursively computes similarity between two patterns at multiple layers with 
different similarity weights (weightk). MLRM attempts to find a pair of the most 
similar tokens from pattern1 and pattern2. In each layer, the pair of tokens essentially 
divides each pattern into two sub-patterns. MLRM continues the process until one of 
the sub-patterns becomes empty. The weight at each layer is currently empirically 
assigned to reflect the relative importance of the token similarity in that layer. We 
tentatively set the weights w1, w2, w3, and w4 as 10, 9, 8 and 7 respectively.  

Figure 5 illustrates MLRM with an example. At step 0, a pair of the most similar 
tokens is found (connected by a dark line) and divides each pattern into two sub-
patterns. Each pair of sub-patterns is recursively processed by MLRM as indicated in 
step 1. In this step, two additional similarity pairs are found and the two patterns are 
further divided into four sub-patterns to be processed recursively at step 2. MLRM 
stops when no more nodes are left in the sub-patterns. 

Step 0

Step 1

Step 2

t1 t2 t3 t4 t5

t1' t2' t3' t4' t5' t6'

t1' t2' t3' t4' t5' t6'

pattern1

pattern2

pattern1

pattern2

pattern1

pattern2

 
Fig. 5. An example of recursive matching in MLRM 

3. Rule generalization 
The task of rule generalization is to induce new rules from the pair of similar rules. 

The new rules should cover the pair of rules.  
In rule generalization, we take a strategy of divide-and-conquer. For a pair of 

similar rules, our method is to generalize the three pairs of patterns (i.e. left patterns, 
body patterns, and right patterns), and then combine the generalized patterns into a 
new rule. For each pair of patterns, the generalization is performed by starting from 
constrains of all linguistic information on tokens to some relaxation. The algorithm of 
rule generalization is shown in figure 6. 

In rule generalization, we first select the most similar rules by getSimilarRules(). 
The number of selected rules is not necessary two. Hence the algorithm calls function 
getRealPairs() to generate pairs of rules. Then, for each pair of rules, the algorithm 
uses generalizePatterns() to generalize left pattern, body pattern, and right pattern 
respectively. generalizePatterns() returns a collection of possible induced patterns for 
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the two input patterns (note: for two patterns, there might induce multiple patterns 
with different linguistic information). Function getAllPossibleRules() returns all 
possible rules by combining the three collections of patterns. For each rule, algorithm 
evaluates it both on the initial rule set and on the original training corpus, and then 
adds it to the learned rule set if its score exceeds the minimal rule score (a threshold 
predefined). (For the detail of rule evaluation, please refer to the following section.) 

 
RuleInduction(RuleSet ruleset)
{
    rssimilar=getSimilarRules(ruleset);
    collect_RP=getRealPairs(rssimilar);
    foreach rulepair in collect_RP
    {
        rule1 and rule2 in rulepair
        col_leftpat=generalizePatterns(rule1.leftpattern, rule2.leftpattern);
        col_bodypat=generalizePatterns(rule1.bodypattern, rule2.bodypattern);
        col_rightpat=generalizePatterns(rule1.rightpattern, rule2.rightypattern);
        col_rules=getAllPossibleRules(col_leftpat,col_bodypat,col_rightpat);
        foreach rule in col_rules
        {
            score=EvaluateRule(rule);
            if( score > minRuleScore)
                col_learnedrules.add(rule);
        }
    }
    return col_learnedrules;
}

generalizePatterns ( Pattern pattern1, Pattern pattern2)
{
    if( pattern1==null or pattern2==null)
        return null;
    relaxlevel = 0;
    while( true )
    {        
        collectpair = getMatchedTagPair(pattern1,pattern2, relaxlevel);
        newpattern = getPattern(pattern1, pattern2, collectpair );        
        pattern_collection.add( newpattern );
        relaxlevel++; 
        if( relaxlevel>maxrelax )
            break;
    }
    return pattern_collection;  
}

 
(a) Generalization of rules (b) Generalization of patterns 

Fig. 6. The algorithm of rules generalization 

In pattern generalization, generalizePatterns() searches for the matchable pairs of 
tokens (by function getMatchedTagPair()). The search starts from full constraints 
(relaxlevel=0) to maximum relaxation on linguistic information (relaxlevel= 
maxrelax-1). In the case of full constraints, two tokens are considered to be matched 
only when all of their attributes are equal, including “indicator”, “kind”, “name”, 
“orth”, “pos”, and “type” (see table 1 for details). With the increase of relaxlevel, the 
matcher relaxes the condition by the order of “name”, “pos”, “kind”. By relaxing the 
condition, we mean ignoring the corresponding attributes in the matching process. 
Parameter maxrelax is the stop condition to control the relaxation progress. The 
discovered matchable token pairs are used as the initial points to generalize the 
pattern. The function getPattern() returns the generalized results of the two patterns 
based on their matchable token pairs. Figure 7 gives an example to illustrate the 
strategy used in getPattern(). 

In this example, t2-t2’, t3-t4’ and t5-t5’ (linked by dark line) are three matchable 
token pairs returned by function getMatchedTagPair(). The three pairs of tokens 
divide the two patterns into four token groups: (t1-t1’), (t3’), (t4) and (t6’). For each 
token group, tokens in the two patterns are induced one by one from left to right for 
body pattern and right pattern or from right to left for left pattern. As for uneven 
length, such as (t3’), (t4) and (t6’), the algorithm adds wildcard “?” to the remainder 
tokens. Symbol C(t1,t1’) means the induction of two tokens: t1 and t1’. “(t3’)?” 
indicates that the token t3’ can either occur or absent in the target cases. 

RuleInduction() is run iteratively until the stop condition is met. The stop condition 
is that no more general rules can be induced. Finally, rule generalization outputs the 
learned rule set. 
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t1 t2 t3 t4 t5

t1' t2' t3' t4' t5' t6'

(t3')? C(t4,t4')C(t1,t1') C(t2,t2') (t4)? C(t5,t5') (t6)?

Pattern 1

Pattern 2

Generalized 
pattern

 
Fig. 7. An example to describe how two patterns are generalized in getPattern() 

4. Rule evaluation 
Each rule is scored by the function Evaluation() (shown in figure 6(a)). The score 

is the combination of two factors: score on the initial rule set and score on the original 
training corpus. Both scores are evaluated by F-measure. F-measure is defined as: 

recallprecision
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1

+

+
=

β
β  

where precision is the percentage of correctly annotated instances in the annotated 
instances; recall is the percentage of correctly annotated instances in the correct 
instances. Parameter β  indicates the degree of preference on precision/recall. 

We call the score on the initial rule set as rulescore. We take the annotated 
instances of current entity as positive examples and instances of the other entity as 
negative ones. Score of each rule is evaluated by F-measure on the initial rule set. The 
metric rulescore should concern more precision than recall, because the generalized 
rule may only cover the two source rules after the first iteration, which leads to a very 
low recall. On the other hand, low precision indicates that the new rule covers 
negative examples. Therefore we set the weight β  as 16. 

We call the score on original training corpus as realscore. We apply the learned 
rule on the original training corpus (i.e. take training corpus set as test data), which 
can avoid over-learned rules to a certain extent. The over-learned rules may produce 
good result on the initial rule set, but they can also import noise. Such noise may lead 
to low precision. For calculating realscore, we set the parameter β  as 1. 

Finally, by multiplying rulescore by realscore, we obtain the final score of the new 
rule. 

3.4. Rule Set Pruning 

In rule set pruning, we aim to remove the redundant and unreliable rules in the 
learned rule set. 

To remove redundant rules, it is necessary to define what a redundant rule is. We 
give the definition of redundant rule.  
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Redundant Rule: If a rule is covered by other rule(s) in the rule set, then this rule 
is redundant. In other words, if all instances that annotated by this rule can also be 
annotated by other rule(s), then this rule is a redundant rule. 

In terms of the definition, we developed methods to judge whether a rule is 
redundant. Our methods include two steps: (1) judging whether a rule is covered by 
another rule; (2) judging whether a rule is covered by other rules. We exploit the 
annotated instances to judge whether a rule is covered by other rules. 

Whether or not a rule is covered by another rule is based on the observation: if 
every pattern of a rule is more general than the corresponding pattern of another rule, 
we say that the latter rule is covered by the former rule.  

Figure 8 gives an example. In the example, pattern 2 is covered by pattern 1 
because token (<tag type=“”>) of pattern 1 is more general than token (<tag 
type=“token”>). <tag type=“”> denotes a token that can be any type. 

Pattern 1
<pattern>
  <tag type="" >
</pattern>

Pattern 2
<pattern>
  <tag type="word" >
</pattern>

 
Fig. 8. An example of two patterns 

We exploit the annotated instances to determine whether a rule is covered by other 
rules: if instances annotated by a rule can be also annotated by some other rules, we 
say that the rule is a redundant rule. 

To remove unreliable rules, we make use of ontology knowledge. We use entity 
type to infer whether the rule is reliable or not. For example, in the seminar ontology 
the property stime is defined as: 

<owl:DatatypeProperty rdf:ID="stime"> 
  <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime" />  
  <rdfs:domain rdf:resource="# seminar " />  
</owl:DatatypeProperty> 
Then we use the date type dateTime to judge whether the body pattern of a rule 

conforms to it or not. After pruning, SRL outputs the final learned rule set. 

4. Annotator 

Annotator takes the un-annotated documents as input, preprocesses them by NLP 
which is the same as that in SRL, applies the learned rules on them, and annotates the 
documents according to an ontology. 

An example of output by the annotator is shown in figure 9. The format conforms 
to the ontology standard language OWL DL [15], which can facilitate further 
reasoning process. 

Using iASA in the experiments, we have found that domain knowledge can greatly 
improve the accuracy of annotation. Domain knowledge can be used to evaluate 
annotations and prune wrong annotations, and it is also helpful for directing the 
search process. In semantic annotation, domain knowledge is usually represented by 
ontology. We then use the restrictions in the ontology for improving the annotation. 



iASA: Learning to Annotate the Semantic Web       

<rdf:RDF>
  <seminar rdf:ID="Soup_Substance_Lecture">
    <location rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Wherrett Room, Skibo</location> 
    <stime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">12:00 PM</stime>     
    <etime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">1:00 PM</etime> 
    <hasSpeaker  rdf:resource="#Erik_Devereux" /> 
         <speaker rdf:ID="Erik_Devereux">
            <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Erik Devereux</name> 
        </speaker >
    </hasSpeaker >
    <hasSpeaker >
        <speaker rdf:ID="Patrick_Stroh">
            <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Patrick Stroh</name> 
        </speaker >
    </hasSpeaker >
    <hasSpeaker rdf:resource="#Richard_Smith" /> 
        <speaker rdf:ID="Richard_Smith">
            <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Richard Smith</name> 
        </speaker >
    </hasSpeaker >
  </seminar >
</rdf:RDF>

 
Fig. 9. An example output of annotator 

Domain restriction: The constraints that are defined in the ontology include “date 
type”, “cardinality”, “minCardinality”, etc. Table 4 shows examples of domain 
restrictions currently used in iASA. 

Table 4. Examples of domain restrictions that are exploited to improve the annotation 

Constraint 
Types 

Examples 

date type If the data type of annotated instance does not match the data type of entity 
x in ontology, then remove the instance. 
If cardinality of entity x is 1, and annotator finds multiple candidate 
instances, then select the candidate annotated by the best rule (with highest 
score) as the instance of entity x. 

Cardinality 
If cardinality of entity x is 1, and annotator doesn’t find any candidates, 
then relax the condition in the rule and search the document again (the 
relaxation strategy is same as that in rule induction). 

5. Improving the Annotation by Machine Learning Methods 

In annotation, we met two problems: correct instances selection and missing instances 
prediction. In this section, we try to make use of machine learning methods to solve 
the two problems. 
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5.1. Problem Statement 

Now we give the definitions of the two problems. 
(1) Correct instance selection. In automatic annotation, entity may be annotated 

with multiple instances even in one document. Some annotated instances are correct, 
but some may be wrong. The problem is how to identify the correct instances. 

(2) Missing instance prediction. There may be some instances that are not 
annotated by automatic annotation, we call it missing instances. Since typically recall 
of semantic annotation is significantly lower than its precision, it is indeed necessary 
to deal with the problem. 

In existing methods for correct instances selection, Califf et al propose to select the 
instance(s) that annotated by the highest scored rule [7]. The method can solve some 
problems, but it is not sufficient, because: (a) even the same rule might annotate 
multiple instances including both correct and erroneous ones; (b) some correct 
instances can be annotated by the other rules instead of the highest scored rule.  

In existing methods for missing instance prediction, Nahm et al propose to induce 
predictive rules which are then used to predict the missing instances [39]. The method 
mines the association rules from the data. For example, suppose following rule is 
discovered from data on entity program language and topic area: “SQL”∈language
→“Database”∈area. If the annotation system annotated only “SQL” for language, 
but failed to annotate “Database” for area, then the method can assign the “Database” 
as the value of area.  

In this paper, we formalize the correct instance selection problem as that of 
classification. When selecting the correct instances, we use a classification model to 
identify whether or not an instance is correct.  

For missing instance prediction, it is difficult to accurately predict the missing 
instances that have random values, even by human. We confine ourselves to predict 
the instances that have enumerative values in missing instance prediction. It seems 
reasonable for predicting instances that have enumerative values, because we have 
observed that 17.4% of the entities have enumerative values in our experimental data.  

We then formalize the missing instance prediction problem as that of multi-class 
classification. When predicting a missing instance, we use a classification model to 
predict which value has the highest probability as the missing instance. The 
classification model is trained using the training data in advance. 

5.2. Classification Model 

We make use of SVM (Support Vector Machines) as the classification model [47]. 
Let us first consider a two class classification problem. Let {(x1, y1), … , (xN, yN)} 

be a training data set, in which xi denotes an instance (a feature vector) and yi∈{-
1,+1} denotes a classification label. In learning, one attempts to find an optimal 
separating hyper-plane that maximally separates the two classes of training instances 
(more precisely, maximizes the margin between the two classes of instances). The 
hyper-plane corresponds to a classifier (linear SVM). It is theoretically guaranteed 
that the linear classifier obtained in this way has small generalization errors. Linear 
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SVM can be further extended into non-linear SVMs by using kernel functions such as 
Gaussian and polynomial kernels. 

We choose polynomial kernel, because our preliminary experimental results show 
that it works best for our current task. When there are more than two classes, we 
adopt the “one class versus all others” approach, i.e., take one class as positive and the 
other classes as negative. 

Now, we have two kinds of “instances”: annotated instance of an entity and 
instance in SVM model. To distinguish them from each other, we use sample to 
denote instance in SVM hereafter. 

5.3. Correct Instance Selection 

We divide the problem of instance selection into three categories: 
(1) Multiple instances are annotated by the same rule. For example, “a MIS 

Manager” and “MIS Manager” might be annotated as “title” by a same rule. (The two 
examples are instances of entity “title” in the task of misc.job.offered. Correct one 
should be “MIS Manager”.) 

(2) Multiple instances are annotated by different rules. For example, “Marian D’ 
Amico”, “Charles E. Leiserson”, and “Jeffrey V. Hill” may be annotated as “speaker” 
by different rules. (The three examples are instances of entity “speaker” in CMU 
seminar announcement. Correct one should be “Charles E. Leiserson”.) 

(3) Hybrid of the two situations. For example, “Leiserson”, “Charles E. Leiserson”, 
and “to Charles” may be annotated as “speaker”, in which “Leiserson” and “Charles 
E. Leiserson” are annotated by a same rule, and “to Charles” is annotated by another 
rule. (The three examples are instances of entity “speaker” in CMU seminar 
announcement. Correct one should be “Charles E. Leiserson”) 

The method of selecting by highest scored rule can only deal with the problem of 
the second category, and will fail on the other two categories. Even on the second 
category, the method may fail when the correct instance is annotated by a lower 
scored rule. 

We view the instance selection problem as that of classification. The correct 
instance selection consists of two stages: training and identification. 

In identification, when problem of multiple instances occurs, we identify whether 
or not each instance is correct using SVM model. Then we rank the instances by 
scores output by SVM. We select the instance ranked top as the correct one. 

In training, we construct the SVM model that can be used to identify the instance. 
In the SVM model, we view an instance as a sample in SVM. For each sample, we 
define a set of features and assign a label. The label represents whether the instance is 
correct or not. For each entity, we use instances of the entity in the annotated 
documents as positive samples for SVM and the others as negative samples. We use 
the labeled samples to train the SVM model in advance for each entity. 

We view each instance as a ‘document’, and convert the ‘document’ into a bag of 
words. We apply stop-word filtering and word stemming on the bag of words. After 
that, we construct an attribute-value representation of the ‘document’. Each distinct 
word wi corresponds to a feature with its value. For the feature value, we use TF(wi, 
x)*IDF(wi), a typical method to estimate the word weight in that document. TF(wi, x) 
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represents the frequency of word wi occurs in the document x. IDF(wi) represents the 
inverse document frequency of a word. It is defined by: 

)(
log)(

i
i wDF

nwIDF =  

here n is the total number of instances. DF(wi) is the number of documents the 
word wi occurs in.  

Finally, for multiple instances, we obtain a ranked list, and then we do the selection 
according to the following rules: 

(1) For entity whose cardinality is unique, the top ranked instance is selected as the 
correct one. 

(2) For entity whose cardinality a is greater than 1, the a top ranked instances that 
do not overlap with each other are selected as correct ones. No overlap is very 
important. Considering the examples above, instances “a MIS Manager” and “MIS 
Manager” might both obtain a higher scores compared to other instances. No overlap 
rule can further remove “a MIS Manager”. 

(3) For entity whose cardinality is multiple, instances that are classified as positive 
samples and do not overlap with each other are selected as correct ones. 

5.4. Missing Instance Prediction 

In missing instance prediction, we aim to predict the missing instances that have 
enumerative values (we judge whether an entity has enumerative values in terms of its 
definition in ontology). We view the problem of missing instance prediction as that of 
multi-class classification. Here, values of the missing instances correspond to the 
classes in the classification. It also consists of two stages: training and prediction. 

In prediction, we predict the missing instances by using the extracted instances. 
Specifically, for an entity with enumerative value type, we view the annotated 
document as a sample in SVM, and then predict the value which the entity should 
have. We use the value that has the highest score output by SVM as the missing 
instance. 

In training, we construct the SVM models that can be used to predict the value. In 
SVM model, for an enumerative valued entity, we view each annotated document as a 
sample. For each sample, we define a set of features and assign a label. The label 
represents all possible values of the entity. For each label of an entity, we use the 
annotated documents with this label as the positive samples for SVM and the others 
as negative samples. We use the labeled samples to train the SVM models in advance 
for each enumerative valued entity. 

To represent the features for each sample, we view each annotated document as a 
sample. For an annotated document, we first extract all the annotated instances from 
the annotated document. Next, the instances are converted into a bag of words. After 
that we use the same method as that in the correct instance selection to prepare the 
attribute-value representation for each sample.  

Finally, for a missing instance of the enumerative valued entity, we obtain scores 
from SVM for each possible value. We complete the missing instances by the 
following rules: 
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(1) For entity whose cardinality is unique, the value with the highest score is 
selected as the missing instance. 

(2) For entity whose cardinality a is greater than 1, a values that have higher scores 
are selected as the missing instances. 

(3) For entity whose cardinality is multiple, only the value with the highest score is 
selected as the missing instance. 

6. Explanation 

In iASA, we try to provide an environment for user to quickly annotate the web pages 
according to an ontology. Practically, the user needs to inspect the learned rules and 
the annotation results produced by the system, modify them and provide feedbacks to 
the system. 

As an annotation system relies on complex algorithms, there is a requirement for 
the system to explain the nature of the generated rules to the user. This idea is derived 
from [16]. Explanations can greatly help user gain insights into the rule induction and 
annotation process. In this way, the user can easily focus on the correct rules and the 
annotation results. 

Figure 10 is an example of the scenario. It gives a learned rule for entity etime by 
iASA. 

<rule name="etime" no="12">
  <leftpattern>
    <tag indicator="word" kind="word" name="Time" orth="O: Capitalized" type="token" /> 
    <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" /> 
    <tag indicator="unknown" /> 
    <tag indicator="word" kind="punctuation" name="-" orth="O: OneHyphen" pos=":" type="token" /> 
  </leftpattern>
  <bodypattern>
    <tag indicator="nameentity" name="date" /> 
  </bodypattern>
  <rightpattern>
    <tag indicator="word" name="" type="spacetoken" /> 
    <tag indicator="word" kind="word" orth="O: Capitalized" type="token" /> 
    <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" /> 
  </rightpattern>
</rule>

 
Fig. 10. An example rule 

This rule produces well accepted results on training corpus but low recall on the 
test corpus. The user is uncertain about how to improve this rule or whether or not the 
rule should be removed from the rule set. He wants iASA to explain how the rule is 
generalized and how this rule is evaluated. 

iASA induces rules from three initial rules and also shows how the tokens are 
generalized. For example, the third token in Figure 10 (<tag indicator=“unknown”/> 
indicates a placeholder) in the left pattern of the rule is generalized from the tokens: a 
name entity (date: “Jan, 15th, 2004”), a word (“12”) and a gazetteer entry (also called 
lookup) (time: “4:30”). This rule is tested on the initial rule set by score: 0.987 and on 
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training corpus by score 0.87. The final score is 0.86, which is higher than the 
minimum rule threshold.  

In the rest of this section, we will describe the data structure in explanation module 
and introduce what kinds of questions can be answered in the explanation. 

6.1. Data Structure in Explanation 

The key data structure underlying the explanation component of iASA is the 
dependency graph, which is constructed during the inducing process and the 
annotation process. The dependency graph records the flows of induction, data, and 
input and output of each system component. The nodes of the graph are: annotated 
documents, initial rules, similar rules, selected similar rule pairs, generalized pattern 
collections, all possible rules by the three generalized patterns, scores on the initial 
rule set and the training corpus. 

Two nodes in the graph are connected by a directed edge if one of them is the 
successor of the other in the induction process. The label of the edge is the system 
process.  

In explanation, we define an abstract node, which can be written as a tuple: 
Abstract_Node=<super_edges, node_type, node_data, sub_edges> 

The four elements in the tuple respectively represent a set of link-in edges, type of 
current node, data stored in the node, and a set of link-out edges. By link-in edge, we 
mean the directed edge that one predecessor of the current node links to the current 
node. By link-out edge, we mean the directed edge that the current node links to one 
successor. The type of current node can be one of rule, rule pair, pattern, tag, and 
annotated instance. The data corresponding to the node_type is stored in node_data.  

We also define an abstract edge, which can be written as a tuple: 
Abstract_Edge=<subject_node, edge_type, edge_data, object_node> 

The four elements in the tuple respectively represent a subject node, type of the 
edge, data stored in the edge, and an object node. By subject node, we mean a node 
that the directed edge comes from. By object node, we mean a node that the edge 
directed to. The type of current edge can be one kind of processes in iASA, e.g. rule 
similarity computing, similar rule selection, rule induction, pattern generalization, rule 
scoring on initial rule sets, rule scoring on original training corpus, annotation, etc. 
The data corresponding to the type of the edge is stored in edge_data.  

We make implementations for the nodes and the edges. In the implementation of 
each type of node, we extend the abstract node and define the corresponding data 
structure for storing information that is required in the explanation. In the 
implementation of each type of edge, we extend the abstract edge and define the 
corresponding data structure. 

We take rule-node (implementation of node for rule) as the example to describe 
how we define the data structure for explanation. A rule has three patterns: left 
pattern, body pattern, and right pattern. The rule links to the three patterns by three 
link-out edges. A rule has three scores: score on initial rule set, score on original 
training corpus, and the final score. The three scores are defined as attributes in the 
rule-node. A rule has a semantic tag indicating which entity the rule is used to 
annotate. The semantic tag is also defined as an attribute. A rule has an attribute 
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“number-of-covered-instance” indicating how many instances the rule can annotate in 
the training documents. Moreover, a rule has a global unique ID. Through link-in 
edges, a rule can have a set of predecessor. We can find one kind of predecessor by 
looking up the corresponding edge type in the set of edges. For example, if we want 
to find the pair of rules that are used to directly generalize into the current rule, we 
can lookup the link-in edges by “rule induction”, the system returns a sub set of 
edges. We next query the subject nodes of the returned edges and can get the pair of 
rules. Traversing up in this way, we can get all rules that are used to generalize the 
current rule. 

Initial rule set

Similar rules (r1,r2,r3,r4...)

Rule induction

Similar rule pair (r1,r2)

All possible rules(r1',r2'...)

Generalized left 
patterns(col1)

Generalized body  
patterns(col2)

Generalized right  
pattern(col3)

Score on initial rule 
set=0.987

Score on original 
training corpus=0.987

Final score=0.86>min 
rule score=0.8

Accepted new rule(ri')

Loop until
no new rule

can be 
generalized Evaluate each new rule ri'

Multiply two score

Generate all possible rules

Generate each pattern

Select a rule pair

Prune the learned rule

 
Fig. 11. An example snippet of dependency graph recorded in iASA 

Figure 11 shows a dependency graph fragment that records the generalization of a 
new rule. This procedure is the visualization of rule induction to give the user an 
insight look of the rule induction. SRL firstly uses MLRM algorithm to search for the 
most similar rules (r1, r2, r3, r4), and obtains a rule pair (r1,r2) for induction. Then, 
the rule generalization induces left patterns, body patterns and right patterns 
respectively. Each generalization returns a collection of possible patterns. After that, 
SRL combines the three pattern collections, and generates all possible rules. Next, 
SRL evaluates each rule on the initial rule set and the training corpus, and obtains the 
scores. For rule r1’, the scores are 0.987 and 0.87 respectively. The final score 0.86 
exceed the threshold. Therefore, SRL add the new rule (r1’) into the learned rule set. 
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The dependency graph is constructed while the system is running. Each of the 
components contributes nodes and edges during the execution of the system. When 
the system generates rules or annotates new documents, the dependency graph is 
created at the same time. 

6.2. Answer the Questions 

In principle, a user may ask iASA many questions of following categories: 
(1) Explain existing rule: “why is a rule induced as the final rule?” In essence, the 

user wants to know how it was induced and survived from the evaluation and pruning 
process. 

(2) Explain absent rule: this is to answer the question: “Why is a certain rule not 
present in the output?” 

(3) Explain rule score: “why is rule x scored higher than rule y in the output?”. For 
such question, iASA gives the details of the two scores (i.e. rulescore and realscore), 
including their coverage, error count, missing count, precision, recall and F-measure. 
The score is the key point in deciding where the rule should be put in the output. 

(4) Explain annotation: “which rule is an instance annotated by?” For a wrong 
annotation, the user wants to know which rule brings out the error. He wants to know 
the reason so as to modify the rule. 

We now briefly describe how iASA generates explanations for the four kinds of 
predefined queries described above.  

To answer the question “why is rule x present”, iASA selects the slice of 
dependency graph that records the generation and processing of rule x.  

To answer the question “why is rule x scored higher than rule y”, iASA first 
searches for the two rules in the dependency graph. Then iASA compares the two 
slices of the dependency graph corresponding to x and y. When comparing the slices, 
it focuses on the places where the two rules are evaluated and scored. iASA outputs 
the details of the scores on the two rules. The details of the scores indicate to the user 
that the difference between the two rules. For example, the user can find from the 
scores in which step the rule x scored higher than the rule y so that it survives in the 
final rules. 

To answer the question “why is rule x not present”, iASA first examines the 
dependency graph to check whether rule x has been generated before. If it has, then 
iASA finds out where it has been eliminated, and searches for the places where the 
rule is scored. iASA outputs the scores of the rule on initial rule set, original training 
corpus, the final score, and the threshold. By comparing the scores with each other 
and with the threshold, the user can know why the rule is not present. For example, 
the reason might be the score of the rule is below the threshold. 

If rule x has not been generated, then iASA checks whether or not the rule can be 
generalized from the initial rule set. We conduct the check by searching for whether 
there are rules that are covered by the rule. Success of the check indicates that the rule 
can be generalized (but did not). Then iASA checks why it was not generated. We 
conduct the check by tracing all rules that are covered by the rule. Those rules may be 
selected in different pair of similar rules for induction. iASA outputs all covered rules 
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and presents the similar rule pairs that include the covered rules, and their similarity 
scores.  

To answer the question “which rule is an instance annotated by?”, iASA searches 
for the rule in the predecessors of annotated instance. At last, iASA outputs the rule. 

By the explanation module, the user can take corresponding actions for improving 
the learned rules or the annotation results. For example, the user finds that a rule is 
not present in the learned rule set. He can first ask the explanation module the 
question, and the explanation returns the answer (e.g. the answer is: the rule is 
generated; however, it is pruned because its score is below the threshold). And then 
the user can choose to accept the rule. 

7. Experiments and Discussion 

7.1. Experimental Setup 

In existing annotation systems, some are manual, some are based on GATE (its rules 
need to be predefined manually), and most of the semi-automatic semantic annotation 
systems exploit existing IE algorithms. Table 5 lists the relationships between IE 
algorithms and some semantic annotation systems. 

Table 5. Relationships between semantic annotation systems and IE algorithms 

SA Systems IE algorithms 
S-CREAM LP2 

MnM LP2, Badger, Marmot, Crystal 
SHOE Manual 

AeroDAML AeroText, NLP 
Annotea Manual 

KIM GATE 
SEAN Syntactic and semantic structure learning 

Protégé 2000 Manual 
OntoMat-Annotizer LP2 

Melita LP2 
Artequakt GATE 
SemTag TBD 
SCORE Name entity and relation learning 

 
For the semi-automatic semantic annotation system, its performance naturally 

depends on the IE algorithms that it exploits. Therefore, to evaluate iASA, we 
compare iASA with the IE algorithms used in the semantic annotation systems, e.g. 
LP2 (LP2 is an algorithm for adaptive Information Extraction from Web-related text 
that induces symbolic rules learning from a corpus tagged with SGML tags). We 
conducted the comparison between iASA and some other popular algorithms (e.g. 
Rapier, SRV, HMM, BWI, Whisk, etc).  
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Our experiments are performed on two standard tasks for adaptive IE: the CMU 
seminar announcements [20] and Austin job announcements [7]2.  

CMU seminar task consists of 485 seminar announcements from Carnegie Mellon 
University. The announcements contain details of the upcoming seminars. Each 
seminar is annotated with unique starting time, ending time, location and possible 
multiple speaker name. We denote CMU as the data set of CMU seminar 
announcements. 

The Austin job task consists of 300 newsgroup messages on job details in Austin 
area. The task has been required to annotate 17 elements (see table 7). We denote 
JOBS as the data set of Austin job announcements. 

In experiments, we used a random 50:50 split of the two datasets and repeated 10 
times. We used 50:50 split for facilitating the comparison because the results for 
BWI, RAPIER and LP2, etc [33] use the same splits for each system. 

All experiments use the strategy of dynamic window size and machine learning 
methods to conduct instance selection and missing instance prediction. 

7.2. Evaluation Measures 

A truly comprehensive comparison should compare each algorithm on the same 
dataset, using the same splits, and the same scoring system. Unfortunately, it is 
impossible to end up with a conclusive comparison of different algorithms using 
current published results. Different algorithms have been evaluated by slightly 
different methodologies [33]. 

In semantic annotation, two kinds of issues would be considered with respect to the 
evaluation: how to decide an instance is correct and how to count the correct/wrong 
instances.  

For the first issue, we take a compromised approach of combining exact matches 
and partial matches. Exact match contributes a full score and partial match contributes 
a half score. For example, if the correct speaker is “Dr Jim Boshears, PhD” and iASA 
annotates “Dr Jim Boshears” as a speaker, this would be viewed as partial match and 
count as half a correct instance (0.5).  

For the second issue, there exist two approaches: instance exact matching, value 
exact matching. The former one requires the system to annotate all possible instances. 
Thus if a document contains a stime’s instance which has two occurrences “1:00 PM” 
and “1 p.m”, then the system is required to annotate them both. The second approach 
only compares the output annotations. In this case, it is sufficient to annotate stime 
either by “1:00 PM” or “1 p.m” as they refer to the same meaning. In this paper, we 
adopt the later approach to count the correct/wrong instances. As for the multiple 
instances referring to the same meaning, we only count one time. 

In all the experiments, we conducted evaluations in terms of F-measure (β=1). The 
evaluation measure has been introduced in section 3.3. 

                                                           
2 http://www.isi.edu/info-agents/RISE/repository.html 
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7.3. Experimental Results 

Table 6 shows the comparison between iASA and several algorithms on CMU. The 
columns respectively represent the Algorithm, F1-score on entity starting time, 
ending time, location and speaker name, and the average F1-score. 

Table 6. Comparison of the seven methods on CMU (%) 

Algorithm stime etime speaker location Average 
BWI 99.6 93.9 67.7 76.7 83.9 

HMM 98.5 62.1 76.6 78.6 82.0 
SRV 98.5 77.9 56.3 72.3 77.1 

Rapier 93.4 96.2 53.0 72.7 77.3 
Whisk 92.6 86.0 18.3 66.4 64.9 

LP2 99.0 95.5 77.6 75.0 86.0 
iASA 99.8 95.2 75.7 76.5 85.8 

 
As shown in table 6, we see that iASA outperforms most of the other algorithms 

(averagely +2.26% wrt BWI, +4.63% wrt HMM, +11.28% wrt SRV, +11.0% wrt 
Rapier, +32.2% wrt to Whisk), and is competitive with (LP)2 (-0.2%). 

In JOBS, It requires to annotate the seventeen kinds of information related to 
computer job (some are unique and some are not). We used half of the corpus to train, 
and the rest to test the learned rules. Table 7 shows the experimental results. The 
columns respectively represent the entity that is required to annotate, three algorithms 
(Rapier, BWI, and (LP)2), and iASA. 

Table 7. Comparison of the four methods on JOBS (%) 

Entity Rapier BWI (LP)2 iASA
Id 97.5 100.0 100.0 100.0

title 40.5 50.1 43.9 89.1 
company 69.5 78.2 71.9 73.6 

salary 67.4 - 62.8 80.0 
recruiter 68.4 - 80.6 91.3 

state 90.2 - 84.7 91.5 
city 90.4 - 93.0 95.6 

country 93.2 - 81.0 96.6 
language 80.6 - 91.0 83.2 
platform 72.5 - 80.5 82.4 

application 69.3 - 78.4 73.8 
area 42.4 - 66.9 55.3 

req-years-e 67.1 - 68.8 73.7 
des-years-e 87.5 - 60.4 66.7 
req-degree 81.5 - 84.7 65.9 
des-degree 72.2 - 65.1 80.0 
post date 99.5 - 99.5 100.0
Average 75.1 - 84.1 89.4 
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We see averagely iASA significantly outperforms Rapier (by +19%) and (LP)2 (by 
+6.3%) in terms of F1-measure. On the three entities that are available for BWI, iASA 
significantly outperforms it on title (+77.8%), and underperforms it on company (-
5.9%). 

7.4. Discussion 

Intuitively, dynamic window size can optimize the learning scenario, instance 
selection can improve the precision by pruning the potential wrong annotations, and 
missing instance prediction can improve the recall of the annotation. We performed 
several special experiments for confirming the idea. 

1. Dynamic window size vs. Fixed window size 
In our experiments, some elements are not affected by the window size, while the 

others are sensitive to it. For the entities that are sensitive to window size, some prefer 
small window size while the others prefer large window size.  

We give an experimental comparison of dynamic window size and fixed window 
size. We conducted the comparison on CMU. The result is shown in figure 12. 
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Fig. 12. Comparison between different fixed window size and dynamic window size on CMU 

By fixed-window size, the best average result is 82.8% obtained by using fixed-
window size 8, and the second is 81.4% when the window size is set to 6. The result 
of dynamic window size outperforms that of all the fixed window size (+3.6% than 
that of size=8, +5.4% than that of size=6).  

We also see that for the entities that are sensitive to the window size, the 
improvements by dynamic strategy are significantly (e.g. for speaker, the 
improvements are respectively +54.2% and +63.5% compared to the results of size=4 
and size=3). 

We note that optimizing dynamic window size is a time consuming process, which 
limits its applications with large scale ontology. 

2. Correct instance selection vs. High scored selection vs. Without selection 
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We conducted the experiment to test the performance of the proposed method for 
correct instance selection. We conducted the comparison of results by correct instance 
selection, high scored selection, and result without any selection. By high scored 
selection, we mean selecting the annotated instances by the highest scored rules. We 
conducted the comparison on JOBS. (On CMU, the two selection methods do not 
affect the results of the four entities.) 

Table 8 shows the comparison. The columns respectively represent entity, F1-
scores (F) without selection, with high scored selection and with correct instance 
selection. For short, we use ML to denote correct instance selection by machine 
learning; we use HS to denote high scored selection. In table 8, we also present the 
recall (R) and error rate (E) of the selection. Recall indicates how many correct 
instances are selected. Error rate indicates the accuracy of instance selection. The 
selection methods work on six entities in JOBS, and do not affect the other eleven 
entities. Therefore, in table 8, we list only the six entities and omit details of the other 
eleven entities. 

Table 8. Correct instance selection vs. High scored (HS) selection in JOBS (%) 

HS selection ML selection 
Entity Without 

selection R E F R E F 
title 77.1 33.3 0 82.1 74.2 0 89.1 

platform 79.2 0 0 79.2 72.0 0 80.9 
city 88.2 42.9 33.3 92.3 52.5 0 95.6 
area 50.6 0 0 50.6 72.9 33.3 53.1 

application 67.7 0 0 67.7 77.0 5.0 71.2 
req-degree 57.2 0 0 57.2 50.0 12.5 65.9 
Average 70.0 - 71.5 - 76.0 

 
We see that ML based instance selection significantly outperforms high scored 

selection (+6.3% on average). The improvement over the result without selection is 
also significant (+8.6% on average). By high score selection, only two entities 
obtained improvements: title and city. By ML selection, all the six entities obtained 
improvements.  

We also note that the recall of the ML based selection is still low (ranging from 
50% to 77%) and errors are also induced by the wrong selection (e.g. area, 
application, and req-degree). This also means that we need further improve it. 

3. ML based prediction vs. No prediction 
We exploit machine learning methods to improve the recall of iASA. We 

conducted the comparison between results by machine learning based prediction and 
that without prediction. We conducted the comparison on JOBS. (On CMU, the 
prediction methods do not affect the results of the four entities.) 

Table 9 shows the experiment results on JOBS. ML denotes the machine learning 
based method for prediction; E denotes the error rate of ML based prediction; F 
denotes the F1-score. The prediction methods work on four entities in JOBS, and do 
not affect the other thirteen entities. Therefore, in table 9, we list only the four entities 
and omit details of the other thirteen entities.  
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Table 9. ML based prediction vs. No prediction on JOBS (%) 

ML Entity No prediction 
E F 

language 75.7 0 83.2 
platform 80.9 33.3 82.4 

application 71.2 3.8 73.8 
area 53.1 15 55.3 

Average 70.1 - 73.7 
 
By ML based prediction, we have observed improvement on the four entities (by 

+5.1% on average in terms of F1-measure). We have also observed that the prediction 
might slightly decrease the precision because of the wrong prediction.  

On the other hand, we see that the prediction method only works on four entities in 
the two data sets. Because the instances of other entities (four entities in CMU and 
thirteen entities in JOBS) are not enumerative type and their instance values are too 
sparse. Moreover, the prediction introduces errors (ranging from 3.8% to 33.3%). 
Some errors (about 50%) imported from the fact that instance value of entity platform 
and area are similar. Such similarity confuses the prediction method. 

4. More analysis 
(1) From the experiments, we see that for the majority of the elements in the two 

tasks, iASA outperforms the other algorithms. On CMU, iASA averagely outperforms 
them (averagely +2.26% wrt BWI, +4.63% wrt HMM, +11.28% wrt SRV, +11.0% 
wrt Rapier, +32.2% wrt Whisk,), and is competitive with (LP)2 (-0.2%). On JOBS, 
iASA averagely outperforms Rapier (by +19%) and (LP)2 (by +6.3%). 

(2) We conducted the analysis on each entity. On entities stime, etime in the CMU 
and id, posting_date, platform in JOBS, almost all algorithms perform well. These 
entities often have clear common linguistic information either in their contexts or in 
their body patterns. On the other hand, location and speaker are somewhat difficult 
for iASA. There may be two reasons. One is that these entities have little common 
linguistic information and their contexts are always inconsistent. The other lies in that 
several entities often appear in a document in a particular relationship which makes 
the situation suitable for learning them together. For example, the stime and etime in 
the CMU, and title with other elements (area, country, state, etc.) in the JOBS. This is 
the part of our future work for iASA. 

(3) Considering the six elements that underperform LP2 or Rapier, they can be 
classified into two groups: des_years_e, req_degree and area, language, application, 
company.  

For the former two entities, we found that the two entities are difficult 
distinguished even by human. The context and body pattern for them are very similar. 
Analysis of syntactic structure and semantic structure can help to construct long 
distant context and semantic context (e.g. subject predicate object) and may correct 
the errors.  

For the later four elements, the precisions are acceptable but the recalls are low. By 
experimental analysis, we found that many learned rules only are comprised of body 
patterns (i.e. left pattern and right pattern are null, e.g. “C++” for language), which 
means that such annotations heavily depend on whether the body patterns appear in 
the training samples. Two approaches may be useful to deal with such problems: 
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increasing training samples and creating domain thesaurus. More training samples can 
induce the rules covering more body patterns. But more training samples also means 
more manual works. Creating domain thesaurus means to construct a word list for the 
entity (e.g. language) to assist the annotation. 

7.5. Applications 

We have applied iASA to a practical application: TIPSI. 
TIPSI is a project from Tsinghua-ITF Co-Lab. In TIPSI, we aim to extract and 

annotate the information in company annual reports for Stock Exchange.  
The company annual report is a semi-structured document. In TIPSI, we first 

extract the logic structure from annual report. We conducted the logic structure 
extraction by a logic structure extractor. See [50] for details. Then, the document is 
organized into a tree structure. It is similar to the ‘Document Map’ in Office Word. 
Next, for each node in the logic structure, we applied iASA to annotate it according to 
the predefined ontology of company annual report.  

For example, figure 13 (a) shows the user interface of TIPSI and figure 13 (b) 
shows the output of annotation. There are four main fields on the user interface. The 
top-left window shows the document logic structure. The mid window shows the text 
content of the selected node in logic structure. The right-top window shows the 
predefined ontology. The bottom window is a rule management tool.  

 

(a) (b) 
Fig. 13. Screenshots of TIPSI 

In training stage, when user selects the text on the mid window, iASA 
automatically carries out tokenization and NLP processing, and then generates an 
initial rule. The rule can be incrementally added into the learned rule set and can be 
added to the initial rule set to retrain the whole rule set. If the rule is already covered 
by some other rules in the learned rule set, the system will prompt the user about that. 
In this way, the rule learning is a user interaction stage. User can also manually create 
a new rule or correct learned rules. 

In annotation stage, iASA annotates documents by using the learned rules. It also 
records the occurring position of each instance. And the user can be navigated to 
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instances by selecting the concept or property in the ontology. When the user selects a 
concept/property in the ontology, the system will highlight the annotated instance(s). 
Figure 13 (a) shows the scenario. In the mid window, the highlighted text is an 
instance of company Chinese name. 

After annotation, the user can choose to output the annotation results. Figure 13 (b) 
shows the annotation results by a popup window. The results are presented in XML 
format according to the requirement of the project. 

We are also trying to apply the tool into Contact Search on internet.  
In Contact Search, we aim to annotate the contact information for a given person. 

The user inputs a person name. The system submits the person’s name to Google. 
Then we use a text classifier to identify the web page that contains the contact 
information of the person. After that, we apply the iASA to annotate the contact 
information. The contact information includes: person name, email, telephone, fax, 
homepage, address, and job title. The project is still ongoing and the preliminary 
results show that the tool is promising. 

8. Related works 

In this section, we introduce the related works from four aspects: Knowledge 
Acquisition Frameworks, Annotation Framework, (Semi-)Automated Annotation with 
Support from Information Extraction, and Information Extraction. There are a number 
of available systems that address these four aspects. A complete review of this subject 
is therefore outside the scope of this paper. We present some of them through their 
principles and availabilities. 

8.1. Knowledge Acquisition Frameworks 

Several systems are designed to allow for knowledge acquisition and to use 
knowledge markups in semantic web, for example: Protégé-2000 [18], WebKB [35], 
SHOE [26] and Artequakt [1]. These four systems all start from providing manual 
mark-up by editors. 

Protégé-2000 is a tool which supports knowledge acquisition. But it doesn’t 
support managing and annotating the web pages. 

WebKB uses conceptual graphs to represent the semantic content of Web 
documents. It embeds conceptual graph statements into HTML pages. Essentially 
they offer a web template-based knowledge acquisition framework. 

SHOE is one of the earliest systems for adding semantic annotations to web pages. 
SHOE Knowledge Annotator allows users to markup pages manually in SHOE 
guided by ontologies available locally or via a URL. These marked pages can be 
reasoned about by SHOE-aware tools such as SHOE Search. Such tools are described 
in [30, 48].  

The Artequakt project links a knowledge extraction tool with ontology to achieve 
knowledge support and to guide information extraction. The extraction tool searches 
for online documents and extracts knowledge that matches the given classification 
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structure. Knowledge extraction is further enhanced by using a lexicon-based term 
expansion mechanism that provides extended ontology terminology [1]. 

8.2. Annotation Frameworks 

There are a number of systems designed particularly for annotation, for example: 
Annotea [27], Ontobroker [19], OntoMat-Annotizer, SEAN [37], etc. 

Annotea is a Web-based shared annotation system based on a general-purpose 
open resource description framework (RDF) infrastructure. In Annotea, the 
annotations are modeled as a class of metadata. Annotations are viewed as statements 
made by an author about a Web document. 

Ontobroker facilitates manual annotation of HTML documents with semantic 
markups. 

SEAN automatically discovers and labels concept instances in template-based, 
content-rich HTML documents according to an ontology. It combines structural and 
semantic analysis for annotation. SEAN focuses on well-organized documents, for 
example documents generated from databases. 

8.3. (Semi-)Automated Annotation with Support from Information Extraction 

Recently, efforts have been put into automating the annotation task by using machine 
learning methods. The principal tool is “wrapper” (see [11, 29, 31]). The Semantic 
Annotation systems which use IE algorithms can be referred to Table 5. 

For example, S-CREAM [24], MnM [49] and Melita [10] are three systems 
exploiting IE algorithm LP2 to automate the procedure of annotation.  

S-CREAM is a comprehensive framework for creating annotations, relational 
metadata in the semantic web, including tools for both manual and semi-automatic 
annotation of pages. It also comprises inference services, crawler, document 
management system, ontology guidance/fact browser, document editors/viewers, and 
a meta ontology.  

MnM produces semantic markups with the support from IE algorithm. Besides 
LP2, it also integrates other IE components (Marmot, Badger, Crystal) from the 
University of Massachusetts at Amherst (UMass). It allows the semi-automatic 
population of ontology with metadata.  

Melita is a tool for defining and developing automatic ontology-based annotation 
services that provides different views over the task. It provides manual and semi-
automatic annotation, as well as a rule editor for IE experts to edit the annotation 
rules.  

AeroDAML [28] is a tool which takes ontology as metadata and automatically 
produces a semantic annotation using NLP techniques. It supports only DAML 
language. 

The KIM platform provides semantic annotation, indexing, retrieval services and 
infrastructure. It performs information extraction based on ontology and a massive 
knowledge base [42]. The information extraction process in KIM is based on the 
GATE platform. GATE’s pattern-matching grammars have been modified so as to 
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handle entity class information and to allow generalization of the rules. But, GATE 
does not provide the feature for learning the annotation rules. 

SCORE Enhancement Engine (SEE) supports heterogeneous contents, followed by 
an automatic classification with extraction of context relevant, domain-specific 
metadata. Extraction of semantic metadata includes not only the identification of the 
relevant entities, but also the relationships within the context of relevant ontology. It 
also presents an approach to automatic semantic annotation [22].  

Li et al propose to combine natural language understanding with learning to 
automatically generate annotations for specific domains [34]. They aim to learn the 
syntactic structures from the sentences. 

SemTag aims to annotate very large number of pages with terms from a standard 
ontology in an automated fashion based on disambiguation annotation [17]. SemTag 
operates as a centralized application with access to the entire database and associated 
metadata. SemTag manipulates the text linking in web page to its correct resource by 
disambiguation technology. 

Esperonto has an annotation service that helps content providers bridge the gap 
between the current Web and the Semantic Web. It uses wrapper technology to 
upgrade content to Semantic Web content [6, 25]. 

So far, existing systems focus on different aspects that are concerned with semantic 
annotation. Comparing with the above methods, three features make iASA different: 
(1) similarity based rule induction; (2) using machine learning to refine the 
annotation; (2) explanation method by visualizing the main stages in rule induction 
and annotation procedure. Existing works improve the recall of annotation by 
combining data mining and IE techniques. They are similar to the missing instance 
prediction in iASA. In the experiments of [39], F1-measure could be improved about 
3% by using soft matching mined rules when tested on 150 documents. It is difficult 
to conduct the comparison of the method and our method. The reason lies in that, their 
experiments were based on BWI algorithm (an IE algorithm), and their best F1-
measure result was only 45% that is below the average in our experiments. 

8.4. Information Extraction Technologies 

In information extraction, given a sequence of instances, we identify and pull out a 
sub sequence of the input that represents the information we are interested in. Hidden 
Markov Model [21, 44], Maximum Entropy Model [3, 8], Maximum Entropy Markov 
Model [36], Support Vector Machines [13], Conditional Random Field [32], and 
Voted Perceptron [12] are widely used information extraction models. 

Information extraction has been applied, for instance, to named entity recognition 
[51], table extraction [41], metadata extraction from research paper [23, 40]. 

9. Conclusions 

In this paper, we have investigated the problem of semantic annotation. We have 
proposed a tool, called iASA, which learns to automatically annotate web documents 
according to an ontology. By using similarity based rule induction, we have been able 
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to improve the rule learning procedure. We have tried to improve the annotation 
results by making use of machine learning methods. Finally, we have developed an 
explanation module to express the nature of the learner and annotator to users. 
Experimental results show that our approach can significantly outperform most of the 
existing wrapper methods. By the analysis of the experimental results, we observed 
that the proposed methods (including: correct instance selection and missing instance 
prediction) work well. 

As the future work, we plan to make further improvement on the annotation 
accuracy. We also want to apply the annotation method to other annotation 
applications. Apart from that, several challenges for semantic annotation, also being 
our research interests, including: (1) Using active learning to make iASA more 
adaptive to new documents. By active learning, we can prepare training documents 
more efficiently and more effectively. (2) Making use of the annotation. The goal of 
semantic annotation is to improve the efficiency of obtaining information in web 
environment. Therefore, a friendly and flexible mechanism for using the annotation is 
necessary. (3) Combining ontology mapping with semantic annotation. In order to 
reach interoperability in the heterogeneous environment of semantic web, a system 
for integrating ontology mapping and semantic annotation is required. (4) 
Multilingual annotation. Multilingual annotation is also important given the fact that 
Chinese websites are increasing exponentially, which could be a future direction to go 
as well. 
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